

978-3-903176-32-4 © 2021 IFIP

A Workflow Management Framework for the

Dynamic Generation of Workflows that is

Independent of the Application Environment

Andrzej Jasinski

Software Research

Institute

Athlone Institute of

Technology

Athlone, Ireland

a.jasinski@research.ait.ie

Yuansong Qiao

Software Research

Institute

Athlone Institute of

Technology

Athlone, Ireland

ysqiao@research.ait.ie

Enda Fallon

Faculty of Engineering &

Informatics

Athlone Institute of

Technology

Athlone, Ireland

efallon@ait.ie

Ronan Flynn

Faculty of Engineering &

Informatics

Athlone Institute of

Technology

Athlone, Ireland

rflynn@ait.ie

Abstract—Workflow is a well-known and widely used

technology in business management. Traditional workflow

solutions are designed for humans and generally use a graphical

representation of workflow elements that reflect the

involvement of human factors. Additionally, in a situation where

workflow execution is not possible, human intervention is

necessary. This means that current workflow design is limited

in flexibility, in terms of tasks supported, and that it cannot be

easily scaled or adopted. Furthermore, current workflow design

is limited in efficiency and efficacy, especially in modern

environments (e.g. 5G and IoT) where problems can be complex

and solutions unpredictable.

This paper proposes a workflow management framework

that uses dynamically generated workflows to control a

managed environment. Exception detection and handling in

workflow generation produce recommendations for mitigating

incidents that might occur. The key characteristics of the

proposed framework are its ease of implementation, flexibility

and scalability. These characteristics allow for the quick

definition of new tasks, known and unknown, and to assess the

quality of the generated recommendation through feedback

from the managed environment. Experiments performed in two

different environments, robotics and networking, demonstrate

the elasticity and functionality of the proposed method to

dynamically generated workflows.

Keywords—dynamic workflow generation, proactive

management, incident detection, incident prevention, incident

mitigation

I. INTRODUCTION

A workflow is designed for humans to control job

processes within an organization. It is characterized as a set of

progressing steps that need to be done in repeating sequences

[1]. There are three main categories that workflows fall under:

sequential workflow, state machine workflow and rules-

driven workflow [2]. Workflows are implemented in many

areas, such as human resources, finance, marketing and sales,

providing important business benefits. These benefits include

improvements in efficiency, time savings, better use of human

resources and the elimination of unnecessary work [3]. The

market offers many commercial enterprise-oriented

management platforms that can be deployed in the cloud, on

mobile platforms or standalone, such as Workflow Max [4] or

Asana [5]. The availability of free and opensource solutions is

limited and are primarily designed to support a single task.

However, Taverna [6] is designed to support highly

specialized complex tasks and is distributed under the Apache

2.0 license.

Implementation of workflows is not a trivial task. Human

mistakes and design issues can lead to maintenance problems,

waste generation and unwanted expenditure in a complex

manufacturing process. When a problem occurs, the

traditional workflow approach can handle known (predefined)

issues only [7]. In complex workflows, certain unknown

(unpredictable) events can happen that may lead to a situation

where the workflow cycle cannot be completed. In such cases,

the whole process is stopped and human intervention required

to identify and fix the problem. Problem detection is important

regardless of business type, whether it is human resources,

production processes, or data management and analysis [8].

There has been a growth in environment infrastructures in

recent times, driven by advances in technology, especially in

networking (SDN, 5G) and IoT [9]. Managing such

infrastructures is a challenge, in particular the problem of

incident detection and avoidance [10]. Therefore, there is a

need for proactive solutions, especially technologies that can

dynamically handle exceptions, ideally without human

intervention, or with minimal human intervention.

Research to date in the area of workflows is primarily

anchored in business management. The literature shows that

workflow in business management is strictly related to, and

dependent on, the particular environment in question and the

elements associated with it [11], [12], [13]. For the work

presented here, this relationship between the environment and

the workflow applied to the environment is examined. This

workflow-environment relationship informs the novel

approach presented here to generate workflows dynamically,

in a way that is not tied to one particular environment but is

environment-independent.

This paper presents a workflow management framework

(WMF), using dynamic workflow generation to control the

environment. The framework uses a self-assurance method for

exception handling, referred to as the environment incident,

and environment feedback to produce a recommendation for

the best way to mitigate environment incidents that occur. A

central component of the WMF is the relationship between the

environment and the dynamic workflow generator engine

(DWGE), in which the detection of an alarm (incident) in a

particular environment (input) results in the creation of a

dynamic workflow to implement a solution (output).

The remainder of this paper is organized as follows. In

Section II a summary of related work is presented. The key

elements of the proposed framework architecture are

described in Section III, which is followed by the workflow

elements interaction in Section IV. Section V details the novel

method for autonomous workflow generation, which is

independent of the application environment. Two

experiments, in a robotic environment and a networking

environment, in which the dynamic workflow generation

architecture is applied are described in Section VI. The paper

ends with conclusions and suggestions for future work in

Section VII.

II. RELATED WORK

In [10], a graphical representation of workflow elements

using computerized software or manual paper drawings is

described. In both cases, human factors were involved in the

design stages, a common weakness of workflow management

and design [14]. A number of companies have developed

commercial workflow software solutions, for example [15].

This technology has evolved, improving self-design, self-

organizational and self-management aspects by adopting

workflow software. An example is the use of workflow

automation and business rule engine tools to make decisions.

Such commercial solutions are designed to support the

automation of key business processes and business rules.

These solutions are designed to present human-

understandable output and require human interaction in

workflow management. Some authors have published

research in relation to workflow applications in data analytics

or cloud computing [16]. The limitation of these papers is a

focus on improving aspects of the workflow impact on the

managed environment (data) and not on the mechanism of

workflow self-generation/self-update. An approach, limited

to scientific workflows only, that supports the incremental

submission of partial workflows for execution until

completion is presented in [17]. The theoretical techniques

for exception handling management were the focus of [18].

One of the critical issues in the design process of dynamic

adaptive systems is the assurance that the main mechanisms

of workflow generation will be adequately maintained when

an environment user changes their behavior [19]. Apache

Taverna [6], one of the most popular open-source domain-

independent workflow management systems, supports the

creation of workflows by using a workbench, where a human

must manually design and then execute workflows using a

dedicated server. However, this solution is complex,

requiring trained personnel to support the workflow

processes [20]. Any incident that occurs during workflow

execution will corrupt the workflow process, resulting in

necessary human intervention [21]. Introducing a human

element in the management of a workflow problem can result

in delays in recognising and resolving the problem,

unfortunately, along with unwanted expenditure.

Informed by the literature, this paper presents a novel

approach to control, maintain, and manage the environment,

and its elements using dynamically generated workflows.

Secondly, the proposed framework can detect an

environment incident and, using self-adaptive behavior to

make an autonomous decision, either update the existing

workflow or replace it with a new one. Finally, the quality of

the newly generated workflow is assessed based on feedback

generated by the managed environment.

III. WORKFLOW MANAGEMENT FRAMEWORK ARCHITECTURE

The focus of this paper is a mechanism to dynamically

generate workflows that are not restricted to one specific

domain of application and require minimal human

intervention. This section presents the workflow management

framework, the purpose of which is to manage the interaction

between an application environment and the workflow

generation. The key elements of the WMF are shown in Fig.

1, which includes the DWGE. In the WMF, there is a client-

server relationship between the environment and the DWGE.

The DWGE server waits for a message from the environment

to initialize a workflow (communication interface

initialization state). When the server-client link is activated,

the first workflow is generated and forwarded to the

environment It should be noted that the environment can exist

and operate without support from the server (autonomous

Fig. 1 Workflow management framework

environment). It should be noted that the environment can

exist and operate without support from the server

(autonomous environment). Alternatively, the environment

can be supported partly or entirely by the server; this depends

on the specifics of the environment and the initial

configuration of the principles of cooperation between the

WMF's environment and the DWGE. The functions of the

WMF elements are:

Server (Dynamic Workflow Generator Engine)

• Listener – maintaining incoming connections,

recognizing messages and initializing procedures.

• Query mechanism – responsible for communication

with the internal repository and external sources.

• Workflow engine server (WES) – responsible for

prerequisite checks, generation of workflows,

analyzing environment feedback and preparing

recommendations.

• Repository – structured and unstructured database

(data types include troubleshooting, manual,

handbook and historical).

Client (Environment)

• Communication interface – establishing and

maintaining the connection with the server and

exchanging messages.

• Workflow recognition – platform to execute

workflows, manage exceptions and detect incidents

• Feedback – workflow updater.

IV. WORKFLOW ELEMENT INTERACTION

To complete a job, referred to as a Task, in the controlled

environment, a workflow must be executed. The Process

(workflow) to complete the Task includes a set of repeating

Procedures (components) that need to be executed in

sequence as illustrated in Fig. 2. Examples of Tasks include

finding a path for a robot to an exit in a robotics environment

or establishing a path to destination in a networking

environment. The creation of environment elements, such as

obstacles in a robotics environment or switches in a

networking environment, are prerequisites for the generation

of a workflow. Procedures that are part of the Process must

be fully understandable by the environment and/or its

elements (environment player) to complete a workflow cycle

and end a Task.

If an exceptional incident occurs that terminates a

Procedure, resulting in complete failure, the current

workflow must be updated because the continuation of the

execution of this Process is impossible (the Process is marked

as corrupted). Such an incident can be detected either by the

environment itself or by another dynamically generated

workflow that is executed in parallel. The environment sends

a message to the workflow server reporting the incident and

waits for a server response (recommendation). To avoid an

incident, the server sends back either a workflow update or

generates a new workflow. Then execution of the failed

Process will continue to complete the sequence.

The WES in Fig. 1 is responsible for dynamic workflow

generation. All incoming requests from the environment are

forwarded by the Listener to the WES. The engine uses the

repository in Fig. 1 to read and save both structured and

unstructured data. Firstly, the WES generates a prerequisite

workflow to check that the environment meets the minimum

criteria to execute workflows. In the situation that workflows

generated by the WMF refer to those environment

components that may not be loaded automatically, the server

must create the prerequisite workflow/workflows, activate

the necessary environment components and, lastly, check that

all required components are loaded and working properly. An

environment prerequisite requirement is stored in the

repository and is available when the handshake procedure is

completed. The WES module is designed to generate a

workflow based on environment requests. The request can be

direct or indirect. The indirect request is a prerequisite

workflow that must be executed first and the decision to

generate this workflow is independent of the environment in

question. Successful execution of this workflow is mandatory

and must be confirmed by environment feedback. An

example of a direct request is an update to generate a new

workflow necessary to complete a current Task or Tasks.

Failure of execution of this type of workflow (incident

detection) only affects the single Task (single procedure

exception) and will not crash or terminate the entire

environment. The WES reads information about workflow

components from the Repository as illustrated in Fig. 3. The

Master Components database stores data belonging to the

specific environment, while the Slave Components database

stores supporting (extended) components linked to the Master

Components. In the event that one of the Master Components

cannot hold an action, or even does subcomponent does not

exist, it can be temporarily defined or overwritten using either

single or multi sub-components. In general, the Master

Components database stores procedures that are universal

and can be executed in any environment (e.g., database input-

output). The last subcomponent of the Master is a

Relationship database component that stores logical

procedures (e.g., sets of rules) that can be applied in the

workflow process.

V. DYNAMIC WORKFLOW GENERATION

The novelty of the proposed approach is the bidirectional

nature of the relationship between a controlled environment

and the dynamic workflow generation engine. The proposed

method supports autonomous and proactive management,

Fig. 2 Environment “Task” execution diagram

characterized by the fact that it can be triggered by the

environment and/or the workflow management framework.

In addition to dynamically generated workflows to manage

the environment events, it also uses environment feedback to

manage and improve methods used for workflow generation

(self-improvement). At this point in the development of the

WMF, the quality scoring mechanism for a generated

workflow is relatively simple but plays an important role in

classifying whether or not the dynamically created workflow

is still valid, and the same task can be repeated. A

combination of a sequential workflow (main workflow

generation), state machine workflow (logic description) and

rules-driven workflow (prerequisites) is used in the proposed

solution.

The WMF uses a decision tree algorithm to manage its

elements. It should be emphasized that the decision tree must

be applied to both the environment (workflow deployment as

in Fig. 5) and the WES (workflow generation as in Fig. 4).

The WMF module responsible for workflow deployment

on the environment side is the Workflow Recognition. The

main role of the decision tree on the environment side is to

execute the workflow forwarded from the server, apply

calculated feedback (received from the Feedback module)

and finally make a decision to either repeat a process (no

incident detected) or send back a report to the server about

execution exemption (alarm record).

Similarly, the decision tree algorithm applied to the WES

is executed when the message is forwarded from the

environment. The WES recognizes three main events:

handshake request, exception and task finalization.

Most important is the workflow exception message,

which is explained in detail here. When workflow exception

messages are received by the WES, this suggests two possible

issues: a prerequisite problem or an incident that stopped

workflow execution. If it is the former, the connection will be

terminated with a message indicating that the environment

does not meet the initial requirements. If it is the latter, the

workflow must be regenerated to avoid a problem that

prevents the environment Process (workflow) from

completing a sequence. The WES then uses the Repository to Fig. 5 Decision tree algorithm - Environment

Fig. 4 Decision tree - WES

Fig. 3 WES - repository storage

download historical data associated with the environment.

All previously generated workflows are automatically stored

in the internal database and marked using an environment ID,

as shown in Fig. 6, assigned in the initial handshake

procedure. The second record shows the number of updates

that have been applied to the original workflow; only

successful updates increase this value. In a situation when the

following update or updates fail, this number is decreased

until the update is successful. The dynamic nature of

workflow creation may cause a previously successful partial

update on this level to be reverted to because the

updates/changes applied later cannot be correctly

implemented. Entry number 3 in Fig. 6 is strictly dependent

on the workflow component priority value; this value is fixed

and related to the component that is stored in the Repository

(e.g. movement components are: left or right and the

Workflow_Seq value for both is equal). The WES receives

the component list from the Repository (value in entry

number 4), selecting a component with the lowest sequence

value (or picking one randomly if more than one component

exists in the Repository with the same sequence value), then

checks that the newly selected component wasn't used within

the same level (see Fig. 6, entry 2). When all components

with the same priority are used, the WES applies the next

component with higher priority. Additionally, the WES must

save the applied action to the Repository. The fifth entry in

Fig. 6 includes a local state record (temporary values),

calculated feedback (used for comparison purpose) and a step

value (representing the number of completed cycles until

failure - seventh entry in Fig. 6). In Fig. 6 there is a request at

the sixth entry to update the failed workflow. In exceptional

situations, the main component can be temporarily replaced,

and a new Procedure performed (e.g., in the robotics

environment component "left" can be overwritten by

component "return") within a single Process; this new

component will receive extra priority, but only temporarily.

In the networking scenario this mechanism is not used but can

be applied if necessary. From a workflow logic point of view,

the robotics "return" must be described as a new Procedure,

even though it is one of the possible movements already

defined. After finishing, the workflow level will be decreased

by one and the failed part of the workflow will be deleted.

VI. EXPERIMENTAL VALIDATION

In this section, the WMF is examined in two application

domains or environments, namely, robotics and networks. The

motivation for these choices is to evaluate two scenarios: the

first is where the WMF takes full control of the environment

and its player (robot); the second is where the DWGE

cooperates with the environment and supports a functionality

extension. In the first scenario, the workflow is used for

resolving a collision detection/avoidance problem. In the

second, the WMF application tries to find a shorter path (build

a dedicated route/tunnel to avoid traffic congestion), detect a

connection problem (link down) and then resolve

configuration errors. In both cases, the Python programming

language was used to build the environment.

A. Robotics environment

In this scenario, the player (robot) must find a route from

the starting point (opening) to the destination point (closing)

and avoid the obstacles that can appear and block the way.

1) Prerequisites

Firstly, the environment establishes the connection

(handshake). The DWGE checks the environment

prerequisites and generates the first workflow that is

responsible for the creation of the environment. This is a

policy-based predefined workflow and is stored in the

repository of the DWGE. The first Task that must be

completed is a calculation of the area of the environment

(number of columns and number of rows), robot coordinates,

exit-door coordinates, initial feedback calculation and

obstacles (coordinates of the first block, number of blocks,

and vertical or horizontal position). Execution results of the

first process are stored in the local environment repository

(see Fig. 7).

Next, the workflow creates the environment elements

(using variables stored in the local repository) necessary to

visualize this environment, as shown in Fig. 8. All

prerequisite components are represented as a set of Python

scripts and must be executed without any errors. When an

error occurs, the process must be repeated.

2) Dynamic Workflow Generation Management

When the initial stage is successfully completed, the DWGE

can start managing the environment and the environment

player. Four items that dynamically generated workflows can

implement are described: robot movement, collision

detection, collision avoidance and feedback calculator.

a) Robot Movement

The robot understands four basic movements: left, right,

forward and backward. From the workflow management

point of view, there are two additional logical movements,

return and shift. The return or shift can take the form of one

of the basic movements and is convergent with those that the

robot already knows. The purpose of the return is to show the

robot how to get back to the previous position (robot when

exploring the environment memorizes each critical stage).

Fig. 6 Example of workflow information stored in the repository Fig. 7 Result of calculation environment variables

Fig. 8 Environment generated using workflow

This situation will happen when all four basic movements are

classified as a failure. In this situation, part of the workflow

will be invalid and will have to be dynamically updated. The

shift component is applied in the situation where the robot

comes back to the starting point arising from the return

procedure execution. The shift is a combination of two basic

movements and is responsible for bringing the robot to the

new starting point. All six movement workflow components

are predefined and stored in the Master Component database

located in the engine Repository in Fig.1.

b) Collision detection and avoidance

When the workflow instructs the robot to move, but the

execution of the command is impossible, it means that an

environment accident had been detected. In the robotics

environment, three accidents can be recognized: collision

with the obstacle, collision with the border and negative

feedback. In all these situations, the workflow is not valid

anymore and needs to be updated to avoid a collision.

c) Environment Feedback

The robot is playing an exploration role and every

movement is strictly dependent on the dynamically generated

workflow. Each time a single movement is completed, the

workflow will calculate new feedback. To do this, the

environment calculates a surface area located between the

destination point (closing) and the current location of the

robot. When each movement is applied and is successfully

executed, the value of the feedback will decrease. Otherwise,

it will be classified as an incident and the incident report will

be sent to the server with an update request.

3) Qualitative analysis

During the experiment, a total of 220 environments was

generated. The size of the environment and the number of

obstacles is the result of a prerequisite workflow execution

and it varies each time (see Section VI.A.1).

As seen in Table 1, three main size categories were defined:

small, medium and large. The number of obstacles that

appear in the environment is represented by a randomly

picked variable. The workflow responsible for the generation

of this prerequisite is also looking for an exception in the

situation where the obstacle does not fit into the environment,

in which case the obstacle will not be placed in the

environment. Additionally, environment variables will be

updated in the environment repository. The number of

detected incidents is related to the number of obstacles and

increases with the size of the environment. When an update

is impossible, resulting in an update failure, this update must

be reversed to the previous stage (this is a special situation

when all the possibilities of the robot's movement have been

used). The next column in Table 1 presents a critical

exception where all possible workflows had been executed

but the player is back to the starting point resulting in

reversing the workflow updates. In this special circumstance,

the Shift procedure is applied. When this critical situation is

detected four times, the environment will be classified as

unsuccessful (the main Task will fail). The next column has

the number of cycles, which is the number of successfully

executed workflows. The last column in Table 1 shows the

successful completions of the main task in the tested

environment. There were no exceptional circumstances, and

all planned Tasks (jobs) were completed. The number of jobs

varies and is related to the area of the environment. The

probability of failures and updates is greater in the large

environment (more complex) than in the small environment,

where the chances of meeting an obstacle are much lower.

B. Networks Environment

The second domain in which WMF functionality was

tested is a software defined network (SDN) emulated using

Mininet software [22] and managed by a POX controller [23].

This is illustrated in Fig. 9, which shows that the Workflow

Generator is using a direct connection through the

programming interface installed in the POX network

controller. Unlike the robotics environment, a non-invasive

proactive application of dynamic workflow generation is

presented, which is designed to support infrastructure and

management mechanisms already implemented in the

environment. Non-invasive behavior means that the DWGE

will communicate with the environment using an interface

installed in the managed environment without altering the

environmental structure (i.e., no hardware or software

changes). Also, the managed environment can still operate,

while retaining its original functionality, independent of the

WMF. Proactive management can add new functionality

based on the request from the environment and using its

resources. Some of the workflows do not require dynamic

updates because they are responsible for the consistency of

prerequisites, e.g., checking the POX modules or collecting

data. In this case, the dynamic generation of the workflow is

TABLE 1 CHARACTERISTICS OF TESTED SCENARIOS FOR THE ROBOTIC ENVIRONMENT

Fig. 9 Diagram showing an SDN – workflow generator

relationship

used to extend the existing functionalities, thus resulting in

the improvement of the environment.

1) Prerequisites

This scenario is designed to play a supporting role for the

POX software where network traffic is managed by the

controller. For example, the default route for hosts connected

to switches S1 and S2 is through switch S3 (shortest path).

The DWGE has no direct impact on the environment

elements (switches are part of the network infrastructure).

However, it enables an indirect management role using

POX modules (activate or deactivate them). Firstly, the

communication interface (located in the POX, playing the

client role) establishes the connection (handshake) with the

DWGE. The server then generates a set of prerequisite

workflows. Most important is the execution of the workflow

that is responsible for creating a local repository because this

will be used to store all data gathered during the execution of

the prerequisite workflows shown in Fig. 10. The next

executed workflow is responsible for checking that all

required POX modules are activated, if not it will try to

activate them. A list of the modules is predefined under the

policy located in the server repository. The workflow

generator uses this list to instruct the POX controller as to

when and what modules must be activated. The purpose of

using such modules is to map a network topology using a link

layer discovery protocol (LLDP), create a list of switches and

discover the links between them.

Before completing a prerequisite and moving to the next

stage, a time delay is applied. This is related to the fact that

several algorithms are time-consuming and events that

possibly affect the network environment can be detected with

the delay.

2) Network topology and traffic generation

The referenced topology is presented in Fig. 11 which has

hosts (H1-H6) connected through switches (S1-Sn). By

default, the POX controller manages the network so that all

traffic between Network A and Network B is routed using

switches S1, S3 (located in Network C) and S2. In this

scenario, two types of workflows were used: management-

oriented and monitor-oriented [15]. The aim of the

management-oriented workflow is to build a path (or tunnel)

between H1 and H2, which must be dynamically updated

when a link problem is detected because the previously

known network topology will not be valid anymore. To build

a dedicated tunnel between hosts H1 and H2 (that would be

available for these two hosts only), the workflow generated

by the WES creates a tunnel (static route) through the unused,

possibly shortest path, S1-S4-S5-S2 (switch S3 has been

excluded because it is part of a default route managed by the

POX controller). This workflow is executed once per minute

because the installed entry in the switch table will expire

within 60 seconds, then it will be deleted from the switch.

This task is repeated until an incident (link failure) is

detected. Executed in parallel to the management-oriented

workflow is a monitor-oriented workflow, which is checking

LLDP packets against link failure. When such a failure is

detected, this information is stored in the Broken_Links

folder (Fig. 10). Incident detection does not affect monitor-

oriented workflows but executing the management-oriented

workflow will be impossible. This type of workflow uses the

repository data to validate itself. When a broken link is

reported, the workflow will change its own state to damaged,

then the environment (interface) will send a request to the

server to update this workflow, considering the topology

changes caused by the incident.

3) Environment Test

In computer networks, link failure detection is critical for

traffic management. Detection of such a problem is most

important to maintaining the integrity of the system. In this

experiment, it was decided to use a dynamically generated

workflow to detect a broken link and recommend an

alternative route for the affected traffic. For test purposes, a

Python script manually terminated a link between the last two

switches in the tunnel (see Section VI.B.2). For the traffic

Fig. 11 SDN topology

TABLE 2 DATA GATHERED DURING THE NETWORKING ENVIRONMENT (SDN) TESTS

Fig. 10 Environment repository folders

generation, ICMP ping packets were sent between H1 and H2

through the established tunnel. In parallel, the same command

was executed to generate traffic between H3 and H4 to show

that default traffic is carried out without interruption. As

expected, when the link had been terminated, the traffic in the

tunnel was lost. However, default traffic continued without

interruption. The system reacted to the incident by the

generation of a new workflow that redirected traffic to the

new tunnel S1-S6-S7-S8-S2.

Dynamic workflow generation is a reliable and promising

management method in modern computer networks such as

SDN. The performed tests focused on the suitability of the

proposed method for dynamic workflow generation rather

than on a comparison with existing solutions in SDN. The

tests demonstrated the effectiveness of this method, both in

detecting incidents and preventing them. The implemented

tests were not performance-oriented but focused on the

application of dynamically generated workflows to network

management, especially for detecting network failures.

Regarding results gathered, increasing the number of

switches that were part of the tunnel did not affect the

incident detection mechanism and dynamic workflow update

in relation to time or delay. As mentioned in Section VI.B.1,

several time-consuming algorithms must be executed for

prerequisite checking (system needs on average 19 seconds

to activate all modules and enable a traffic flow – see Table

2). Events that potentially affect the network environment can

be detected with the delays presented in Table 2; the values

are comparable and are not dependent on the number of

network elements.

VII. CONCLUSION AND FUTURE WORK

 In this paper, workflow generation, with particular
emphasis on the implementation of self-mitigating behavior
when an execution exception occurs, was explored. As shown
in the experiments, the proposed framework demonstrated its
potential because it successfully implemented the tasks of
environment management and self-update based on feedback
from the environment. Dynamic workflow generation strictly
depends on the requirements and specifications of the
managed environment. The experimental evaluation shows
two, (but not limited to) management-oriented applications for
dynamic workflow generation and its relatively simple not
intrusive implementation. The idea presented in this paper can
be used as a powerful solution for infrastructure management,
testing or debugging. The experiments described here provide
a starting point for future exploration of a dynamic workflow
generation framework that is not tied to one particular
managed environment.
 Future work will research a dynamic (adaptive) rating
system (the quality measurement mechanism of dynamically
created workflows). Automatic environment recognition, to
replace the currently used static approach, replacement of the
statically created workflow component with a dynamic
approach will also be investigated.

ACKNOWLEDGMENTS

This work was supported by the Irish Research Council,

under grant number EPSPG/2017/336, and by Ericsson, the

industrial partner.

REFERENCES

[1] C. U. Press, "Cambridge Dictionary," Cambridge, 01 Jan 2020.
[Online]. Available:

https://dictionary.cambridge.org/dictionary/english/workflow.

[Accessed 01 06 2020].

[2] I. W. Salemme, "What types of workflow exist?," 17 Apr 2020.

[Online]. Available: https://www.pipefy.com/blog/types-of-

workflow-exist/. [Accessed 20 Jun 2020].

[3] Integrify, "Integrify workflow management benefits," Integrify, 15

Feb 2020. [Online]. Available:

https://www.integrify.com/workflow-management-benefits/.
[Accessed 20 05 2020].

[4] "Online project management made easy," Workflow max, 2020.

[Online]. Available: https://www.workflowmax.com. [Accessed 25
06 2020].

[5] Asana, "Keep your team coordinated, wherever you are," Asana,

2020. [Online]. Available: www.asana.com. [Accessed 25 06 2020].

[6] The Apache Software Foundation (ASF) , 2021. [Online]. Available:

https://taverna.incubator.apache.org. [Accessed 10 01 2021].

[7] B. Wallace, "Bad workflows: The hidden time wasters slowing you
down," Ricoch, 2020. [Online]. Available: https://www.ricoh-

usa.com/en/insights/articles/bad-

workflows?utm_expid=._agfg6o8rceclex3zfok2a.0&utm_referrer=
https%3a%2f%2fwww.google.com%2f. [Accessed 26 05 2020].

[8] E. Fels, "Top Small Business Management Mistakes to Avoid,"

www.businessknowhow.com, 06 Mar 2019. [Online]. Available:
https://www.businessknowhow.com/manage/small-business-

management-mistakes.htm. [Accessed 28 05 2020].

[9] K. Nash, "5G accelerates network management challenges,"
Ericsson, 27 Mar 2018. [Online]. Available:

https://www.ericsson.com/en/blog/2018/3/5g-accelerates-network-

management-challenges. [Accessed 16 06 2020].

[10] C. Hagen, G. Alonso, "Exception handling in workflow management

systems," IEEE Transactions on Software Engineering, vol. 26, no.

10, pp. 943 - 958, 2000.

[11] M. z. Muehlen, orkflow-based Process Controlling: Foundation,

Design, and Application of Workflow-driven Process Information
Systems, Business & Economics, 2002.

[12] Deniz Appelbaum, Alexander Kogan, Miklos Vasarhelyi Zhaokai

Yan, "Impact of business analytics and enterprise systems on
managerial accounting," International Journal of Accounting

Information Systems Elsevier, vol. 25, pp. 29-44, 2017.

[13] Guido Dinkhoff, Volker Gruhn, Armin Saalmann, Michael Zielonka,
"Business process modeling in the workflow management

environment Leu," in International Conference on Conceptual

Modeling, Berlin, 2005.

[14] P. Carayon, "Human factors analysis of Workflow in health

information technology implementation," in Handbook of human

factors and ergonomics in health care and patient safety, London,
CRS Press, 2012, p. 824.

[15] Thenuwara Hannadige Akila Sanjaya Siriweera, Incheon Paik,

Banage Thanne Gedara Samantha Kumara, "Constraint-Driven
Dynamic Workflow for Automation of Big Data Analytics Based on

GraphPlan," in 2017 IEEE International Conference on Web

Services (ICWS), Honolulu, 2017.

[16] Mainak Adhikari, Santanu Koley, "Cloud Computing: A Multi-

workflow Scheduling Algorithm with Dynamic Reusability,"

Arabian Journal for Science and Engineering, vol. 43, no. 2, pp. 645-
660, 2018.

[17] Ratnakar, Yolanda Gil, Varun, "Dynamically Generated Metadata

and Replanning by Interleaving Workflow Generation and
Execution," in Proceedings of the Tenth IEEE International

Conference on Semantic Computing, Irvine, 2016.

[18] Peter J. Kammer, Gregory Alan Bolcer, Richard N. Taylor,
“Techniques for Supporting Dynamic and Adaptive Workflow,” in

Computer Supported Cooperative Work (CSCW), Irvine, 2000.

[19] D. Weyns, N. Bencomo, R. Calinescu, J. Camara, C. Ghezzi, V.
Grassi, L. Grunske, P. Inverardi, J.M. Jezequel, S. Malek, R.

Mirandola, M. Mori, and G. Tamburrelli, "Perpetual Assurances in

Self-Adaptive Systems," 18 Jan 2018. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-74183-3_2.

[Accessed 20 06 2020].

[20] T. A. S. Foundation, "web.archive.org," Taverna, 15 May 2020.

[Online]. Available:

http://web.archive.org/web/20200515113032/https://taverna.incubat
or.apache.org/introduction/taverna-in-use/. [Accessed 28 Jan 2021].

[21] Johann Eder, Walter Liebhart, "Contributions to Exception Handling

in Workow Management," in EDBT Workshop on Workflow
Management Systems, Valencia, Spain, 2006.

[22] Bob Lantz, Brandon Heller, Nikhil Handigol, Vimal Jeyakumar,

"Mininet - Virtual Network Emulator," 2020. [Online]. Available:
http://mininet.org. [Accessed 03 04 2020].

[23] J. McCauley, "The POX network software platform," POX GitHub

repository, 23 Nov 2017. [Online]. Available:
https://github.com/noxrepo/pox. [Accessed 04 04 2020].

[24] decisions.com, "Decisions," 2020. [Online]. Available:

https://decisions.com. [Accessed 26 06 2020].

[25] Soon Ae Chun, Vijayalakshmi Atluri, Nabil R. Adam, "Dynamic

Composition of Workflows for Customized eGovernment Service

Delivery," 2002. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.3765

&rep=rep1&type=pdf. [Accessed 20 Jun 2020].

