
Adaptive Observation of Emerging Cyber Attacks
targeting Various IoT Devices

1st Seiya Kato
Yokohama National University

Yokohama, Japan

2nd Rui Tanabe
Yokohama National University

Yokohama, Japan

3rd Katsunari Yoshioka
Yokohama National University

Yokohama, Japan

4th Tsutomu Matsumoto
Yokohama National University

Yokohama, Japan

Abstract—For years, honeypots have been a valuable tool for
observing cyber attacks. But in the age of Internet-of-Things
(IoT), where various kinds of devices are being connected to the
Internet, honeypots need to achieve diversity and interactivity. In
this paper, we propose X-POT, an adaptive honeypot framework
that emulates various IoT devices while maintaining a certain
level of interactivity. We use components to observe attacks
on all TCP ports and by conducting an Internet-wide scan
of relevant hosts, we collect responses from real devices. We
then selectively choose them as honeypot responses and observe
attacks targeting vulnerable IoT devices. We implemented an
HTTP honeypot with X-POT framework and exposed it on the
Internet for 2 months. We observed 4,729,097 HTTP requests on
64,912 ports and captured 1,276 malware samples. Moreover, we
were successful in observing attacks targeting different services
such as Docker API and CouchDB. We compared our system
with well-known monitoring systems and obtained 669 types of
attack defined by an open source Intrusion Detection System,
which is up to 2.2 times higher than other systems, and collected
284 malware samples, which is up to 3.5 times higher than
other systems. To this end, we reveal our malware datasets for
interested researchers.

Index Terms—Internet of Things (IoT), Honeypot, Network
Monitoring, Internet-wide scan

I. INTRODUCTION

With the rise of Internet of Things (IoT), billions of devices
are being connected to the Internet. They cover a variety of
protocols and applications that, IoT devices are used in various
fields [1]. Not only in the consumer space but also industries
have started to develop IoT applications and the whole trend
seems to continue [2]. Consequently, cyber attacks targeting
IoT devices are emerging and yet IoT malware families, such
as Bashlite [3], Mirai [4] and their variants [5] have already
compromised a large number of devices.

To tackle this problem, security researchers have shed light
into the field of IoT security. Honeypot have long been a
vital component for network monitoring. Various honeypots
for observing attacks targeting IoT devices have been pro-
posed [6]–[9]. However, due to the variety of devices seen on
the Internet and their device-specific vulnerabilities, honeypots
face several challenges. First is diversity: the ability to observe
attacks targeting different devices. More and more devices
are being connected to the Internet and yet, devices that run
services on different ports are under attack. Unless monitoring
sensors have a certain level of diversity, it would be difficult to

observe trends in the threat landscape. Second is interactivity:
the ability to emulate a specific device with accuracy. For a
while, IoT malware had been targeting devices that run Telnet
services with weak or default password. Recently, attacks
targeting device-specific vulnerabilities have increased [10]–
[12]. In case of network monitoring, an attack may not be
observed unless sensors have a certain level of interactivity.

For these reasons, honeypots that can observe attacks in both
variety and detail are required. Prior work has already followed
this idea by accumulating the responses of various devices on
the Internet and used machine learning techniques to learn
behavioral knowledge [13]. We were inspired by this work
and present a simple adaptive honeypot framework that scans
related hosts and select characteristic responses to achieve
interactivity. We also introduce the concept of darknet moni-
toring into honeypots in order to improve diversity. Moreover,
the objective of our study is to investigate the emerging attacks
targeting IoT devices and reveal what is going on.

In this paper, we propose X-POT, an adaptive honeypot
framework that emulates various IoT devices and services
while maintaining a certain level of interactivity. The word ”X”
stands for unknown device or service, meaning that X-POT is
a honeypot that mimics various devices and services without
any prior knowledge about them. We first use components that
monitor attacks on all Transmission Control Protocol (TCP)
ports to detect the increase of connections on specific ports. By
performing an Internet-wide scan, we then collect responses
from devices on the Internet. We selectively adapt them as
honeypot responses to emulate the interaction between the
targeted device. Concretely, responses are tested and evaluated
based on the attackers’ reaction to see which response would
attract more attacks. This way, honeypot operators can start
X-POT even with zero knowledge about the targeted devices.

During the experiment, we implemented a Hypertext Trans-
fer Protocol (HTTP) honeypot with X-POT framework (hence-
force HTTP X-POT). In the first experiment, we first deployed
a low-interaction honeypot that simply responds on all TCP
ports at 3 Internet Protocol (IP) addresses on Amazon Web
Service (AWS). By seeing their incoming packets, we con-
ducted an Internet-wide scan and collected response candidates
during July 22th 2019 to March 15th 2020. We then deployed
HTTP X-POT using the collected responses and by further
scanning the Internet during March 15th 2020 to May 20th
2020 at 23 IP addresses. By applying 17,672 responses to978-3-903176-32-4 © 2021 IFIP

HTTP X-POT, we were able to observe 4,729,097 HTTP
requests on 64,912 ports. We were successful to emulate vul-
nerable services and observe attacks against famous services
such as Docker Application Programming Interface (API) and
CouchDB. We also captured 1,276 malware samples, most
found to be targeting IoT devices.

In the second experiment, we compared the performance of
HTTP X-POT with three different monitoring systems (hence-
force sensors). These sensors observe or respond on all TCP
ports. Each sensor, including HTTP X-POT, were deployed at
3 IP addresses on AWS, DigitalOcean, and Vultr and observed
attacks during June 22nd 2020 to July 21th 2020. We also
used the response candidates found in the first experiment. As
a result, by using a open source Intrusion Detection System
(IDS), HTTP X-POT observed 669 types of attacks, including
six unique Remote Code Execution (RCE) attacks that were
not observed in other sensors. The number of attack types were
up to 2.2 times higher than other sensors. Moreover, HTTP
X-POT collected 284 malware samples, which was up to 3.5
times higher than other sensors. These samples were divided
into 14 different malware families using a well known labeling
tool. Our main goal is to find out the trends in the raging
threat and show insight on attacks targeting IoT devices. For
this reason, we reveal our malware datasets on our homepage
”https://ipsr.ynu.ac.jp/iot/index.html”, hoping to provide hints
on developing countermeasures.

The contributions of this paper are:
1) We propose X-POT, an adaptive honeypot framework that

emulates various IoT devices. By monitoring attacks on
all TCP ports and performing Internet-wide scans, we use
their responses to observe attacks targeting vulnerabilities
and maintain a certain level of interactivity.

2) During March 15th 2020 to May 20th 2020, we deployed
an HTTP honeypot with X-POT framework. We observed
4,729,097 HTTP requests on 64,912 ports and captured
1,276 different malware samples. By adapting 17,672
unique responses, we were successful to emulate several
services along with their vulnerabilities.

3) By comparing HTTP X-POT against three different well-
known monitoring systems, HTTP X-POT observed at-
tack alerts up to 2.2 times higher and captured malware
samples up to 3.5 times higher than other sensors. We
reveal our malware datasets for interested researchers.

The remainder of this paper is structured as follows. In
Section 2, we introduce related work. In Section 3, we propose
X-POT. In Section 4, we show Internet-wide scan results
and observation results of HTTP X-POT and in Section 5,
we compare HTTP X-POT with other existing monitoring
systems. In Section 6, we describe ethical considerations and
limitations of our work. Finally, we conclude in Section 7.

II. RELATED WORK

Honeypots are widely used to obtain threat information, cap-
ture malicious binaries, and detect previously-unseen attacks.
Honeypots are mainly classified as Low/High based on the
degree of interaction, or even as server honeypots or client

honeypots based on the direction of interaction [14]–[16].
In this study, we focus on the server honeypots, especially
systems used for observing IoT related attacks.

In recent years, seeing the increasing number of attacks
targeting IoT devices, several IoT honeypots have been in-
troduced. IoTPOT [6] is the first low-interaction honeypot
aimed to observe IoT related attacks over telnet services.
However, low-interaction honeypot including dianoea [17] and
cowrie [18] cannot fully simulate device specific behaviors
that, it is difficult to observe attacks that target device-specific
vulnerabilities. Moreover, Darknet [19] and similar monitoring
systems [20]–[22] have clear limitation due to their low-
interactivity and can not observe such attacks.

On the other hand, SIPHON [7] is a high-interaction hon-
eypot that uses a proxy server called Wormhole to forward
packets to IoT devices and observe attacks on multiple devices.
Virtual Private Network (VPN) forwarded Honeypots [8] is
another high-interaction honeypot that uses VPN to forward
packets to IoT devices. Honware [9] is also a high-interaction
honeypot that uses customized kernels to launch multiple
firmware and observe attacks on various devices. High-
interaction honeypots using actual devices and firmware can
observe attacks in depth. However, high-interaction honeypots
can be implemented only when the devices or their firmware
are available for honeypot use [23]. Yet, it is difficult to prepare
the devices or firmware without knowing the target devices.
To deal with such unknown attacks, systems that automatically
generate effective responses have been developed [24], [25].
Still, these systems cannot cope with a large number of devices
because they need the traffic of real devices to generate
responses. IoTCandyjar [13] is an intelligent honeypot for
observing attacks in quality and quantity. By collecting real
host responses and using machine learning techniques, it can
adapt to unknown attacks and responds meaningfully to the
attacker using Markov decision process.

Our proposed method is similar to IoTCandyjar in that using
real host scan results as honeypot responses. However, we
scan network related hosts and use simple methods to select
characteristic responses. Furthermore, our proposed method is
more adaptive to the emerging attacks because it continuously
observes attack trends on all TCP ports, and conducts network
scans when an increase of connection attempts is observed. To
put it differently, rather than improving existing honeypot tech-
niques, we focus on observing attacks targeting IoT devices
and show insight on what is going on.

III. X-POT

In this section, we propose X-POT, an adaptive honeypot
framework that emulates various IoT devices by using re-
sponses collected by Internet-wide scans. In section III-A, we
outline the basic design of X-POT, and in section III-B we
explain how we collect and adapt responses. In section III-C,
we introduce HTTP X-POT which is a honeypot observing on
all TCP ports implemented by the X-POT framework.

A. X-POT Design

Attackers often scan a wide range of IP addresses in
order to spread their infection. These IP addresses are often
chosen randomly and that such activities can be observed
through honeypots sensors. However, we need to improve the
observation capability of honeypots because of the increasing
variation of ports used by devices on the Internet. Attackers
are also targeting such devices and yet to their variety, it has
become difficult to identify what kind of attack occurs on
which port. Thus, we propose X-POT, a method to emulate the
behavior of devices on the Internet by updating the response of
a honeypot using the results of an Internet-wide scan. Figure 1
shows the basic idea of our approach. X-POT consists of an
Inner Unit (Attack Monitor and Response Collector), which
observes all TCP ports and collects responses by scanning the
network, and Outer Unit (Service Emulator), which emulates
the attack target using collected responses. The main goal of
X-POT is to improve the observation ability of the honeypot.
We now explain each component in detail as follows.
Attack Monitor: In order to understand the reality of the
attacks on the Internet, it is better to actually observe the
attacks. We can infer what kind of devices and software
are targeted and what kind of vulnerabilities are exploited
by analyzing the observed attacks. Although the attacks are
becoming diverse, in many cases, attackers discover target
hosts by network scans and check the responses of the hosts
in order to see if the discovered hosts are indeed the target
device. Therefore, we use an all-port honeypot to observe
various attacks that occur on the Internet.
Response Collector: Some attacks are indiscriminate, while
others are carried out after checking the response of the device
and identifying it as the attack target [26], [27]. In order to
adapt to these attacks, we use a high-speed network scanning
tool to collect the responses from devices in the wild and
adapt these responses to the honeypot. Before conducting
network scans, we sanitize the scan payload by eliminating
the parameters from the request and also manually confirm
the payload of our scans in order to avoid spreading malicious
payloads on the Internet. However, we note that it may not be
a successful request and may not get an accurate response.
Service Emulator: The response obtained by the Response
Collector is adapted to Outer Unit (Service Emulator), which
is used for observing further attacks. This way, it is possible
to emulate the target’s behavior by using the target’s response
as a honeypot response. Attacks include backdoor tools, coin
mining scripts, ransomware and other malicious binaries are
downloaded. Therefore, the Service Emulator has a component
that downloads files at that time from the download server if
a Uniform Resource Locator (URL) with a command, such as
wget and curl, are included in the received packet.

B. Honeypot Response

While the Internet-wide scan collects multiple responses
from real devices, it is still uncertain which collected response
would attract more attacks. There are various tactics to decide
which response should be applied as honeypot responses based

Fig. 1. Basic Idea of X-POT.

on their observation criteria. To solve this problem, X-POT
randomly returns a response to each incoming request and
determines the score of the response based on the client’s
reaction. A high score is given to a honeypot response when
the client reacts to it. The responses and their scores are
managed in the response value table (henceforce RV-table),
and responses with higher score or those never applied as
honeypot response are given higher priority. We will describe
the response selection in details in the next section.

C. X-POT Implementation

In this section, we describe HTTP X-POT, an implementa-
tion example of an HTTP honeypot with X-POT framework.
For the experiments in section IV and V, we implemented
Attack Monitor and Service Emulator on the same machine
and Response Collector on a different machine for efficient
experiments. That is, HTTP X-POT consists of Web Honeypot,
a group of honeypots that observe attacks on the Internet.
Along with an analysis server that analyzes the observed
attacks, scans the source network, and updates the responses
of the honeypots. Figure 2 shows the system configuration of
HTTP X-POT. We describe each component below.
Web Honeypot: Web Honeypot consists of multiple low-
interaction HTTP honeypots distributed over the Internet that
responds to incoming requests on all TCP ports. Each hon-
eypot is a simple web server using python3 and they respond
with a status code ”200” and the string ”It Works!” at an initial
state. In addition, Web Honeypot has a function to transfer
the daily observation log to the analysis server and has a
function to receive and reflect the analysis results from the
analysis server. During the experiment, we used an AWS EC2
t2.micro server as for the Web honeypot. The cost of using
this type of instance was $10.26 per month, calculated by
the AWS Pricing Calculator. We note that the average CPU
usage was less than 10%. The response of Web Honeypot
is managed using RV-table. Table I shows an example of
RV-table for HTTP. RV-table consists of the response header
(HTTP method, path, and status code) and the response body
collected by Response Collector, as well as the port numbers
on which the responses are collected and HTTP method used
to collect the response. Moreover, a score is given to each
response based on the reaction of the accessing hosts. When
a response is newly collected, its score is initially set to 0.

Fig. 2. Overview of HTTP X-POT.

TABLE I
EXAMPLE OF RESPONSE VALUE TABLE FOR HTTP.

Port Method Path Header Status code Body Score
8888 GET /hoge md5 hash 200 md5 hash 0
8888 POST /fuga md5 hash 404 md5 hash 1
9000 GET / md5 hash 403 md5 hash 0
· · ·

The score becomes 1 if some reaction from the accessing host
to the honeypot response is observed and the score becomes
-1 if there is no reaction. When a port and path (hereafter
called Access-URL) stored in the RV-table are accessed on
Web Honeypot, a response with corresponding Access-URL
is randomly chosen from all stored responses where score is 0
or 1. A response with a score of -1 will never be used in this
case. Therefore, each collected response has possibilities to be
tested as a honeypot response. We note that further evaluation
on the response selection is our future work.
Analysis Server: Analysis Server consists of Analyzer, which
analyzes the logs of honeypots, Scanner, which scans the
Internet, and Getter, which collects response of hosts.
Analyzer: Analyzer collects logs and malware samples from
Web Honeypot once a day. The HTTP requests with the
same Access-URL are extracted from the one-day log, and
the number of source IP addresses accessing to the Access-
URL is calculated. Those HTTP requests observed from more
than a threshold number of source IP addresses are considered
emerging and sent to Scanner for collecting responses. The
hash values of collected malware samples are sent to VirusTo-
tal [28] and the results are stored. In addition, it synchronizes
the RV-table of the honeypot and updates the scores.
Scanner: When an emerging HTTP request is reported from
Analyzer, Scanner starts network scans. The scans are con-
ducted using masscan [29] against all source IP addresses
and their /16 network from which the HTTP requests were
observed. Moreover, the /16 networks where the honeypots are
located are also scanned. We note that only the corresponding
port of the requests are scanned. The reason why we scan the
senders of the emerging HTTP requests is that those hosts
may have also been compromised and used as a stepping
stone. Therefore we may be able to collect responses from
the victim devices. Moreover, we scan the network around
our honeypots. The fact that the HTTP requests are observed
by the honeypot may indicate that the actual target devices can

be around. Beforehand, we tested 1,294 IoT malware samples
collected by IoTPOT [6] and confirmed that only 16% of them
closed ports of vulnerable services while the original Mirai
did close telnet and HTTP ports. We consider our approach of
obtaining responses from compromised devices seems to be
working at a certain degree.
Getter: Once a host listening on the target port is discovered
by network scans, an HTTP request is sent to the host to collect
HTTP response. This request is made from the Access-URL
of the Analyzer. Seeing the corresponding result, we store
the response consisting of the response header, response body
and status code, and simultaneously the response header and
body are converted to a hash value (md5) and the RV-table is
updated. We note that if the response header is used as it is
as Web Honeypot response, some field information, such as
Content-Length, is deleted in order to avoid the possibility of a
failure to respond correctly. Also, there is a possibility that we
reproduce the attacks by scanning over the network because
HTTP requests used in Getter are created based on the attacks
observed in honeypots. Therefore, a header and data of a POST
request is replaced with the values set by ourselves. We also
manually check the Access-URL to ensure that the exploit
is not included. Although we performed a strong sanitization
process, the experimental results show that we were able to
obtain adequate responses to emulate the target. Also, during
the experiments, there were no gray cases where we needed
detailed manual analysis, and it took us only a few minutes
to examine each payload.

IV. OBSERVATION EXPERIMENTS

A. Attack Monitoring

By deploying HTTP X-POT on the Internet, we observed
attacks from March 15th, 2020 to May 20th, 2020. During
the experiment, we prepared HTTP X-POT on AWS, Digi-
talOcean, Vultr, Conoha, and Sakura Virtual Private Server
(VPS), and observed the attack at 23 IP addresses. Table II
shows the detail of observation periods and table III show
the detail of their location. We prepared the Analysis Server
on a commercial Internet Service Provider (ISP), and started
scanning through a host with the web page stating that we
will scan and obtain the response along with our contact
information. We first deployed a low-interaction honeypot that
simply responds with a certain message on all TCP ports at
3 IP addresses on AWS. By seeing their incoming packets,
we conducted Internet-wide scans and collected response
candidates during July 22th 2019 to March 15th 2020 (eight
months). During this time we manually checked the Access-
URL included in the request, while it took us only a few
minutes to complete the process. We then deployed HTTP X-
POT using the collected responses and by further scanning
the Internet during March 15th 2020 to May 20th 2020 (two
months). We modified response whenever there are accesses
from multiple sources (roughly 5 IP addresses) that access to
the same Access-URL in the same day.

As a result, HTTP X-POT observed 4,729,097 HTTP re-
quests on 64,912 ports, from 85,849 unique source IP ad-

TABLE II
MONITORING SYSTEM.

Monitoring
System #IP Period

Observation
Experiments

HTTP X-POT 23 March,2020 - May,2020
(Response Collector) 3 July,2019 - March,2020

Comparison
Experiments

No-Interaction 3 June,2020 - July,2020
Handshaker 3 June,2020 - July,2020
WebHoney 3 June,2020 - July,2020

HTTP X-POT 3 June,2020 - July,2020
(Response Collector) 23 March,2020 - May,2020

TABLE III
HTTP X-POT LOCATION.

VPS/Cloud Country Code # IP
AWS AU,BH,BR,DE,HK,IE,IN,JP,KR,SE,SG,US 12

DigitalOcean IN,NL,SG 3
Vultr CA,FR,GB,JP,SG 5

Sakura JP 1
Conoha JP,SG 2
Total 23

dresses and captured 1,276 unique malware samples. There
were 287 ports scanned and 17,672 unique responses obtained
for 397 Access-URL that, we were able to observe emerging
attacks including various Web user interface of IoT devices,
such as routers, IP cameras, and capture IoT malware samples
like Mirai and gafgyt. Some of the collected responses even
contained device-specific values that, we observed character-
istic attacks and malware samples. Other responses were also
suspicious with multiple vulnerable service names.

B. Response Collecting

We were successful to collect a number of responses. Table
IV shows the example of the collected responses; ports, meth-
ods, paths, the number of hosts with open ports, the number
of obtained unique responses and scan date. The response
of these Access-URL were changed during the observation
period. The scan target was the port that had many requests
from multiple hosts, such as 8000/TCP port related to the
default port of web server and tmUnblock.cgi which is used in
Cisco/Linksys router firmware and other targeted attacks. The
number of hosts with open ports shows that there were many
hosts with open port not on well-known port, and the number
of unique responses shows that some hosts were running a
web server on ports not on default ports.

The request and response information are useful for us to
identify the device that attackers are targeting. For example,
HTTP request information, such as 2375 GET /v1.16/version
and 200 GET / search, presume attack target devices are
Docker API or Elasticsearch. Moreover, collected responses
of 1200 GET / indicates that Acess-URL related to RSShub.
Although we have not observed any RCE for RSShub during
the experiment, it is useful for implementing high-interaction
honeypots to understand a potential attack target based on the
content of the request or the obtained response.

There were also some unusual responses that contained
more than 300 lines of different service and device names,
such as GPON Home Gateway, Jenkins, and D-Link. We

TABLE IV
EXAMPLE OF COLLECTED RESPONSES (OBSERVATION EXPERIMENT).

Port Method Path # Host
Response

(Unique) Scan Date
85 GET / 2,928 47 2019/12/15
999 GET / 898 21 2019/11/09

1200 GET / 953 20 2020/01/06
2375 GET /v1.16/version 423 9 2019/09/17
8080 GET /manager/html 9,544 245 2019/07/29
8083 POST /manager dev ping t.gch 5,388 160 2020/05/19
9200 GET / search 1217 179 2020/02/17
10000 POST /session login.cgi 7,453 2,565 2020/03/20
21080 GET / 1,806 20 2020/04/24
50070 GET /dfshealth.html 1,458 15 2020/04/29
55555 POST /tmUnblock.cgi 1,273 4 2019/07/24

believe these responses are specially crafted for honeypot use
to attract automated attacks that check for signatures of target
devices. While we could use these crafted responses in our
honeypot, it would decrease the capability to distinguish the
target device as signatures of hundreds of different devices are
contained in these responses.

C. Service Emulation

By using responses collected from real hosts, we were
successful to observe several attacks that were not seen in
the previous honeypot. This indicates that HTTP X-POT can
emulate a devices that would be the attack target, and that the
X-POT framework works well. The score of these responses
were higher than those of others, confirming that the RV-
table was working well. The detail of the attacks observed
by changing the response are shown below.

Docker API: Figure 3 shows the attack observed on
2375/TCP port. Although the default response could only
observe the first request (2375 GET /containers/json), the
second request can be observed by changing the response
to the one collected from the real host. The collected re-
sponses included Api-Version header, server header containing
”Docker/18.06.1-ce (linux)” and the container ID, indicating
that was the Docker API response. HTTP X-POT observed
the request including the command and the container ID when
sending this response to the attack packet. In this request, wget
command was used to download a file, and the subsequent
request was sent with a command to execute the downloaded
file. The file was a high probability of a DDoS malware based
on the report of VirusTotal. No requests were made to the
container ID that executed the command, implying that the
malware may have a function to connect to the C&C server.

Other attacks on 2375/TCP have also been observed to
create a Docker container and download malware samples. The
flow of attacks and information about the malware indicates
that this attack was caused by Kaiji which is a XORDDoS
malware family targeting IoT devices [30]. Since there are
IoT devices that support Docker, such as OpenBlocks [31], and
Docker can be used across a large range of IoT domains [32],
it is likely that Docker is becoming the target of IoT malware.

CouchDB: Figure 4 shows that the attack observed on
5984/TCP port. When the HTTP X-POT returned a response
with CouchDB in the server header, the client sent a request
to create a user account using the PUT method. We confirmed

Fig. 3. Docker API Attack Flow (Observation Experiment).

that the request to create a user were only observed when it
returns a response with CouchDB version 2.1.1 or 2.2.0, and
seems version 2.3.0 and 2.3.1 were not a target of the attack.
After then, the username and password were used for basic
authentication and the attacker tried to execute commands. The
attacker used wget command to download a file (”2start.jpg”)
and attempted to execute it. The downloaded file was a Bash
script that tried to install a coin mining tool. While files
with the same file names were regularly observed from April
20, 2020 to May 20, 2020, we confirmed that the attackers
adjusted the scripts they used because of the different hash
values of the files. After observing the first script on April
20, we confirmed that the script was modified to support both
32bit and 64bit Linux architectures on May 5. In addition,
on May 13, we confirmed that the addition of download and
execution commands for python scripts using urllib modules
encoded in base64, and on May 20, the addition of scripts
to retrieve network interface information using ifconfig and
IP commands. This transition of script modification indicates
that the attacker was trying to obtain more information from
malware infected hosts by periodically updating the script.

D. Collecting Malware Samples

A total of 1,276 samples were obtained during the observa-
tion period, of which 797 could be reported by VirusTotal
on May 30th, 2020. Table V shows the malware family
names extracted using AVCLASS [33], their file names when
downloaded, and the number of downloaded samples. Most
of the malware samples were classified as Mirai or Gafgyt. In
addition, many of the captured samples had file extensions of
Central Processing Unit (CPU) architectures such as .x86 and
.mips, which suggest that attackers tend to target IoT devices
with various Operating System (OS) and architectures. The
next most common family name was shell. Some scripts in-
stalled coin mining tools and others attempted to download and
execute files from a download server using curl or wget com-
mand. Many of these scripts included multiple architectures
strings, such as arm and mipsel. Some of the malware were
simply ”Trojan-Downloader”, ”Coinminer.Miner”, or ”Power-
Shell.Gen”. Since the names of these samples were named
quite differently by multiple anti-viruses, we estimated that
the common family name could not be extracted. There were

Fig. 4. CouchDB Attack Flow (Observation Experiment).

TABLE V
MALWARE INFORMATION (OBSERVATION EXPERIMENT).

Malware Family File Name # Samples
mirai sora.x86, LOTMOT.x86, dark.mips, . . . 545
gafgyt pXdN91.x68, x86 64, hell.x86, . . . 116
shell lilin.sh, axisbins.sh, Gbotbins.sh, . . . 70

tsunami arm7, x86 64, x86 22
shellbot s.pdf 6
xorddos L, 555 3
miraia lmaoWTF/ZTE.sh, Chicken 2

miancha download.exe 2
wget sh 2

vobfus no2.exe 1
valyria 222.hta 1
siscos download.exe 1

netwalker iguana2 1
juwp arm.sh 1

ddostf java 1
agentb init.sh 1

No family name - 22
Total 797

479 samples with no VirusTotal report. These samples were
obtained when some attacks observed, such as the Realtek and
the LILIN’s video recorder vulnerability. Thus, these samples
may be relatively new samples in the threat landscape.

V. COMPARISON EXPERIMENTS

In this section, we compare the performance of HTTP X-
POT with other well-known monitoring systems such as (1)
”No-Interaction” sensor that does not reply to any incoming
requests, (2) ”Handshaker” sensor that sends SYN-ACK to
any incoming requests on any TCP port, and (3) ”WebHoney”
sensor that sends the same pre-defined response back to any
incoming HTTP requests on any TCP port. We installed these
sensor in Singapore region of AWS, DigitalOcean, and Vultr,
and observed attacks from June 22nd, 2020 to July 21st, 2020.
Table II show the detail of observation periods and their IP
addresses. In this experiment, we changed the response on 297
ports as explained in section IV. We conducted an evaluation
experiment with Suricata [34] which is a famous open source
intrusion detection system in order to understand the types of
observed attacks. We used Suricata version 5.0.3 and 31,812
rules, such as Emerging Threats Open Ruleset [35].

A. Comparison to Existing Monitoring Systems

We first show the overview of our observation results.
Table VI shows the number of packets, the number of unique
source IP addresses, the number of destination ports that
received one or more packets, the number of unique alerts

detected by Suricata, and the number of samples collected
by each sensors. While (1) No-Interaction sensor received
packets from many hosts, the number of alerts in Suricata
indicate that it did not observe as many attacks as other
sensors. Also, since the No-Interaction sensor does not re-
spond and establish a connection with the client, the number
of obtained samples were zero. (2) Handshaker received a
certain number of payloads and collected some samples,
and the number of observable attacks was higher than that
of No-Interaction. Because the packets contained strings,
such as ”SMB 2.002”, ”Cookie:mstshash=Administr”, and
”Windows for Workgroups”, most of the observed payloads
were considered to be targeting Windows systems, such as
Remote Desktop Protocol and Server Message Block. Hand-
shaker captured samples when observing an attack against
Cisco/LinkSys routers using HTTP with /tmUnblock and
/ctrlt/DeviceUpgrade 1 as paths. These attacks are related to
IoT malware, such as Mirai and Bashlite, and also observed
in the HTTP X-POT. (3) WebHoney received more packets
and the number of alert types were higher. On the other hand,
the number of the collected samples was not so different from
that of Handshaker, which indicates that WebHoney did not
observe many attacks leading to malware download. To this
end, HTTP X-POT was able to observe 669 types of attacks,
2.2 times higher than No-Interaction sensor, 1.4 times higher
than Handshaker, and 1.1 times times higher than WebHoney.
Also captured 284 malware samples, 3.5 and 3.2 times higher
than those captured by Handshaker and WebHoney.

B. Comparison with Suricata Alerts

Seeing the Suricata alerts, we were successful to observe a
variety of attacks. Table VII shows the example of attacks
detected only by individual sensors. (1) No-Interaction sensor
had no unique alert but had scan alerts, such as Microsoft
SQL Server and Virtual Network Computing. (2) Handshaker
had alerts related to 3-way-handshake, Domain Name System
(DNS) cache poisoning and login attempts. We found 7 unique
cases, including a brute-force attack on Internet Message
Access Protocol (IMAP) and Post Office Protocol (POP3),
which were not observed by other setups. The number of
alert of (3) WebHoney increased by nearly 100 compared
to Handshaker. WebHoney was able to observe some alerts
related to a web server. WebHoney observed 17 unique attacks,
indicating that simply setting up a fixed-response web server
would improve the observation capability to some extent.
HTTP X-POT observed 70 unique alerts related to HTTP
including six RCE attacks, which shows that using real host
responses leads to attract more attacks.

C. Comparison with Collected Malware Samples

Finally, we explain the malware samples captured from each
sensor. Besides (1) No-Interaction sensors, (2) Handshaker
captured 82 samples that, we speculate that some clients
send packets containing the exploit immediately after the 3-
way-handshake is established. Returning a fixed-response did
not improve the observation performance of attacks leading

TABLE VI
OVERVIEW OF OBSERVATION RESULT (COMPARISON EXPERIMENT).

Monitoring
System # Packets # IP # Ports # Alerts # Samples

No-Interaction 13,563,246 294,082 61,996 300 -
Handshaker 77,108,904 241,669 65,535 472 82
WebHoney 353,539,775 98,363 65,535 596 88

HTTP X-POT 651,749,242 137,852 65,535 669 284

to exploits because the number of samples obtained by (3)
WebHoney was 88, which was not so different from that
of Handshaker. HTTP X-POT captured 284 malware samples
and the number of samples detected by more than one anti-
virus software in VirusTotal was 197. Similarly, the number
of samples detected in VirusTotal was 64 for Handshaker
and 56 for WebHoney. The number of unique label which
was classified by AVCLASS was 9 for Handshaker, 9 for
WebHoney, and 14 for HTTP X-POT, indicating that the
our system was capable of collecting a variety of malware
samples. A lot of samples were classified as Mirai and Gafgyt
that, attacker were targeting IoT devices. These samples were
observed on ports, such as 8088/TCP and 9200/TCP, where
the responses were changed and not seen on WebHoney.

VI. ETHICAL CONSIDERATIONS AND LIMITATIONS

A. Ethical Considerations

HTTP requests: Some of the attack observed in the honeypot
tried to login or executed arbitrary commands to affect the
server. We need to be very careful about sending these requests
to a real host as-is we might be considered as an attacker. It is
possible to detect a certain number of attack requests by using
existing IDS, but it is impossible to detect all of them due to
the variety of the targets and attack methods. Therefore, in
this study, we used manual confirmation to send a request to
a real host based on the attack information we have observed.
In addition, we checked to make sure that the request did not
become an illegal request by deleting parameters. We note that
these processes take only a few minutes.
The impact of network scan: It is possible to stress the
network because we conduct Internet-wide scans. Therefore,
we limited the scan rate to 10,000 pps and used a server with
static IP address for the scan. Along with the network scanner,
we also prepared a web server that clearly states the purpose
of the scan and our contact information. Whenever contacted,
we can remove the specific network from further scan.

B. Limitations

Honeypot Detection: Attack Monitor that listen on all ports
with the same response is likely to be detected by an attacker
as a honeypot because the behavior is very different from a
general web server. On the other hand, Service Simulator is
less likely to be detected as a honeypot because the response
changes according to the Access-URL. In this experiment,
since Atatck Monitor and Service Simulator were installed in
the same server, we investigated how well the server is recog-
nized as a honeypot by using Honeyscore [36]. Honeyscore

TABLE VII
EXAMPLE OF SURICATA ALERTS (COMPARISON EXPERIMENT).

Monitoring System Suricata Alert
No-Interaction None

Handshaker
ET INFO SOCKSv4 HTTP Proxy Inbound Request (Windows Source)
ET SCAN Rapid IMAP Connections - Possible Brute Force Attack
ET SCAN Rapid POP3 Connections - Possible Brute Force Attack

WebHoney

ATTACK [PTsecurity] CoronaBlue/SMBGhost DOS/RCE Attempt (CVE-2020-0796)
ET EXPLOIT Oracle WebLogic - wls-wsat Component Deserialization Remote Code Execution Windows 　
ET EXPLOIT Tomcat File Upload Payload Request (CVE-2017-12615)
ET WEB SERVER JAWS Webserver Unauthenticated Shell Command Execution
ET WEB SPECIFIC APPS Apache Tomcat Possible CVE-2017-12617 JSP Upload Bypass Attempt

HTTP X-POT

ATTACK [PTsecurity] Oracle Weblogic async deserialization RCE Attempt (CVE-2019-2725)
ATTACK [PTsecurity] Confluence <6.14.2,6.13.3,6.12.3 Unauthorized RCE (CVE-2019-3396)
ATTACK [PTsecurity] Drupalgeddon2 <7.5.9 <8.4.8 <8.5.3 RCE (CVE-2018-7602)
ATTACK [PTsecurity] Drupalgeddon2 <8.3.9 <8.4.6 <8.5.1 RCE through registration form (CVE-2018-7600)
ET EXPLOIT Linear eMerge E3 Unauthenticated Command Injection Inbound (CVE-2019-7256)
ET EXPLOIT bin bash base64 encoded Remote Code Execution 2
ET EXPLOIT file put contents php base64 encoded Remote Code Execution 1/2
ET SCAN ELF/Mirai Variant User-Agent (Inbound)
ET SCAN Hikvision IP Camera 5.4.0 Information Disclosure
ET WEB CLIENT Possible Confluence SSTI Exploitation Attempt - Leads to RCE/LFI (CVE-2019-3396)
ET WEB SERVER HTTP POST Generic eval of base64 decode
ET WEB SERVER Possible IIS Integer Overflow DoS (CVE-2015-1635)
ET WEB SPECIFIC APPS Drupalgeddon2 <8.3.9 <8.4.6 <8.5.1 RCE Through Registration Form (CVE-2018-7600)
TGI HUNT directory traversal chars in HTTP Request Header

analyze the behavior of the host, and then calculating the
likelihood of a honeypot on a score of 0.0 to 1.0. From March
15th, 2020 to May 20th, 2020, we regularly surveyed the Web
Honeypot which is the component of HTTP X-POT by using
Honeyscore and found that 5 IPs were 0.0, 17 IPs were 0.3
and 1 IP was 0.8, implying only one host was recognized as
a honeypot. We assume that this result caused by returning
the response which is known as honeypot during Honeyscore
investigation. Therefore, it is necessary to remove suspicious
responses that may be considered honeypots.
Emulation Limit: Although HTTP X-POT focuses on HTTP,
it is possible to emulate the target device as well as HTTP if
the protocol is a string-based. However, it may not be possible
to emulate the behavior of the target device if the attacker
may check not only the response, but also device and software
special behaviors, such as moving the direction of IP camera or
page transitions and execution results of arbitrary commands.
For our evaluation experiments, also, we limited the number
of networks to be scanned, but it is possible that there are no
hosts that could be attack targets. Therefore, more responses
can be observed by more extensive scanning, while taking into
account the stress on the target network. It is also possible to
use public scanning services, such as Shodan and Censys, to
obtain and use the results of the scans on specific port.
Validity of Response Value: The value of the response to
a request is determined from the client’s reaction in the
proposed system. However, some hosts send a large number
of requests regardless of the response and validate multiple
vulnerabilities at the same time, which causes the response
evaluated incorrectly. Further study is needed on how to
evaluate the response. For example, a method that sets a high
score when multiple hosts take reaction, or a method that uses
a dynamic analysis system to forward from the malware to
the proposed system and observe the behavior of the malware,
would make it possible to investigate responses in accuracy.

Undetectable Attacks: In this paper, we evaluated the in-
crease in the number of attacks in the proposed system used by
using the number of alerts in Suricata, but we did not evaluate
zero-day attacks or attacks with no signature. However, the
number of alerts of Suricata and the number of samples were
increased, and the ability to emulate the target devices, which
indicate that the proposed system has a high possibility to
respond to unknown attacks.

VII. CONCLUSION

As more and more IoT devices are connected to the
Internet and device-specific vulnerabilities are attacked, we
expect that honeypots that can adapt to various situations
will be necessary. We therefore proposed X-POT, an adaptive
honeypot framework to improve the observation capability of
honeypots by using the responses collected from the host
through Internet-wide scan without any prior knowledge of
the target. We deployed HTTP X-POT on the Internet and
observed attacks targeting various IoT devices with integrity
and captured several malware samples. We evaluated that X-
POT had a higher observation capability than other well-
known monitoring systems. We further reveal our malware
datasets for interested researchers, hoping to provide hints for
developing countermeasures.

ACKNOWLEDGMENT

A part of these research results was obtained from the
commissioned research by National Institute of Information
and Communications Technology (NICT) , JAPAN. This re-
search was partly conducted under a contract of ”Research and
development on IoT malware removal / make it non-functional
technologies for effective use of the radio spectrum” among
”Research and Development for Expansion of Radio Wave
Resources(JPJ000254)”, which was supported by the Ministry
of Internal Affairs and Communications, Japan.

REFERENCES

[1] A. Ghasempour, “Internet of things in smart grid: Architecture,
applications, services, key technologies, and challenges,” Inventions,
vol. 4, no. 1, 2019. [Online]. Available: https://www.mdpi.com/
2411-5134/4/1/22

[2] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[3] T. Spring, K. Carpenter, and M. Mimoso, “BASHLITE family of
Malware Infects 1 Million IoT devices,” Threat Post, 2016.

[4] Antonakakis, Manos and April, Tim and Bailey, Michael and Bernhard,
Matt and Bursztein, Elie and Cochran, Jaime and Durumeric, Zakir
and Halderman, J Alex and Invernizzi, Luca and Kallitsis, Michalis
and others, “Understanding the mirai botnet,” in USENIX Security
Symposium, 2017, p. 1093–1110.

[5] Akamai, “NEW TSUNAMI/KAITEN VARIANT: PROPA-
GATION STATUS,” https://blogs.akamai.com/sitr/2018/09/
new-tsunamikaiten-variant-propagation-status.html.

[6] Yin, Minn, Pa, Pa and Shogo, Suzuki and Katsunari, Yoshioka and
Tsutomu, Matsumoto and Takahiro, Kasama and Christian, Rossow,
“IoTPOT: Analysing the Rise of IoT Compromises,” in Proceedings
of the 9th USENIX Conference on Offensive Technologies, ser. WOOT,
2015.

[7] Juan David Guarnizo, Amit Tambe, Suman Sankar Bhunia, Martin
Ochoa, Nils Ole Tippenhauer, Asaf Shabtai, and Yuval Elovicici,
“SIPHON: Towards Scalable High-Interaction Physical Honeypots,” in
Proceedings of the 3rd ACM Workshop on Cyber-Physical System
Security, ser. ACM, 2017, p. 57–68.

[8] A. Tambe, Y. L. Aung, R. Sridharan, M. Ochoa, N. O. Tippenhauer,
A. Shabtai, and Y. Elovici, “Detection of Threats to IoT Devices
Using Scalable VPN-Forwarded Honeypots,” in Proceedings of the Ninth
ACM Conference on Data and Application Security and Privacy, ser.
CODASPY ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 85–96.

[9] A. Vetterl and R. Clayton, “Honware: A Virtual Honeypot Framework
for Capturing CPE and IoT Zero Days,” in Proceedings of the 2019
APWG Symposium on Electronic Crime Research, ser. eCrime, 2019,
pp. 1–13.

[10] Claud Xiao and Cong Zheng, “New IoT/Linux Malware Targets
DVRs, Forms Botnet,” https://unit42.paloaltonetworks.com/
unit42-new-iotlinux-malware-targets-dvrs-forms-botnet/, 2017.

[11] A. T. R. Team, “The eCh0raix Ransomware,” https://www.anomali.com/
blog/the-ech0raix-ransomware, 2019.

[12] Ken Hsu, Zhibin Zhang and Ruchna Nigam, “New Mirai Vari-
ant Targets Zyxel Network-Attached Storage Devices,” https://unit42.
paloaltonetworks.com/new-mirai-variant-mukashi/, 2020.

[13] Tongbo Luo, Zhaoyan Xu, Xing Jin, Yanhui Jia and Xin Ouyang,
“Towards an Intelligent-Interaction Honeypot for IoT Devices,” in Black
Hat USA, ser. Black Hat, 2017, p. 1–11.

[14] N. Marcin, W. Matthias, S. Thomas, C., K. Christian, and S. Jochen,
“A Survey on Honeypot Software and Data Analysis,” 2016.

[15] Mokube, Iyatiti and Adams, Michele, “Honeypots: concepts, approaches,
and challenges,” in Proceedings of the 45th Annual Southeast Regional
Conference, ser. ACM, 2007, pp. 321–326.

[16] W. Fan, Z. Du, D. Fernández, and V. A. Villagrá, “Enabling an Anatomic
View to Investigate Honeypot Systems: A Survey,” IEEE Systems
Journal, vol. 12, no. 4, pp. 3906–3919, 2018.

[17] GitHub, “Dionaea,” https://github.com/rep/dionaea.
[18] ——, “Cowrie,” https://github.com/micheloosterhof/cowrie.
[19] Eto, Masashi and Inoue, Daisuke and Song, Jungsuk and Nakazato,

Junji and Ohtaka, Kazuhiro and Nakao, Koji, “Nicter: A Large-Scale
Network Incident Analysis System: Case Studies for Understanding
Threat Landscape,” in Proceedings of the First Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security, 2011,
p. 37–45.

[20] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson,
“Characteristics of Internet Background Radiation,” in Proceedings of
the 4th ACM SIGCOMM Conference on Internet Measurement, ser. IMC
’04. Association for Computing Machinery, 2004, p. 27–40.

[21] C. Fachkha and M. Debbabi, “Darknet as a Source of Cyber Intelli-
gence: Survey, Taxonomy and Characterization,” IEEE Communications
Surveys and Tutorials, vol. 18, pp. 1–1, 01 2015.

[22] Michael Bailey, Evan Cooke, Farnam Jahanian, Jose Nazario, and
David Watson, “The Internet Motion Sensor: A distributed blackhole
monitoring system,” in Proceedings of Network and Distributed System
Security Symposium, ser. NDSS, 2005.

[23] Tomasz Grudziecki, Paweł Jacewicz, Łukasz Juszczyk, Piotr Kijewski
and Paweł Pawliński, “Proactive Detection of Security Incidents Hon-
eypots,” ENISA, Tech. Rep., 2012.

[24] Leita, Corrado and Dacier, Marc and Massicotte, Frederic,, “Automatic
Handling of Protocol Dependencies and Reaction to 0-Day Attacks with
ScriptGen Based Honeypots,” in Recent Advances in Intrusion Detection.
Springer Berlin Heidelberg, 2006, pp. 185–205.

[25] C. Leita, K. Mermoud, and M. Dacier, “ScriptGen: an automated
script generation tool for Honeyd,” in 21st Annual Computer Security
Applications Conference (ACSAC’05), 2005, pp. 12 pp.–214.

[26] “Exploit database,” https://www.exploit-db.com/exploits/48531.
[27] “Exploit database,” https://www.exploit-db.com/exploits/37169.
[28] VirusTotal, “Free online virus, malware and URL scanner,” https://www.

virustotal.com/en, 2019.
[29] Robert Graham, “Masscan,” https://github.com/robertdavidgraham/

masscan.
[30] Augusto Remillano II, Patrick Noel Collado and Karen Ivy

Titiwa, “XORDDoS, Kaiji Variants Target Exposed Docker
Servers,” https://www.trendmicro.com/en us/research/20/f/
xorddos-kaiji-botnet-malware-variants-target-exposed-docker-servers.
html, 2020.

[31] Plat’Home, “OpenBlocks IoT VX2 - Plat’Home Co.,Ltd.” https://www.
plathome.com/products/openblocks-iot-vx2.

[32] M. S. Abdul, S. M. Sam, N. Mohamed, K. Kamardin, and R. A.
Dziyauddin, “Docker Containers Usage in the Internet of Things: A Sur-
veyn,” OIJI SPECIAL ISSUE ON TECHNOLOGY AND INFORMATICS,
vol. 7, 12 2019.

[33] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “AVclass: A Tool
for Massive Malware Labeling,” in Research in Attacks, Intrusions, and
Defenses, F. Monrose, M. Dacier, G. Blanc, and J. Garcia-Alfaro, Eds.
Cham: Springer International Publishing, 2016, pp. 230–253.

[34] Suricata, “Open Source IDS / IPS / NSM engine,” https://suricata-ids.
org.

[35] Emerging Threats Labs, “Emerging Threats rule,” https://rules.
emergingthreats.net/.

[36] Shodan, “Honeyscore,” https://honeyscore.shodan.io.

