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Abstract—Software Networks (SN), combining network vir-
tualization, system virtualization, NFV, and SDN, are highly
suitable for the establishment of federated loose infrastructures,
e. g., due to their flexibility, expandability, and concealment of
geographical segregation of IT resources. Current management
platforms for suchlike SNs, however, almost entirely omit network
federation with its organizational aspects and cannot handle
network heterogeneity.

In this paper, in order to contribute to close this gap, we do not
strive for a stand-alone solution, but present the FEDerated CON-
trol (FEDCON) framework, which is designed to be embeddable
into existing platforms. It facilitates access to a federated SN’s
functionality by providing the modeling and secure invocation
of functions and interfaces of network components, like SDN-
controllers or hypervisors. FEDCON considers federation-specific
organisational aspects like geographically distributed data cen-
ters, administrative domains, and use-case-specific adaptable
access controls. FEDCON is implemented in Lua, exploiting its
focus on embeddability into existing software.

Index Terms—SDN, NFV, federated infrastructure, network
management, network programmability, management platform

I. INTRODUCTION

Software Networks (SNs) comprise systems- and network-
virtualization, Network Functions Virtualization (NFV) as well
as Software-Defined Networking (SDN) for easing network
management and operations [1]; SNs form the basis of many
use cases like cloud-, edge- or fog-computing, and many
more [2]. The term Federated Software Network (FSN) de-
scribes a particular organizational form of SNs. FSNs are
composed and operated by multiple sovereign and often ge-
ographically distributed (cf. [3]) parties with a common or
complementary objective. Policies for the use of the federated
infrastructure are determined in an IT service contract.

According to [4], operational characteristics and gaps of
FSNs are, amongst others, an immediate remote control and
heterogeneity of components just as multiple intersecting ad-
ministrative domains which often miss out in current manage-
ment platforms. This paper particularly addresses these gaps
for functions and interfaces management in order to better
cope with them in future network management platforms.

Networks consisting of especially heterogeneous technolo-
gies are promising; consider, for instance, solely the differing
advantages of hardware virtualization (security and isolation)
and containerization (performance). And even these two forms
of system virtualization are realized in a rather broad variety
of implementations, e. g., KVM, Xen, Virtualbox, Docker,
LXC, Kubernetes, and many more, each providing custom
APIs, protocols, functions, and parameters. Moreover, the
functional range may differ for each component version,
aggravating a universal solution. And especially in federated
networks, the need for a heterogeneous shared approach is
more distinct, since each partner may require and introduce
different kinds of components into the infrastructure. Yet,
platforms for managing FSNs often leave a substantial amount
of manual controlling efforts to the network managers by not
fully providing this amount of heterogeneity.

Solving this problem is another footstep towards (e. g., rule-
or policy-based) automated controls, and we believe that a
normalisation of component functions sovereignly from their
APIs is needed. For instance, Qemu just as LXC both provide
a function which allows to freeze the state of a virtual instance,
yet, in a different form. Policy- or rule-based controls (e. g., “if
malware detected(vm) then freeze(vm) end”), however, require
this normalization of (e. g., for tokenizing) identical functions.

In order to overcome challenges in controlling FSNs and
avoid another individual management solution, this paper
provides the design and implementation of an easy-to-use
framework for managing functions and interfaces of com-
ponents and their virtual representation, which are called
Managed Object Classes (MOC). A Managed Object (MO)
is a managed component in the network. The design as a
framework brings along three benefits: It is a) inherently
extensible and b) provides sufficient flexibility for different
use cases and it c) can be integrated into existing management
platforms. Thus, proven functionality of existing manage-
ment platforms can be expanded. A continuously improved
prototype of our framework’s key concepts is published at
https://github.com/ubwmst/FEDCON. FEDCON bases upon
Lua, which is designed to be embeddable in a broad spectrum978-3-903176-32-4 © 2021 IFIP



of run-time environments and serves well in networking tools
like Wireshark or Nmap.

This paper’s structure is organized as follows: In Section II,
a simple yet realistic scenario illustrates a form of FSN for
corporate data analysis. In Section III, we deduce requirements
for the management of component functions and interfaces
in FSNs, followed by a review of existing and similar ap-
proaches in Section IV. Section V describes the design of the
framework itself. Section VI evaluates the framework against
requirements; an evaluation showing its practical applications
is performed in Section VII. Section VIII concludes this paper
with our key findings and future work.

II. SCENARIO: HEALTH DATA ANALYSIS FEDERATION

FSNs are usually set up upon a cooperation of organisations.
For instance, consider three health research institutes Alpha,
Beta, and Gamma, collaborating in a joint health data analysis
project. They plan to correlate huge data sets of several ten
thousands of anonymized patients’ data including age, various
aspects concerning nutrition as well as physical and sports key
parameters, just like the patient’s anamnesis.

The institutes use a flexible federated infrastructure based
upon SDN and virtualization (cf. Figure 1), which, in favor
of data protection, allows the original health data to remain
in each institute and only share evaluation functions and
resources. Institute Alpha provides three KVM hypervisors,
institute Beta provides a LXC containerization platform and
institute Gamma supplies a slice of virtualized resources via
a certain OpenNebula-managed project (i. e., authentication
credentials) with limited resources. Each host provides an
inventory of virtual resources (VMs).

The provided resources, located in the three distributed
organization-internal data centers are connected via VPN;
networking is virtualized and realized via OpenFlow- and
OVSDB-enabled switches. The data centers have a locally
deployed and different SDN-controller, e. g., OpenDaylight at
institute Alpha and Floodlight at institutes Beta and Gamma.

All partners pursue a secure design of the federated in-
frastructure, hence only allowing partners to use absolute
necessary functions of their provided infrastructure. That is,
creating a virtual instance, monitoring, stopping, and restarting
own VMs (e. g., Institute {Alpha, Beta, Gamma} can only
monitor/stop/restart instances it previously created). Hence,
administrative domains imply responsibilities for managing the
FSN, which must be enforced via a technical implementation.

Alpha Beta Gamma
KVM KVM KVM LXC LXC OpenNebula

Open vSwitch OpenDaylight Floodlight

VPN

Fig. 1: A FSNs combining IT resources and partners in a health
data analysis scenario.

III. REQUIREMENTS IN FSNS

We emphasize two groups of requirements: Those ad-
dressing a) the handling of component functions, and others
addressing b) an approach’s suitability in FSN, as summarized
in Table I.

ID Description
Requirements from API and functions handling

R.1 Detailed modeling of component types and their APIs
R.2 Component management and assignment to component types
R.3 Normalization of component functions
R.4 En- and decoding of function parameters and results
R.5 Integrability of API clients
R.6 API authentication and transport security

Requirements for suiting FSNs
R.7 Decentralized deployment
R.8 Cross-platform approach
R.9 Assistance in handling management domains
R.10 Provision of a multi-tenancy capable approach
R.11 Authorization and visibility functionality
R.12 Programmable arrangement of component functions
R.13 No impact on the host platform’s state
R.14 No impact on the operational platform

TABLE I: Requirements for API and functions handling

A. API and Component Function Handling

Heterogeneity challenges from the paradigms in FSNs re-
quire a [R.1] grouping and modeling of components their
functions in the network, which must be [R.2] allocatable
to component types (e. g., an SDN-controller). Also versions
must be considered since APIs differ across them. A normal-
ization [R.3] of similar components is required in order to
ease the integrability of novel components in FSNs: Since
APIs of components not only vary in their kind of API
paradigm (e. g., REST, RPC etc.) and protocols, but also in
parameters and formats, [R.4] they must also be en- and
decoded from/into a normalized form.

Another important aspect is the [R.5] provisioning and
integrability of reusable communication clients. For instance,
over-the-network-callable APIs like most RESTful services are
based upon HTTP, SOAP relies on HTTP/XML, SNMP is
UDP-based and product-specific interfaces also often exist. A
related requirement is the system’s ability to inherently provide
different and adaptable [R.6] authentication mechanisms
(e. g., HTTP Basic-authn).

B. Suitability in Federated Software Networks

Further important requirements address challenges from
FSNs (cf. [4]), like a [R.7] decentralized, [R.8] cross-
platform deployment due to the geographical distribution of
physical resources. In order to handle multiple tenants, the
resulting framework must [R.9] be able to assist in do-
main arrangement and cross-domain management. This also
includes a remote manageability of components across data
centers. Hence, not only must domains be considered in the
framework, it should also provide [R.10] a multi-tenancy
capable approach: The framework must provide [R.11] au-
thorization and visibility functionality, which ensures that



authorized users can exclusively access and call functions
in their responsibility. Automated management and control
additionally requires a [R.12] programmable arrangability
of the components’ functions, i. e., allowing batch processing.
From a security point of view, framework instances must not
[R.13] impact or manipulate the state of its host platform, the
communication must be handled in a controlled manner. But
the framework instances themselves must [R.14] not be able
to impact the underlying carrier system. It should, for instance,
be running in a sandboxed environment.

IV. RELATED WORK

In this matter, there are three relevant research areas: (1) net-
work management platforms and their API handling, (2) API
gateways, and (3) modeling approaches for APIs. Research
projects working in the area of federated infrastructures are
the European FED4FIRE+ project, which strives to federate
and openly provide multiple individual next generation inter-
net (NGI) testbeds [24]. The GENI project (www.geni.net/)
is a contentual counterpart operating in the US. Other re-
cently completed research projects as SENDATE (https://www.
sendate.eu/) or NECOS (www.h2020-necos.eu/) made efforts
in order to realize and manage distributed infrastructures with
a special focus on paradigms such as cloud computing, SDN,
and NFV.

A. API management in (F)SN management platforms

Management platforms usually focus on a specific paradigm
only and ignore a holistic FSN approach. From the SDN-
perspective, OpenDaylight (ODL) as well as ONOS are two of
the most sophisticated SDN controllers. A deep-dive analysis
of both with a special focus on actual vulnerabilities and open
issues is described in [7]. They both stand out due to their flex-
ible approach based on Karaf and microservices [8] [9]. Both
provide only limited functionality for federated networks – a
decentralized clustering deployment, component management
and security features. In contrast to ONOS, ODL provides a
model-driven approach via YANG (cf. Section IV-C) for the
description of APIs. ONOS in contrast provides a service for
managed infrastructure device handling.

From the NFV paradigm, suchlike considered platforms
belong to the ETSI NFV Management and Orchestration
(MANO) layer: SONATA [10] also pursues a flexible ap-
proach. Here, especially the VIM-adaptors [11] have the most
correspondence to our work. In SONATA, the implementation
of MO functions is organized as Java/Python-based client
modules. Similar more established approaches are Open-
Source MANO (OSM) [12] and the Open Platform for NFV
(OPNFV) [13]. These however, address supply frameworks for
providing ETSI NFV-conform network architectures.

Most network federation approaches stem from the context
of cloud computing. BEACON [5], RESERVOIR [15], Con-
trail [14], and CYCLONE [16] strive for a federated envi-
ronment of cloud platforms (e. g., OpenStack, OpenNebula,
and public clouds), yet – different from our approach –
they usually assume the utilization of the federated cloud

infrastructure from the perspective of a single user entity and
restrict heterogeneity. We by contrast also consider organiza-
tionally challenging aspects like administrative domains and
responsibilities in fully heterogeneous networks.

B. API Gateways

Systems for API management (also known as API gate-
ways), like Tyk (https://tyk.io), Gravitee (https://gravitee.io/),
Kong (https://konghq.com/kong/) face similar issues in API
heterogeneity. These systems, however, are generally only
focused on centralizing API endpoints and the provision of
a unified endpoint with additional functionality like batch re-
quests of APIs, individual authorization and policy-controlled
access (e. g., calls per time unit, maximum allowed requests
etc.).

C. API modeling and description

The SNMP Management Framework and SMIv2 [17] as de
facto standards do not consider the definition of API endpoints.
The YANG Modeling Language [18], a more contemporary
approach, is limited to the RPC-based NETCONF protocol
to manage NETCONF-enabled components and disregards
REST-based APIs. Mature approaches for modeling REST-
APIs are the OpenAPI Specification [19] and the RESTful API
Modeling Language (RAML) [20]. They allow and are limited
to an extensive description of REST/HTTP-based APIs and
none of them stipulates a normalization of functions/APIs.

Several other publications cover this matter from different
point of views: In [21], the authors present their modeling
approach EMF-REST, which is based upon the Eclipse Mod-
eling Framework, which generates Web APIs. In [22] the
authors present a methodology for the development of APIs
in network management. Therefore, based on an architecture
models, interfaces for API development must be selected and
described using UML for modeling REST and YANG. The
authors of [23] approached the problem of heterogeneity of
interfaces and functions using ontology modeling techniques
with OWL for the SDN paradigm. Their approach extracts on-
tology objects and relationships from components’ command
line interfaces.

V. THE FEDCON FRAMEWORK

The purpose of this framework is to enable a coordinated
access to functions of all MOs in an FSN, especially consider-
ing the heterogeneity problem; it strives to provide a) sufficient
flexibility and b) a broad integrability.

A. Architecture

The architecture of FECON instances is shown in Figure 2.
A FEDCON instance is deployed in each data center respec-
tively (as we also proposed in a general management architec-
ture in [25]). Hence, Data Center Alpha is controlled by in-
stance FEDCON 1, Data Center Beta by instance FEDCON 2,
and so on. The FEDCON instances form a peer-to-peer (P2P)
network for coordination purposes like function call handling
across data centers and synchronization. Consequently, single



point of failures, e. g., a master-slave architecture would entail,
are eliminated, since the failure of one FEDCON node does
not affect the remaining systems.

DC-Alpha DC-Beta ...

Infrastructure α Infrastructure β Infrastructure N

FEDCON 1 FEDCON 2 FEDCON N

Fig. 2: Overview of the FEDCON framework architecture

B. Data Modeling

FEDCON introduces two new data structures for MOC
modeling: The MOCTypeModel graph in combination with the
MOMapping hash-map. These and several auxiliary structures
are present in each FEDCON instance. Each element is,
however, expandable or customisable, in order to fit multiple
FSN scenarios.

1) MOCTypeModel: The MOCTypeModel is a tree-
structure where nodes can have multiple parents. Nodes are
MOCTypes with each having a functional description that can
be inherited to children nodes.

Consider, for instance, the MOCTypeModel shown in Fig-
ure 3. Each node is a tree element, containing a unique iden-
tifier, a version (optional), parents, provided functions and an
abstract-flag that indicates whether a node can be instantiated:
(identifier, version, parentList, functionList, abstract). If the
abstract flag of a node is true, MOs cannot be assigned
to this MOCType. It rather serves as a grouping node for
function normalization of children nodes. For instance, in
Figure 3, the node sdncontroller may describe the function
set [getVersion], which is also inherited by openflow-
controller, adding further functions [addStaticFlow,
deleteFlow,. . . ]. Node ovsdb-controller works analogous.
floodlight is an openflow-controller, inheriting all its func-
tions, but also adds additional functions. Floodlight then
again has different versions, which extend previous version
by additional function (e. g., Floodlight v1.2 introduces a
function getPortBandwidthConsumption [6]).

Multiple inheritance is needed for MOs implementing func-
tions from multiple distinct specifications (e. g., OpenDaylight
is an OpenFlow as well as OVSDB-capable SDN controller).

A function in the FEDCON framework can be described
by a tuple containing the function ID, an ordered list of
ordinary data types describing parameters of the function
and an ordered list of types of return values and a driver
function (only for non-abstract nodes). These data types, for
instance, encompass string, integer, number, boolean and a
list type. The driver describes how to access the function of
an MO. Also the first non-abstract node for each branch must
implement a driver function for all inherited functions.

A valid driver function has the signature
driver(params, mo, ap) → ret. Here, params

are the actual values a function call; they must comply with
the function definition. The driver function should make use
of the attributes, which are delivered by the targeted managed
object mo. The function returns a list of values ret, which
corresponds to return values definition.

The parameter ap describes the access point of an API
function; it is looked-up by the FEDCON framework itself:
The auxiliary APMap structure manages alternative access
points for certain API functions. This is needed for differing
API access points (even for the same MOC). APMap is a
map of entries for each entry having the shape ffid → mocid
→ aap, where (ffid) is the full function id having the form
MOCTypeID:MOCTypeVersion:FunctionID, mocid is the
actual MOCID of the differing API access points and aap
is the alternative point of access (e. g., “/api/v1-1/”). For
each function call, FEDCON checks if an alternative access
point aap of ffid and returns it. Otherwise it uses the default
access point from the MOMapping.

2) MOMapping: The MOMapping assigns unique MOIDs
to an element in the MOCTypeModel. It also maps an MOID
to the affiliated data center ID, data center internal network IP
address, the service port, a table containing use case dependent
unstructured authentication credentials, its API access point,
default access class and (a list of) access exceptions (cf.
Section V-B4). A MO can be added to arbitrary administrative
domain in order to be able to describe management respon-
sibilities (cf. next section). The assignment of the MOID to
a node in the MOCTypeModel implies that the corresponding
MO provides all functions from the assigned MOCType up to
the root-node of the MOCTypeModel. Since an MO’s MOC-
Type may have multiple parents inheriting multiple functions,
a function must be identified by its full function ID (FFID).

mo-root (a)

sdncontroller (a)

openflow-controller (a)

floodlight

floodlight:1.1

floodlight:1.2

ovsdb-controller (a)

opendaylight:11.0

. . .

. . .

virtualization-host (a)

. . .

. . .

Fig. 3: Exemplary realization of the MOCTypeModel. Nodes
marked with “(a)” are abstract.



3) Domain Structures: FEDCON inherently supports ad-
ministrative domains, users and MOIDs can be assigned to.
The actual handling (especially user authentication) of users
must performed by the FEDCON instances’ carrier applica-
tion. Based on this information, access to MOC functions can
be described in the AccessModel.

4) AccessModel: The AccessModel allows the modelling
of authorization aspects for function calling. It introduces
access classes, i. e., template-functions referring to custom
implemented functions: aclass → (tf: (user, mo, func) →
Boolean). A template function is provided with user, MO, and
mo-function. A developer can use these parameters as criteria
for access determination (cf. example in Section VII-B).

Each MOCType defines a default access class which all
its (and inherited) functions are assigned to. Individual as-
signments to different access classes can be done via access
exceptions [(ffid → access class)], as exemplarily shown in
Listing 1. Object acex can be used MOMapping entries.�

1 acex={["floodlight:1.1:addStaticFlow"] = free,
2 [...]}� �

Listing 1: Exemplary exceptional access class definition

C. Clustering and Synchronization

The distributed deployment of FEDCON instances requires
synchronization of FEDCON instances and function call rout-
ing to a suitable FEDCON instance. All structures, MOCType-
Model, the MOMapping, the AccessModel, and domains are
designed to be serializable, facilitating synchronization. Only
functions (drivers, access class implementations) must be ex-
changed as file content – e. g., also via git or subversion – and
interpreted at each FEDCON instance. The communication
between the FEDCON instances must can be secured via TLS.

Functions of MOs defined in the MOMapping are callable
from any FEDCON instance via function call routing to the
appropriate instance/data center. Function routing is provided
via the ClusterEnvironmentModel. It maps data center IDs
(DCID) to the corresponding service IP address and service
port of the responsible FEDCON instance (shown in Listing 2).
By assigning the DCID to an MO, the responsible instance can
be identified.�

1 ClusterEnvironmentModel = {
2 dc1 = {ip = "192.168.55.5", port = 44544},
3 dc2 = {ip = "192.168.42.10", port = 44544},
4 [...]}� �

Listing 2: Exemplary ClusterEnvironmentModel

A function call forward contains the user, MOID, MOCID,
function ID and params as a serialized object.

D. Host Application Integration

Due to the Lua-based implementation, any native applica-
tion, just as many VM-based languages as Java or C# can
serve as carrier for FEDCON.

Interfaces between a host application and the FEDCON
framework are illustrated in Figure 4. FEDCON provides

Carrier/Host Application
(Generic Network Management Platform)

MOMapping
MOCTypeModel,

APMap

AccessModel
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Host-Library
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Fig. 4: FEDCON’s interfaces towards carrier applications.

a library with administrative and operational functions to
the host application. On the one hand, the host application
provides FEDCON with MOIDs, an implementation of the
AccessModel and driver functions for API access. FEDCON
on the other hand, provides the host platform with functions
for managing domains, users and MOCs and MOs as well as
for calling APIs of MOs.

1) Access and Template Methods: On the one hand, ad-
ministrative functions serve the initialization and handling of
the FEDCON cluster as well as domains, users, and MOs
for access control mechanisms. Also, the host application can
retrieve the current AccessModel. Furthermore, the interface
between the host application as well as the FEDCON frame-
work allows the manipulation of the MOCTypeModel, i. e.,
adding, retrieving, and removing MOCTypes and functions as
described in Section V-B1.

Third, the framework allows access to the MOMapping and
itreturns MO objects to the host application, allowing them to
use their functions and add them to domains.

The number and complexity of template methods are inten-
tionally clear and cover the implementation of (1) drivers for
functions and API calls, and the implementation of (2) access
classes for the AccessModel.

The registration must be performed via the corresponding
interfaces of the framework. Drivers must be created and regis-
tered in the context of the function-adding method for a certain
MOCType (which can be retrieved via appropriate interfaces
to the framework). The AccessModel must be implemented
and submitted to the initialization of the framework.

VI. REQUIREMENTS EVALUATION

As summarized in Table II, FEDCON meets a broad range
of requirements: The MOCTypeModel allows the description
of models of network components (R.1), which can be reused
for their instantiation (via the MOMapping R.2) and derivation
of new models. The normalization of functions is one of
FEDCONs key features (R.3) and is realized via inheritance of
functions of one MOCType to all derived ones. Drivers provide
sufficient flexibility to handle different technologies (e. g., RPC
or REST) and secure transport (R.6), breaks them down in a
unified method for parameter passing, function execution, and
return value retrieval (R.4).



ID Status Statement
R.1 3 Via the MOCTypeModel structure.
R.2 3 Via the MOMapping structure.
R.3 3 Provided by MOCTypeModel.
R.4 3 Provided by drivers.
R.5 l Not explicitly featured, but usable as Lua modules.
R.6 3 Reusable modules and drivers.
R.7 3 TLS-secured peer-to-peer architecture.
R.8 3 Usable for many OS and RTEs.
R.9 3 Domains are inherently provided.
R.10 3 Controlled via AccessModel.
R.11 3 Controlled via AccessModel.
R.12 3 Functions can be used by host application.
R.13 3 Unidirectional access to FEDCON.
R.14 l Partially provided by Lua’s sandbox mechanisms.

TABLE II: Requirements comparison (3: fit; l: partial fit)

FEDCON does not provide libraries for calling API meth-
ods, yet it uses Lua’s libraries and modules for that (R.5
partially). FEDCON’s architecture is completely decentralized
(R.7), P2P-based (avoiding single points of failures) and
cross platform compatible (R.8). It provides administrative
domains (R.9), which can be used for API access control
mechanisms via the AccessModel (R.11) and multi-tenancy
compliant function calls (R.10). Functions modeled in the
MOCTypeModel are supplied to the host application by an
internal API (R.12). The mode of access between FEDCON
and a carrier application is to the greatest possible extent uni-
directional from the carrier to FEDCON (R.13). It furthermore
runs in a sandbox environment due to Lua’s functionality to
completely limit run-time capabilities by removing libraries
and unnecessary functions (R.14). FEDCON, however needs
improvements with regards to manipulation prevention due to
its decentralized design. We address this in our future works.

VII. PRACTICAL EVALUATION

A practical evaluation was conducted in a laboratory en-
vironment, modeling several characteristic yet heterogeneous
FSN components (cf. Figure 5) using Lua 5.3 (in the following
Listings instantiated in object fc). With our evaluation by
example, we especially emphasize the modeling aspects as
FEDCON’s main novelty we described in this paper. The
evaluation is also a representative workflow showing how to
use FEDCON.

A. Laboratory Setup

Data centers Alpha and Beta form two administrative do-
mains domAlpha and domBeta, operated by users aAdmin
and bAdmin respectively. This setup in FEDCON instance
FEDCON-A can be done via its init function (FEDCON-B
works analogously), as shown in Listing 3, using an a priori
implemented AccessModel currentAM (cf. Section VII-B).

Data centers Alpha and Beta run commercial-off-the-
shelf hardware, providing virtualization via miniONE, an
OpenNebula-based LXC quick-setup system as a full-fledged
management and orchestration platform and LXC (Layer 0).

Beta
(domBeta)

Open vSwitch OpenDaylightFloodlight

LAN

Layer 1
miniONE LXC

FEDCON Instance

Layer 2

Alpha
(domAlpha)

FEDCON-A FEDCON-B

aAdmin bAdmin

Fig. 5: Overview of the evaluation setup.

Each host furthermore runs an Open vSwitch (OvS) instance
for inter-VM-communication. The switches are interconnected
and controlled by OpenDaylight (ODL) or a Floodlight.�

1fc = require("fedcon")({
2thisDC = "alpha",
3myIP = "192.168.111.5",
4myPort = 5555,
5[..] -- cert options
6-- driver functions directory
7driverDir = "drivers/",
8-- implemented in following sections
9accessmodel = currentAM});
10
11fc.register("beta", "192.168.130.5", 44544)
12fc.addDomain("domAlpha"):addUser("aAdmin")
13fc.addDomain("domBeta"):addUser("bAdmin")� �

Listing 3: Initializing instance FECON-A.

We decided to operate from a plain native application
for Linux serving as a baseline carrier for the FEDCON
framework.

B. AccessModel Implementation

Our exemplary access model for this evaluation can classify
functions that as a) free to use (access class free) or b) usable
if users and MO share a domain (access class inDomain).
The actual implementation of the AccessModel is shown in
Listing 4.�

1currentAM = {
2free = function (u,m,f) return true end,
3inDomain = function (u,m,f)
4local domains = m:getDomains()
5for _,d in ipairs(domains) do
6if (d:checkUser(u)) then return true end
7end
8return false
9end
10}� �

Listing 4: Laboratory AccessModel implementation.

C. MOCType Modeling for OpenNebula

In our setup, models are required for miniONE, the LXC
instance, and both SDN controllers. Switches as the OvS
instances are by paradigm controlled indirectly via the SDN



controllers and are not considered here. The resulting MOC-
TypeModel is shown in Figure 6.

moroot (a)

sdncontroller (a)

openflow-controller:1.5.1 (a)

floodlight:1.2

ovsdb-controller (a)

opendaylight:12

virtualization-host (a)

container-host (a)

lxc

mano (a)

iaas (a)

opennebula:5.10

Fig. 6: MOCTypeModel for our evaluation setup. Nodes
marked with “(a)” are abstract.

Node miniONE belongs to a group of IaaS-systems
which can be classified as MANO systems. In this paper
MANO systems are systems that manage multiple resources
like hypervisors and storage nodes. Hence, the node mano
describes MANO-specific functions, e. g., addcompnode,
addstoragenode etc. The node iaas inherits and ex-
pands them by IaaS-typical functions like vmboot and
vmpoweroff. The node opennebula in turn inherits all func-
tions from iaas and extends them by ONE-specific functions
like market place management functionality marketupdate,
marketshow etc. [26]�

1 fc.addMOCType("sdncontroller", "", {"mo-root"
}, true)

2 fc.addMOCType("openflow-controller", "1.5.1",
{"sdncontroller"}, true)

3 fc.addMOCType("floodlight", "1.2", {"openflow-
controller"}, false)

4 fc.addMOCType("ovsdb-controller", "", {"
sdncontroller"}, true)

5 fc.addMOCType("opendaylight", "12", {"ovsdb-
controller", "openflow-controller"}, false
)

6 -- flow modification function
7 -- params: DPID, table-id, flow-id, content
8 fc.getMOCType("openflow-controller:1.5.1"):

addFunction ("addFlow", {"string", "number
", "number", "string"}, {"boolean"})� �

Listing 5: MOCTypeModel for ODL with exempl. function.

D. MOCType Modeling for OpenDaylight

We explicitly demonstrate the modeling of multiple parents
for the opendaylight:12 node. The direct predecessor is the ab-

stract node ovsdb-controller, which itself extends the abstract
node sdn-controller. Since ODL also supports OpenFlow, node
openflow-controller:1.5.1 is its secondary parent. Crucial parts
are shown in Listing 5.

In order to break down complexity of the OpenFlow
protocol we implemented specific functions for the class
openflow-controller; i. e., instead of modeling a general func-
tion addFlow, we distinguish between operations with MAC
addresses, IP addresses, port-based operations etc.

E. Driver Implementation for OpenNebula
We exemplarily set up the node’s iaas function vmboot

(named resume in ONE): We add a corresponding entry (cf.
Listing 6) which requires the ID of the VM that needs to
be started as only parameter and returns a boolean value
indicating the operation’s success. For the sake of brevity, the
implementation of the driver rather simple and pragmatic. The
XML-encoded RPC call is composed via Lua’s formatstring
method; it replaces parameters like username and password
from the MOMapping’s object’s credentials table and the
only parameter in params. httppost (implemented based on
Lua’s socket library) handles the RPC call, after the point of
access is composed. Finally, the driver function is registered to
the original MOCType iaas and the MO with ID miniONEd1.�

1-- module name: miniONEd1.lua
2function oneVMBootDriver (params, mo, ap)
3-- assemble RPC call
4local xmlreq = string.format([[
5<?xml version="1.0" ?>
6<methodCall>
7<methodName>one.vm.action</methodName>
8<params>
9[..] -- params substitution
10</params>
11]],
12mo.cred.user, mo.cred.passwd, params[1])
13-- execute RPC call with httppost
14local ret = httppost(
15-- assemble point of access
16string.format("http://%s:%d/%s",
17mo.ip, mo.sport, ap),
18xmlreq)
19-- return false on error code
20-- otherwise return true
21return ret and not ret:match("Error")
22or (false, ret)
23end
24
25-- register driver for function "vmboot"
26fc.getMOCType("opennebula:5.10"):addDriver("

iaas:", "vmboot", "miniONEd1")� �
Listing 6: Driver for function vmboot.�

1-- ffid, moctype, alternative access point
2fc.addAPMapEntry("openflow-controller::addFlow

", "opendaylight:12", "/restconf/config/
opendaylight-inventory:nodes/node/openflow
:<DPID>/table/<TABID>/flow/<FLID>")� �

Listing 7: Alternative point of access for function addFlow
with placeholders <DPID>, <TABID>, and <FLID>.



F. Driver Implementation for OpenDaylight

For the node opendaylight:5.10 we highlight the multi inher-
itance aspect and model the function addFlowMAC from its
secondary openflow-controller parent node. ODL has a REST-
based API where the request body and the HTTP resource path
of the point of access must be adapted. Also in ODL the API
access point is divided into a config and an operational access
point. Hence, an alternative access point entry in the APMap is
needed (see Listing 7). In the HTTP resource path, <DPID> is
the data path ID, <TABID> is the flow-table id and <FLID>
is flow ID supposed to be installed. These placeholders are
replaced by the actual parameters (via function gsub) in the
driver implementation (see Listing 8).�

1 -- module name: odld1.lua in drivers directory
2 function odlAddFlowDriver (params, mo, ap)
3 -- assemble resource path
4 local apiap = string.gsub(ap,
5 "<DPID>", params[1]):gsub("<TABID>",

params[2]):gsub("<FLID>", params[3])
6 -- [..] function call and result handling
7 end
8 -- driver registration� �

Listing 8: Driver for function addFlow.

G. Mapping MOs to their corresponding MOCType

After modeling in the previous sections, we show
the instantiation of MOs according to MOCTypes via
the MOMapping in Listing 9 for an ODL instance
with MOID odlight1. This example also shows the us-
age of exceptional access classes, assigning the function
opendaylight:12:network-topology to access class
free. Default access class is inDomain. Also authentication
credentials of the MO are considered.�

1 -- add domain domBeta with user bAdmin
2 fc.addDomain("domBeta"):addUser("bAdmin")
3
4 -- Map MOID "odlight1" to node opendaylight:12
5 -- last parameter adds access class exception
6 fc.addMo("odlight1", "192.168.130.15", 8181,
7 "opendaylight:12", "restconf", "beta",
8 {user="admin", passw="l33tpw!"},
9 "inDomain", {["opendaylight:12:network-

topology"] = "free"})
10
11 -- add MO odlight1 to domain domBeta
12 fc.getDomain("domBeta").addMO("odlight1")� �

Listing 9: Set up dom domBeta for bAdmin and MO odlight1.

H. Function Calling Example and Workflow

Defined functions of FSNs’ components can be used from
the FEDCON carrier application. Consider calling function
addFlow on MO odlight1, triggered by user aAdmin at
instance FEDCON-A (cf. Listing 10). As described in Sec-
tion V-B3, user authentication is performed by the carrier
application; it passes the user ID as first parameter to the
function fc.getMo(MOID):exec. User aAdmin can call the

function in the local data center, since the user is authorized as
she shares the domain domAlpha with MO odlight1. Assuming
user aAdmin triggers the function call at FEDCON instance
FEDCON-B, the function call would be forwarded to the
relevant instance FEDCON-A, which is performed according
to the ClusterEnvironmentModel. Yet, the remote calling func-
tionality is explicitly not part of the implementation of this
paper but of our future works.�

1local ret = fc.getMo("odlight1"):exec("aAdmin"
, "openflow-controller:1.5.1:addFlow", {"1
", 5, 15, "<flow> [...] </flow>"})� �

Listing 10: Function call addFlow on MO odlight1.

I. Findings
Our research led us to two key findings: (1) The compo-

nent type structure of FSNs is very suitable for exploiting
inheritance effects between components. As FSNs already
inherently predefine some aspects (e. g., a classification of
SDN-components etc.), others must fit to the corresponding
managed infrastructure (e. g., multi-purpose components like
ODL). Current management platforms hardly exploit these
dependencies and inhibit automation. (2) Management plat-
form must be more flexible in federated infrastructures in
terms of organizational aspects. We provided this amount
of flexibility by combining multiple adaptable, yet minimal
framework designs to fit the needs of a specific managed
federated infrastructure.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented the embeddable FEDCON
framework for augmenting existing management platforms for
FSNs. It provides access to components’ APIs and functions
in FSNs. We introduced the MOCTypeModel and APMap
structures, allowing the inheritance-based modeling of MOCs’
APIs, fostering transparency and automation. The MOMap-
ping instantiates MOs by assigning MOIDs to a node in
the MOCTypeModel. Organizational aspects are described
via FEDCON’s ClusterEnvironmentModel and the adaptable
AccessModel for use case suited access control. Our evaluation
emphasizes on the modeling parts via an implementation
and realisation of a representative environment. Our research
recommends the exploitation of the FSN components structure
for modeling, as well as framework designs in network man-
agement platforms, which leverage automation and use case
dependent customisations.

In our future work, we want to improve the usability
of our framework, e. g., by methods for importing existing
approaches like YANG, OpenAPI, or RAML. Furthermore,
we want to put more research into improving models for
the mentioned inheritance-based dependencies in FSNs’ com-
ponents, also for MOCs’ attributes. Finally, besides already
elaborated core concepts for FEDCON in this paper, we are
going to implement yet missing parts, especially concerning
the management of distributed FEDCON instances, as well
as hardening. These will be evaluated under consideration of
overhead in processing, storage and communication.
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