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Abstract—Nowadays, besides the evident benefits of Data
Centers (DC) in terms of information storage and processing, that
posed also a few problems needed to be addressed. The computer
network research community has been dedicated to resolve one
of the severe problems of Data Center Networks (DCN): the
congestion notification problem. The quality of connection links
is the decisive factor for the success of a DC in providing
higher bandwidth and low interconnection latency for high per-
formance cluster computing. Therefore, the congestion detection
and reaction mechanisms are vital to the performance of a
DC. There are divers congestion notification algorithms, such as
Backward Congestion Notification (BCN), Quantized Congestion
Notification (QCN), Forward Explicit Congestion Notification
(FECN,) and E-FECN. However, the common disadvantages of
those algorithms is the lack of ability to predict congestion. In this
paper, we propose an AI-based congestion notification algorithm
in applying the Long short-term memory (LSTM) algorithm
and its variants, such as GRU, Skip-LSTM, and Bi-Directional
LSTM, into the original BCN algorithm, called IBCN, in order to
increase the capacity of predicting link congestion of the original
one. We also implement IBCN in a Software-defined DCN that
is a combination of the DCN and the Software-defined Network
(SDN) architecture. The obtained experimental results showed
that the IBCN outperforms the original BCN at any network
load levels (from 10% to 90%) with the average improvement of
50% of throughput. In addition, the proposed solution gives also
better results than other traditional linear prediction algorithms.

Index Terms—Data Center Networks, Software-Defined Net-
work, congestion notification protocol, LSTM, backward conges-
tion notification

I. INTRODUCTION

The past two decades have witnessed an explosive develop-
ment in Data Centers (DC) that mainly host a huge number of
applications and services, such as social networks, real-time
multimedia services, entertainment services, online gaming,
etc. Today, modern DC contains millions servers that are
connected via routers, switches, and high-speed links. The
main goal of a DC is to store and process the data/information
in maximizing efficiency while maintaining a low cost. To
ensure that the goal is achieved, extensive research efforts
have been enforced to resolve divers challenges of Data Center
Networks (DCN), such as network architecture design, TCP
Incast, power consumption, and congestion notification algo-

rithms [1]. Among these problems, we focus on the congestion
notification problem in the Layer 2.

Being a essential protocol for node-to-node DCN inter-
connection network, Ethernet gives various benefits such as
ease of management, low cost, and ubiquitous connectivity
[2]. However, the Ethernet’s policy, best-effort transmissions,
is its weakness because it drop packets when the switch is
overloaded. Today, new Ethernet protocols are being developed
to help DCN to support low latency connection links for
high performance computing [3] . The main goal of the
Ethernet improvements is to give congestion notification in
order to reinforce the transport accuracy while increasing
the efficiency of the transport protocol (e.g. TCP). Hence,
congestion notification mechanism is considered as a traffic
management solution in the Layer 2 that observes the process
for queuing the data frames of switches. Then, it detects the
congestion and signals the source node so that the source
can react in a consistent manner with this warning to avoid
frame losses. Consequently, the congestion control mechanism
of the reliable transport protocol, TCP, can benefit from this
Layer 2 congestion notification protocol because it has the
ability to react quickly to link congestion. In addition, thanks
to the congestion notification protocol, the bandwidth usage
is greatly improved with the new high rate Ethernet link of
10Gpbs.

There are various congestion notification algorithms for
DCN, such as FECN [4], enhanced FECN (E-FECN) [5],
QCN [6], and BCN [7]. Besides the proven advantages, the
mentioned proposals still have a common disadvantage: the
lack of a predicting congestion mechanism. That motivates
us to apply a Artificial Intelligence (AI) technique to predict
congestion in order to address this problem. Fortunately, AI
has been advanced very robustly, thanks to the evolution of
computer technology, such as GPU and TPU [8]. It presents
the convenience to apply AI to the network control mecha-
nisms, supporting effective prediction techniques. This means
every switches in a DCN will be an AI node, which is able
to make decision automatically. Among the aforementioned
algorithms, we decide to base on the queue-based and re-
active signaling algorithm BCN due to its advantages [1]:
fast congestion regulation, large throughput oscillation, link
disconnection supported, and fast start supported.978-3-903176-32-4 © 2021 IFIP



However, it is impractical to apply AI to a traditional DCN
because each switch has only a local view and local control.
Hence, a centralized control architecture, e.g. Software-defined
Network (SDN) [9], is a promising candidate. The ultimate
idea of a SDN architecture is to centralize all the control
plane of all nodes in a network into a controller (called SDN
controller). Therefore, it provides a global view of the whole
system and makes it easier to integrate AI into the DCN. In
fact, the trend of combining the SDN and DCN architecture
has been in research for the last few years in different research
works [10]–[13].

To sum up, the main contribution of this paper is to propose
an AI-based congestion notification algorithm in basing on the
BCN algorithm for a Software-Defined Data Center Network
(SDDCN). Especially, the AI techniques we used are the
Long short-term memory (LSTM) and its variants, such as
Gated Recurrent Unit (GRU) [14], Skip-LSTM [15], and Bi-
Directional LSTM [16]. They are artificial recurrent neural
network (RNN) architectures used in the field of deep learning.

The paper is structured as follows. In section II, we survey
some related research works. Section III presents the funda-
mentals of the original BCN algorithm, the LSTM RNN, and
its variants. The proposed IBCN is introduced in section IV
where we explain how we integrate the LSTM and its variants
to the original BCN, called IBCN, and how we implement
IBCN in a SDDCN. Section V will show some obtained
experimental results.

II. RELATED WORKS

Jiang et al. [4] proposed the algorithm Forward Explicit
Congestion Notification (FECN) that uses a mechanism to
control the feedback rate. The source node begins by sending
with full rate and uses periodically a probing mechanism
to check the congestion of the routing path. In the case
where, the available bandwidth of a switch in the path is not
enough, the rate controller adjusts the sending rate in basing
on the modified rate field of the received probe message. In
an extension version of FECN, E-FECN [5], the switches
under intense condition are able to send back directly to the
source node. However, the FECN and E-FECN have a slow
congestion regulation and a small throughput oscillation. In
addition, FECN and E-FECN don’t support the fast start and
the link disconnection.

Alizadeh et al. [6] proposed the QCN algorithm that consists
of two sub-algorithms: Congestion Point Algorithm and Reac-
tion Point Algorithm. The Congestion point algorithm applies
a sampling method to help a switch to detect a congestion
situation. This switch then informs the congestion level to the
source node. For the Reaction point algorithm, the rate limiter
of a source will decrease the sending rate after receiving the
feed back of the congestion point.

Bergasamo et al. [7] introduced the BCN algorithm with
three modules: Congestion Detection, Backward Signaling,
and Source Reaction. In the congestion detection module,
a switch samples periodically a packet and determines the
instantaneous queue-size. The latter is used in the Backward

Signaling module in comparing with two thresholds: Qeq

(equilibrium queue length) and Qsc (the severe congestion
queue length). For the Source Reaction phase, the source will
reacts in depending on the received message from the rate
regulator. Based on its advantages, such as fast congestion
regulation, large throughput oscillation, link disconnection
supported, and fast start supported, we decide to leverage BCN
algorithm to propose an AI-based algorithm.

Gholami et al. [17] based on the Openflow protocol to
control the congestion in Software-defined DCNs. Their main
idea is to monitor the congestion of all network links at the
SDN controller in using the port statistics of the Openflow-
enabled switches. All data flows that reside in congested links
are rerouted to other links with more resources.

Concerning the idea of applying Machine Learning (ML)
technique to the Layer 2 congestion notification mechanism
in a DCN, to the best of our knowledge, there is only one
research work [18] that addressed that problem. Most of the
research works attempting to apply ML to the congestion
control mechanism today focus on the layer 4 for the transport
protocol (TCP).

Majidi et al. [18] proposed a ML-based dynamic threshold
control scheme for Explicit Congestion Notification (ECN)
marking in DCN, called DC-ECN (Data Center-Explicit Con-
gestion Notification). They use a ML-based classifier to sepa-
rate the mice and elephant flows to place them in the desired
queues. DC-ECN then adjusts the buffer space by keeping
the same ECN thresholds instead of increasing a threshold to
enhance the throughput that also increases the latency.

The main disadvantage of the aforementioned solutions is
the lack of predictability. They always resolve the congestion
problem in a DCN in using only instantaneous information.
This issue will obviously affect the effectiveness of that
congestion detection mechanism. That motivates us to propose
a ML-based congestion notification algorithm with the ability
to predict congestion.

III. FUNDAMENTALS OF THE ORIGINAL BCN ALGORITHM
AND LSTM

In order to prepare the knowledge base for our proposals, in
this section, we briefly present the fundamentals of the original
BCN algorithm, the LSTM RNN and its variants including
GRU, Skip-LSTM, and Bi-Directional LSTM.

A. Original BCN algorithm

As mentioned above, the BCN algorithm consists of three
modules: Congestion Detection, Signaling, and Source Reac-
tion.

In the first module, Congestion Detection, the incoming
packets are sampled in every switch with the probability Pm.
Two thresholds are chosen to express the congestion tolerance
at a switch: Qeq and Qsc (Fig. 1). After sampling a packet,
the congestion measure is determined in Eq. 1.

ei = −(q(t)−Qeq + ω ∗ (Qa(t)−Qd(t))) (1)



Fig. 1. BCN model

where q(t) represents the queue-size at moment t. Qa(t)
is the number of arrived packets and Qd(t) is the number
departed packets at moment t. ω denotes the non-negative
constant weight.

The value of the congestion measure ei will be used in the
Source Reaction phase.

The main purpose of the second phase, Backward Signaling,
is to decide whether or not to send back the signal message
to the source in basing on the comparison of q(t) with the
thresholds. After sampling a packet, the switch sends back the
feedback to the source node in using the 802.1Q tag format
[7]. The feedback process is is carried out as follows:

1) If q(t) < Qeq:
a) If the tag of the rate regulator doesn’t exist: the

switch doesn’t send any feedback message.
b) the tag of the rate regulator exists: the switch sends

back a positive BCN message.
2) If Qeq < q(t) < Qsc: the switch sends back a BCN

NORMAL message.
3) If q(t) > Qsc: the switch sends back a BCN STOP

message.
For the third phase, Source Reaction, the souce node will

react differently with two types of received feedback message:
the BCN STOP message and the BCN NORMAL message:
• After receiving a BCN STOP message, the rate regulator

halts the sending process for a random period. It will
restore the sending process with a ratio of C to K, where
K represents the flow density in the DCN, and C is the
capacity of the congested link.

• After receiving a BCN NORMAL message, the rate
regulator regulates the rate as shown in the Eq. 2.

ri =

{
ri +GieiRu if ei > 0

ri(1 +Gdei) if ei < 0
(2)

where Ru denotes the increase rate unit parameter. Gi

is the the additive increase parameter, and Gd is the
multiplicative decrease gain parameter. The congestion
measure ei is calculated by using Eq. 1 and extracted
from the received BCN message.

B. Long Short Term Memory Neural Networks
LSTM is considered as a solution for the problem of long-

term dependencies of the original Recurrent Neural Network

(RNN). The main advantage of the LSTM is that it possesses
a constant error flow by using a set of memory blocks,
which can store the temporal state of the network. LSTM
provides also special multiplicative units called gates that
control the information flow. These advantages are appropriate
for the congestion prediction in a DCN. That motivated us to
apply LSTM solution to predict the queue size information of
switches.

Fig. 2. LSTM cell

Fig. 2 has shown a graphical representation of our imple-
mented LSTM cell that consists of three gates, three input
variables, and two output variables as follows:
• input gate: it
• output gate: ot
• forget gate: ft
• current input: xt
• previous output: ht−1
• previous cell state: ct−1
• current output: ht
• current cell state: ct
The implemented LSTM cell is defined as a neural network

where the input vector, x = (x(1), x(2), . . . x(t)), is equivalent
to the vector of queue-size of a switch from moment 1 to t,
p = (p(1), p(2), . . . p(t)). The output vector is h = (h(t +
1), h(t + 2), . . . h(t + k)), which is equivalent to the queue-
size vector p = (p(t+1), p(t+2), . . . p(t+k)). In other words,
k next values of the value p(t) are predicted. The output vector
is calculated through the following layers:
• the forget gate sigmoid layer at moment t: ft is deter-

mined by Eq. 3.

ft = σ(Wf • [ht−1, xt] + bf ) (3)

where σ is the sigmoid function. Wf is the matrix
of weights from the forget layer. ht−1 and xt are the
previous output and the input vector, respectively. bf is
the correspondent bias.

• the input gate sigmoid layer at moment t: it is calculated
by Eq. 4.

it = σ(Wi • [ht−1, xt] + bi) (4)

where Wi is the matrix of weights from the input layer
and bi is the correspondent bias.



• the cell state at moment t: Ct is calculated by the Eq. 5.

Ct = ft ⊗ Ct−1 + it ⊗ tanh(Wc • [ht−1, xt] + bc) (5)

where it is the input gate. Wc and bc are the weight matrix
for the cell and the corresponded bias, respectively.

• the output gate sigmoid layer at moment t: ot is calculated
by Eq. 6.

ot = σ(Wo • [ht−1, xt] + bo) (6)

where Wo and bo are the weight matrix from the output
layer and the corresponded bias, respectively.

• The final stage is used for calculating the output ht that
is determined by the multiplication operation ⊗ between
output gate layer and tanh layer of the current cell state
Ct (Eq. 7).

ht = ot ⊗ tanh(Ct) (7)

The obtained output value ht will be pushed to the network
as the previous state for the next LSTM cell.

C. Variants of LSTM algorithm

As aforementioned, some variants of LSTM algorithm are
implemented to compare its different impacts on the proposed
IBCN algorithm. Three permutations of LSTM algorithm have
been chosen: GRU, Skip-LSTM, and Bi-directional LSTM.

1) Gated Recurrent Unit (GRU): Cho et al. introduced a
variant of the original LSTM algorithm in 2014, called GRU
[14], [19], [20]. The advantage of GRU over original LSTM is
that it has shorter training time and less computation to adjust
the hidden layers. In GRU architecture, there are two gates:
1) the update gate determines the significance of the previous
memory cell; 2) the reset gate establishes the combination of
the new the previous memory cell with the input cell. Similar
to other RNNs, for each time step, GRU creates an output that
is used to train the network in using gradient descent.

2) Skip-LSTM: As a variant of LSTM, Skip-LSTM is
introduced by Campos et al. [15]. The main idea of Skip-
LSTM is to skip state updates in the computation graph in
order to reduce the number of sequential operations. The
advantage of the Skip-LSTM is that in a complex models or
long sequences. Besides, the optimization task is simpler with
fewer update steps for gradient backpropagation process.

3) Bi-directional LSTM: Mike et al. introduced Bi-
directional LSTM [16] with the purpose of separating the
hidden layers into two components: forward state and back-
ward state sequence. Therefore, the Bi-directional LSTM is
able to approach the preceeding and succeeding contexts. It is
implemented with the equations 8, 9, and 10.
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where
−→
h and

←−
h are forward state sequence and backward

state sequence, respectively.

IV. PROPOSED IBCN ALGORITHM IN A
SOFTWARE-DEFINED DATA CENTER NETWORK

As shown in the Equations 1 and 2, the congestion detection
process and the reaction process are both based on the value
p(t), which represents the instantaneous queue-size at moment
t. Hence, the original algorithm BCN has revealed a lack of
ability to predict congestion. That motivates us to propose the
IBCN (Intelligent BCN), which is able to predict the queue
size, thereby predicting also the potential congestion risk.
Concretely, we apply the Long Short-Term Memory (LSTM)
algorithm and its variants for congestion prediction. However,
the congestion prediction module does not work efficiently if
it is executed separately in each switch. This is explained by
the fact that the data transmission in a DCN makes the queue
size information of switches related to each other. Hence, we
implemented a Software-Defined DCN (SDDCN) so that the
SDN controller is able to collect all the queue-size information
of all the DCN OpenFlow-enabled switches.

As shown in Fig. 3, a conventional three-tier DCN topology
that consists of edge tier (top-of-rack switches), the aggrega-
tion tier, and the core layer switches. Each rack is comprised
of 20-40 servers. Two aggregation switches are connected to
a server for backup. The aggregation switches give divers
operations, such as firewalling, server load balancing, etc. The
most important operation of the DCN playing the role of a
switching backbone for incoming and outgoing data flows of
the DCN is implemented by the core tier switches.

Fig. 3. Proposed three-tier Software-Defined DCN

Each switch in these three tiers is connected to a SDN
controller. The latter performs the proposed alogirhtm, IBCN,
that is comprised of 4 modules: Data collection, Training
LSTM RNN, Congestion prediction, and Congestion reaction
(Fig. 4).

The remainder of this section presents in details these four
modules.



Fig. 4. Proposed IBCN protocol

A. Data collection module

The main goal of the Data collection module is to query,
gather, and store all the statistics, especially the queue size
information from all Openflow switches of the DCN. Con-
cretely, this module periodically queries the statistics, includ-
ing the queue size information, from all the switches with a
fixed interval of 1s. After receiving the STATS REQUEST
message from the controller, the switch then replies with
a STATS REPLY message. The overhead generated by this
module is not worth to consider because the size of the request
and reply messages are 8 bytes and 104 bytes, respectively.
The collected queue size information are then used by the
Training LSTM RNN module and the Congestion prediction
module.

B. Training LSTM RNN module

As aforementioned, the core idea of IBCN is to predict
the queue size of switches in a SDDCN, thereby improving
the accuracy of the congestion prediction of BCN algorithm.
Concretely, the Training LSTM RNN module is performed
by using the backpropagation through time algorithm (aka. a
deep learning method) to learn the queue size characteristics
from historical data flows that passes through the switches
and predict its future queue size. Since the training method
of LSTM and all of its variants is similar, only the general
training method of LSTM is presented in this sub-section.

Consider a switch S, let X = q(0), q(1), . . . q(T ) be the
vector that represents the queue size of S at the moment t
with t = [0..T ]. The queue size prediction problem is defined
as solving the predictor Ŷ = q(T +1), q(T +2), . . . q(T + k)
via a series of historical and measured data set X , where k is
the number of value of queue size we want to predict.

In order to forcefully feed the LSTM network, we don’t
predict one item q(i+ T +1) at a time by feeding the LSTM
one item q(i) at a time because the assumption that each
item is independent from each other was proven to be wrong
[21]. Therefore, in order to perform real-time prediction, the
LSTM network needs to be fed and learned continuously. In
addition, the total number of q(i) increases obviously over
time. To address this problem, we used the learning window
mechanism. The latter fixes the window W for the number
of q(i). Concretely, we put together W values of queue size
(q(T ), q(T − 1), . . . q(T −W − 1)) at a time.

To evaluate the performance and accuracy of our LSTM
model, the Mean Square Error (MSE) is used to estimate
the prediction accuracy. The scale dependent metric MSE is
determined by the the difference between the estimated values
and the actual ones. It is calculated by the the average sum of
squared errors (Eq. 11).

MSE =
1

k

k∑
i=1

(q(i)− q̂(i))2 (11)

where q(i) and q̂(i) are the observed value and the predicted
value, respectively. k is the total number of predictions.

The output of this module is a trained LSTM RNN, which
is used by the Congestion prediction module.

C. Congestion prediction module

The proposed IBCN predicts k number of queue size
prediction samples represented by the vector K = {q(t +
1), q(t + 2), . . . q(t + k)}. In basing on the original BCN
algorithm, two thresholds are also fixed: Qeq and Qsc. Let
na is the number of elements of K that are less than Qeq (Eq.
12).

na = {|Ka| | Ka ⊂ K ∧ j < Qeq∀j ∈ Ka} (12)

Let nb is the number of elements of K that its value is
between 2 thresholds (Eq. 13).

nb = {|Kb| | Kb ⊂ K ∧Qeq < j < Qsc∀j ∈ Kb} (13)

Let nc is the number of elements of K that are greater than
Qsc (Eq. 14).

nc = {|Kc| | Kc ⊂ K ∧ j > Qsc∀j ∈ Kc} (14)

Basing on the original BCN algorithm, the feedback process
of IBCN is implemented as follows:

1) If na = max(na, nb, nc):
a) If the tag of the rate regulator doesn’t exist: the

switch doesn’t send any feedback message.
b) If the tag of the rate regulator exists: the switch

sends back a positive BCN message.
2) If nb = max(na, nb, nc): the switch sends back a BCN

NORMAL message.
3) If nc = max(na, nb, nc): the switch sends back a BCN

STOP message.
We attach the value of the congestion measure eIBCN ,

that is calculated by the Eq. 15, to every feedback message,
so that the Congestion reaction module can use it to react
appropriately.

eIBCN = −( 1
k

t+k∑
i=t+1

q(i)−Qeq +ω ∗ (Qa(t)−Qd(t))) (15)



D. Congestion reaction

This module is performed at the source servers to react
to the received feedback messages. If it receives a STOP
message, it stop sending packets for a for a random period
from 200ms-800ms. If the source server receives a NORMAL
message, it adjusts the sending rate as described in Eq. 16. In
fact, we just replace the ei in Eq. 2 with eIBCN in Eq. 16.

ri =

{
ri +GieIBCNRu if eIBCN > 0

ri(1 +GdeIBCN ) if eIBCN < 0
(16)

V. EXPERIMENTS

For the experiments, mininet [22] is used to emulate the
network with the conventional three-tier DCN topology (Fig.
3) that consists of 50 hosts, 5 top-of-rank (edge) switches, 2
aggregation switches, 1 core switches. We assign 10 servers
per rack, each server in a rack is connected to a edge switch.
Each edge switch is connected to 2 aggregation switches. The
two aggregation switches, in its turn, are connected to the
core switch. The 50 host nodes represent source servers and
destination servers. In our topology, 2 hosts are chosen to be
destination servers that receives packet flows from 48 other
source servers. All links have the capacity of 1Gbs except
the links connected to the core switch have the capacity of
10Gbs. The packet size is fixed to 64 bytes. The lightweight
POX [23] is used as the SDN Controller. All the switches in
the topology are connected to the POX controller. The IBCN
parameters are fixed as shown in the Tab. I.

Parameter Ru Gi Gd W Qsc Qeq k
Value 3Mbps 4 0.02 2 90 20 5

TABLE I
IBCN PARAMETERS

In order to generate the flows with any data bit-rate, we used
the open source Tcpreplay tool [24]. The latter is usually used
to edit and replay a previous captured network traffic with a
fixed sending bit-rate. So, this tool helps us to just generate a
few initial data flow and replay it after as many as we want.

For the training phase of LSTM and its variants, we run the
Tcpreplay tool in each source node with a random data bit-
rate that varies from 10Mbs to 1Gbs. The collecting dataset
process takes 1 hour. Since the collection data module fixes
the interval to 500ms, the obtained dataset matrix D has the
size of (7200×8) elements. We split D into the matrix Dtrain

and the matrix Dtest of sizes (5760× 8) and (1440× 8). The
Dtrain is used to train the RNN of LSTM and its variants, and
the Dtest is used to validate and test the accuracy.

First, the impact of the number of hidden layer of the RNN
of LSTM and its variants on the MSE and the training time
is evaluated. As shown in Fig. 5, generally, the deeper the
network, the more accurate the prediction is. With the values of
number of hidden layer from 1-4, the Classic LSTM and GRU
outperform Skip-LSTM and Bi-Directional LSTM. Especially,
the classic LSTM improves the average MSE of 39% of the
Skip-LSTM. Besides, Classic LSTM also slightly improves

9% the MSE value of GRU. With the number of hidden layers
from 6-8, the difference between algorithms is not clear.

As expected, the deeper the RNN, the longer it will take to
train (Fig. 6). The obtained results show that, generally, the
Classic LSTM takes the longest time for the training phase.
The Skip-LSTM attains the best result because it skipped state
updates in the computation graph. Its training time is only 49%
of that of Classic LSTM at 1 hidden layer, and 63% at 8 hidden
layers.

Basing on the experimental results of Figures 5 and 6, we
set 4 hidden layers for the LSTM RNN to balance between
the MSE and the training time.

Fig. 5. MSE over the number of hidden layer

Fig. 6. Training time over the number of hidden layer



In order to prove the improvement of IBCN over the original
BCN, two scenarios are created:
• Scenario 1 (Lightweight network): Each source nodes

send out 10kB data and it stops for a random period (a
few miliseconds), and it continue to transmit.

• Scenario 2 (Heavy network): Each source node sends data
continuously to two destination nodes.

For the Scenario 1, we based on three parameters: the
throughput in both transactions per second (Tps) and gigabit
per second (Gbps), and the delay (µs) from a source node
to one of two destination nodes. The obtained results in
Tab. II showed that the BCN has well enhanced all these
three parameters compared to results without any congestion
management method (CM). The proposed IBCN-LSTM, as
expected, give a better result than the original BCN also in
three parameters. Concretely, it allows 1093 more transactions
per second than BCN and significantly improves 15.5% in
terms of throughput. The IBCN’s delay is reduced from 215
to 196 µs. This improvement is explained by the capacity of
predicting congestion of IBCN-LSTM, that helped the source
nodes to react early to the congestion in the DCN. However,
the IBCN-SkipLSTM and IBCN-BiLSTM have no significant
improvement compared to the original BCN.

TPS Throughput (Gbps) Delay (µs)
without CM 726 0.084 2038.49
BCN 7124 0.462 215.82
IBCN-LSTM 8217 0.534 196.38
IBCN-GRU 8193 0.507 205.73
IBCN-SkipLSTM 7131 0.468 211.93
IBCN-BiLSTM 7045 0.455 231.94

TABLE II
PERFORMANCE COMPARISON FOR SCENARIO 1 (LIGHTWEIGHT

NETWORK)

For the Scenario 2 (Heavy network), we monitor a con-
gested link (its link utilization is 99.9%) that connects the
core switch to an aggregation one. As shown in Tab. III, even
the BCN cannot give a better average throughput, the IBCN-
LSTM slightly improve it 4.7%. In this scenario, we actively
make the DCN heavier. Consequently, it caused large variance
in the throughput of many bulk source nodes. Both the BCN
and IBCN-LSTM are able to reduce this variance significantly.
Especially, the IBCN-LSTM and IBCN-GRU reduce it down
to 0.8% while BCN is 1.4%. The obtained results of IBCN-
SkipLSTM and IBCN-BiLSTM are similar to the original
BCN.

Average Throughput Standard deviation (%)
without CM 3.126 18.5
BCN 2.984 1.4
IBCN-LSTM 3.273 0.8
IBCN-GRU 3.058 0.8
IBCN-SkipLSTM 2.945 0.95
IBCN-BiLSTM 2.829 1.1

TABLE III
PERFORMANCE COMPARISON FOR SCENARIO 2 (HEAVY NETWORK)

We also try to evaluate the effectiveness of the congestion
solution on different network load, which is varied from 10%

to 90%. We used the Iperf tool [25] to vary the network
load and collect the throughput results. The obtained results
in the Fig. 7 showed that, with the load value from 10%
to 60%, BCN and IBCN-LSTM and its variants give better
throughput than the solution without any congestion manage-
ment method. Especially, the IBCN-LSTM attained in average
33% better throughput than BCN. However, with the load
value from 70% to 90%, the BCN, IBCN-SkipLSTM, and
IBCN-BiLSTM do not have any improvement compared to the
solution of using no CM. That shows the inefficiency of BCN,
IBCN-SkipLSTM, and IBCN-BiLSTM in a high network load
condition. Contrary to BCN, the IBCN-LSTM attained the
enhancement of more than 50% in this high load condition.

Fig. 7. Throughput at different load

In order to prove the advantage of using LSTM RNN
for predicting congestion, we also compare the prediction
error determined by the average difference (q(i)−q̂(i))

q(i) in Eq.
11 of our proposed LSTM and its variants solutions with
three traditional linear prediction algorithms: ARMA model
[26], ARAR algorithm [27], [28], HoltWinters algorithm [29].
These three linear algorithms are also implemented in the
original BCN algorithm. The Tab. IV shows that our LSTM
approach outperforms the others. In general, the LSTM-
based algorithms give better results than the traditional linear
prediction algorithms.

Algorithms Prediction error (%)
ARMA 41.3
ARAR 29.6
HotWinters 26.5
LSTM 3.7
GRU 4.1
SkipLSTM 11.7
BiLSTM 8.5

TABLE IV
PREDICTION ERROR



VI. CONCLUSION

In this paper, we address the problem of lack of ability
to prediction congestion of Layer 2 congestion notification
algorithms, such as BCN, FECN, E-FECN, and QCN, for a
DCN. In order to resolve this issue, we proposed the IBCN
algorithm in basing on the original BCN. Concretely, we have
applied the LSTM RNN and its variants (GRU, Skip-LSTM,
and Bi-Directional LSTM) to train the prediction model. To
facilitate such application, we implemented it in a centralized
control system in combining the SDN and DCN to construct
a Software-defined DCN. That helps IBCN to predict queue
size information of all switches in the implemented SDDCN.
The obtained experimental results showed that the IBCN
outperforms the original BCN at any network load levels of the
SDDCN. Besides, the LSTM-based solutions give also better
results than other traditional linear prediction algorithms. We
believe these positive results have opened up a new trend
in the application of ML to Layer 2 congestion notification
algorithms to improve its performance and accuracy.
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