
Tofino + P4: A Strong Compound
for AQM on High-Speed Networks?

Ike Kunze, Moritz Gunz, David Saam, Klaus Wehrle, Jan Rüth
RWTH Aachen University, Chair of Communication and Distributed Systems

{kunze, wehrle, rueth}@comsys.rwth-aachen.de, {moritz.gunz, david.saam}@rwth-aachen.de

Abstract—Bufferbloat and congestion in the Internet call for
the application of AQM wherever possible: on backbone routers,
on data center switches, and on home gateways. While it is easy to
deploy on software switches, implementing and deploying RFC-
standardized AQM algorithms on programmable, pipeline-based
ASICs is challenging as architectural constraints of these ASICs
were unknown at the time of standardization. In this work, we
call for reigniting the work on AQM algorithms by illustrating the
difficulties when implementing the PIE AQM in three fashions
on an Intel Tofino switching ASIC. All our implementations come
with trade-offs, which, in turn, have a significant impact on their
performance. The conceptual challenges further suggest that it
is currently not possible to implement a fully RFC-compliant
PIE version on Tofino. We find that it is non-trivial to transfer
RFC recommendations to the resource-constrained Tofino, op-
erating at hundreds of gigabit per second. We thus argue that
there is a need for AQM specifications that acknowledge the
omnipresence of congestion and include architectural constraints
of programmable ASICs into their design.

Index Terms—AQM, P4

I. INTRODUCTION

Congestion in the Internet can appear in various places: at
low bandwidth last-mile links [1], at overloaded backbone
links [2], or within data center networks [3]. Together with the
increased awareness of bufferbloat [4], this observation has led
to an intensified research on Active Queue Management (AQM)
in the past years. Proposals, such as CoDel [5], PIE [6], and
CAKE [7], show that congestion and the induced delays can be
effectively avoided on last-mile links when giving congestion-
controlled end-hosts timely feedback.

Even though these AQM algorithms can be implemented
rather easily on software-based last-mile gateways [8] and
deployed via software updates, backbone and data center links
are typically equipped with fixed-function high-speed switching
ASICs. While superior in speed, they only offer a limited set
of functions, often lacking AQM algorithms or only offering
variants of RED [9] that are known to be notoriously hard
to parameterize correctly [10]. Aggravatingly, fundamental
changes to the ASIC (such as a new AQM implementation)
have traditionally required building a new ASIC involving
costly hardware updates for network operators.

The P4 [11] programming language and the associated re-
programmability of modern switching ASICs promise a novel
way out. Although arguably not designed for managing buffers
and packet scheduling, P4 allows defining the forwarding
behavior and packet processing strategies on the data plane.

As of today, this is the best chance there is for implementing
AQM functionality without having to redesign the hardware.

Research has thus tried to design and implement P4-enabled
AQM algorithms. Even though many algorithms are designed
for simplicity and are expressible in P4, most works (e.g., [12]–
[14]) ignore the real-world constraints put in place by today’s
match-action pipelines, such as hard limits on multiplications
and memory accesses [15]–[17] or access to the queue state.
Thus, they conceptually fail to run on modern high-speed
switching ASICs. Consequently, congestion management at
backbone or data center links, even if they were to utilize
reprogrammable ASICs, remains a challenge.

In this paper, we contribute to AQM development by showing
how key characteristics of AQM algorithms contradict hardware
constraints of modern ASICs at the example of the Intel Tofino
and portraying how AQM algorithms can still be implemented
or at least approximated using the existing capabilities. To
this end, we find that the PIE AQM can be approximated,
and we implement three flavors using P4 and evaluate their
performance on an Intel Tofino ASIC, hereby pointing out
limitations, advantages, and design paths of the different
approaches. Specifically, this work contributes the following:
• We analyze different AQM algorithms and show their

mismatch to the capabilities of the Intel Tofino.
• Using P416 and Intel SDE 9.2.0, we implement three PIE

variants on a Tofino switch and show why inherent trade-offs
can make them fail to control the buffer. Our implementations
are available at [18].

• We argue that future AQM designs should incorporate
hardware constraints of switching ASICs, e.g., missing
information backflow and limited memory access patterns
and calculations, to make them applicable in the Internet
core and within data center networks.

Structure. Sec. II first presents different AQM algorithms and
how they have been implemented in related works. We then
introduce the operating principles of P4-programmable ASICs
in Sec. III, before we analyze the mismatch between AQM
design and the capabilities of the Intel Tofino switch. Sec. V
then discusses possible ways of bringing AQM to Tofino,
some of which we demonstrate in Sec. VI by discussing the
challenges in implementing three variants of the PIE AQM.
In Sec. VII, we then investigate how the ASIC-dictated design
space impacts the performance of the three PIE variants. Lastly,
we discuss and summarize the impact of our findings on AQM
and ASIC design in Sec. VIII and conclude this paper.978-3-903176-32-4 © 2021 IFIP

II. ACTIVE QUEUE MANAGEMENT AND ITS
IMPLEMENTATION IN RELATED WORKS

Active Queue Management (AQM) algorithms are an essen-
tial countermeasure to bufferbloat [4] and designed to maintain
a high level of throughput while keeping delays low. In essence,
they first detect network congestion, e.g., based on the queue
length, and subsequently give early feedback to the end-hosts,
e.g., in the form of dropping packets. For the remainder, we use
drop synonymously for all forms of giving feedback, including
marking using Explicit Congestion Notification (ECN) and
more fine-grained mechanisms [19], [20].

There are numerous AQM proposals, all varying in how they
detect congestion and in how and when they give feedback. In
the following, we present three popular AQM algorithms.
Random Early Detection (RED). RED [9] associates a large
average queue length with congestion and notifies end-hosts
by randomly dropping packets based on a drop probability.
This probability is proportional to and calculated based on an
exponential weighted moving average (EWMA) of the queue
size. If the average is below a minimum threshold, RED does
not drop packets to allow for transient bursts; if a maximum
threshold is exceeded, all packets are dropped. In between, the
probability of dropping an incoming packet increases linearly
with the queue size from 0 to a maximum drop probability.
Controlled Delay (CoDel). CoDel’s [21] design keeps the
queuing delay, measured as the time a packet has spent in the
buffer, around a constant target value. If the minimum occurring
delay is greater than the target for a prolonged time (interval),
CoDel starts dropping packets. Then, it schedules further drops
in ever shorter succession using tnext = t+ interval√

ndrops
until the

observed delay eventually falls below target.
Proportional Integral Controller Enhanced (PIE). PIE [6],
[22] uses an eponymous proportional-integral controller that
periodically samples the queuing delay to update its drop
probability (dropprob). The update p = α · (delayref −delay)+
β · (delayold − delay) bases on the difference of the current
delay to the previous delay (delayold) and a reference delay
(delayref), scaled using system-specific parameters α and β as
illustrated in Fig. 1 a . The update p is additionally scaled based
on the current value of dropprob to make PIE less aggressive
for low congestion levels (Fig. 1 b). After updating dropprob

(Fig. 1 c), dropprob is exponentially decreased when no delay
is noticeable anymore (Fig. 1 d).

The control parameters delayref, the sampling rate (tUpdate),
as well as α and β need tuning to the local conditions.
RFC 8033 [6] provides guidelines for adjusting α and β subject
to changes of delayref and tUpdate. If delayref is reduced, α and
β should be increased by the same order of magnitude; for
each halving of tUpdate, α should also be halved while β should
be increased by α/4. Finally, PIE should sample at least 2-3
times per round-trip time (RTT). In this work, we refer to the
RFC version of PIE [6].
AQM implementations in P4. The presented algorithms
have already been implemented using the P4 programming
language [11]. Laki et al. [13] design an AQM testbed for which

Ingress
if (dropprob >= rand(0,1))

drop()

Q
u
e
u
e

Egress

p = α ⋅ (delayref – delay) + β ⋅ (delayold – delay)
// adjust p according to table
dropprob += p
if (delay == 0 && delayold == 0)

dropprob ⋅= 0.98

CONDITION CHANGE
dropprob< 0.000001 p /= 2048
dropprob< 0.00001 p /= 512
dropprob< 0.0001 p /= 128
dropprob< 0.001 p /= 32
dropprob< 0.01 p /= 8
dropprob< 0.1 p /=2
otherwise p = p

delay = bytes/rate

a
b
c
d

Fig. 1. PIE calculates a drop probability based on the latency within the
queue. Based on the drop probability, PIE then randomly drops packets at
enqueuing.

they implement both RED and PIE. While they implement
PIE without issues, they, however, need to approximate RED’s
drop probability using table lookups of the queue lengths as
it cannot be computed directly. Similarly, Kundel et al. [12]
implement CoDel using a lookup table to approximate the
square root function needed to compute the next drop time.

Even though these groups implement state-of-the-art AQM
algorithms in P4, their implementations only target P4’s
behavioral model. While this software switch implements all
standardized P4 functions, it has no strict resource limitations.
Thus, it stands to argue whether these works on AQM in P4
are directly transferable to real switching ASICs as these come
with specific constraints, which we discuss next.

III. CONSTRAINTS OF SWITCHING ASICS

ASIC-powered switches are becoming increasingly customiz-
able with P4 which allows defining their forwarding behavior.
Commercially available P4-enabled switching ASICs, such
as the Intel Tofino [23], offer terabits of performance. Yet,
to achieve their high performance, they restrict operations to
those that can be executed quickly and with predictable delay.
Pipeline Operation Mode. The imposed limitations stem from
the ASICs’ pipeline operation mode illustrated in Fig. 2. It
consists of a programmable packet parser, an ingress with
several stages of match-action units (MAUs), an ingress de-
parser, a buffer, and a traffic manager followed by a similarly
structured egress, again with several stages of MAUs. Packets
are first parsed in the parser before they are handed over to the
ingress, where one decides the forwarding behavior and selects
an egress queue. The traffic manager then enqueues the packet
accordingly (this is the queue that can become congested)
before the egress pipeline can apply further processing to the
packet. Note that the traffic manager itself is not programmable
using P4, but where AQM algorithms would typically reside.
Packet Processing. All desired processing after parsing is
performed with the help of MAUs. Each unit has matching
logic using SRAM or TCAM to perform lookups based on
a key, e.g., looking up a next-hop based on a destination
address. The action part consists of a set of ALUs that can
perform arithmetic and logical operations on data, e.g., coming
from packet headers, or stateful elements, such as registers or
counters. Conceptually, this processing is not as flexible as
on a software switch, as there are hard limits on the number

RegistersParser

Match-Action Units Traffic Manager

Queues

Egress
Deparser

drop_next =
drop_next_reg.read()

drop_next_reg.write(
drop_next)

sequential dependencies

drop_next =
control_law(drop_next,…)

Fig. 2. The pipeline of an ASIC-based switch comprises programmable packet parsers and de-parsers, an ingress with several stages of MAUs, a buffer, a
traffic manager, and a similarly structured egress.

and types of operations [15]–[17]. For example, P416 allows
multiplications of unsigned integers; we can easily perform
many of these multiplications on the behavioral model. Most
real ASICs, however, lack any multiplication support as it
is a time-intensive operation rarely needed for packet header
manipulations. On Tofino, we can compute a limited number of
multiplications involving powers of two, but the multiplicand
must be statically defined (i.e., from a table lookup or as a
compile-time constant).
Placement. All (not parser-related) operations that are ex-
pressed in P4, be it a simple if()-statement or any calculation,
are mapped to the finite number of MAUs. Further, each packet
can only pass through an MAU once (without recirculating
the packet through the switch), as each algorithm must
complete within a certain time. It is the platform-specific
P4-compiler’s job to first synthesize the P4 code to a set of
MAUs and subsequently find a suitable layout (i.e., a directional
graph) that can be mapped onto the switch’s resources. For
example, different assignments or independent lookups can be
parallelized while dependent matches (i.e., the output of a match
is the input of another match) need to happen sequentially. In
reality, this means: Even if the programmer wrote valid P4
target-specific code, it might still happen that the resources
cannot be adequately allocated.

For an illustration, consider the left side of Fig. 2, which
shows a naïve implementation of parts of CoDel. The first
operation (violet oval) reads out the value of drop_next_reg
and is placed in the first MAU. The second (orange) and
third (yellow) operations depend on the respective previous
operations and can thus only be placed in subsequent MAUs.
Memory Access. The placement problem becomes more
complex when using memory, such as tables and registers.
Following the reconfigurable match table (RMT) principle [24],
memory is stage-local, i.e., statically assigned to one MAU
each, and can thus only be accessed once per pipeline pass
(single access rule). The access to stateful elements, such as
registers, further has to be atomic and is mostly limited to one
simple read-update-write operation. On Tofino, more expressive
update functionality in the form of a small microprogram is
possible. This feature is called a register extern.

Again looking at Fig. 2, the violet and yellow operations
placed in the previous paragraph both require access to
drop_next_reg. Yet, reading drop_next_reg in the first MAU
statically assigns the memory to that MAU. Consequently, the
yellow operation cannot access drop_next_reg from the third

MAU, and there is thus no suitable resource allocation.
Use of Externs. These conceptual constraints, as well as the
limited physical resources, render it practically difficult or
infeasible to run code targeting the behavioral model on a
real ASIC. Looking back at the related works, we found that
they are either not portable to Tofino or require significant
modifications to synthesize a working implementation, in parts
heavily relying on special Tofino externs (i.e., custom functions
not specified in P4). Yet, AQM designs should not build upon
such specialized functionality but rather on a most common
subset of functionality. In this context, we are interested in
which characteristics of these AQM algorithms specifically do
not map to the hardware properties of pipeline-based ASICs
that do not have the support of special externs.

IV. BRINGING AQM ALGORITHMS TO TOFINO

With respect to their implementability on Tofino, AQM
algorithms are characterized by more than the high-level
features presented in Sec. II. In addition to the congestion
metric and the drop-mechanism, the flow of information, as
well as the memory access patterns, are especially critical due
to the strict constraints imposed by the pipeline structure.

In the following, we analyze the three previously presented
AQM algorithms regarding these four aspects and summarize
our findings in Table I. We roughly rate the aspects regarding
their implementability as feasible (3), needing workarounds
(l), and impossible/infeasible (7). Accounting for our observa-
tion regarding externs, we put special emphasis on differences
between using a full-fledged Tofino (Tofinofull, n) and a
Tofino where we restrict the use of externs to basic register
functionality (Tofinoreg-only, n), which we distinguish by color.
Note that the selected aspects only serve as examples, and
there might be even more impacting the implementability.
Congestion Metric. Detecting congestion mostly bases on the
queue length [9], [10] or the queuing delay [5], [6]. The queue
length is directly available on Tofino, and the queuing delay
can be derived with little additional effort. However, RED uses
an EWMA of the queue length, which is not feasible using
regular ASIC arithmetics (7). Yet, Tofinofull has a special extern
for the required calculations (3). Note that there is also work
on approximating the EWMA using P4 [25], but only on the
behavioral model. In contrast, the packet delay used by CoDel
and PIE is doable (3/3).
Congestion Reaction. Most AQM algorithms give feedback
by randomly dropping packets based on a drop probability.

RED CoDel PIE
Congestion Metric 7/3 3/3 3/3
Congestion Detection/Reaction l/3 l/3 l/l
Information Backflow 7/7 3/3 7/7
Memory Access 3/3 7/3 7/7

TABLE I
KEY PRIMITIVES OF AQM ALGORITHMS AND THEIR IMPLEMENTABILITY
ON A FULL-FLEDGED (n)/ RESTRICTED (n) TOFINO. LEGEND: FEASIBLE

(3), NEEDS WORKAROUNDS (l), AND IMPOSSIBLE/INFEASIBLE (7).

The random drop itself is available on Tofino, while there
exist different techniques for calculating the probability. RED
calculates the probability in proportion to its congestion metric;
this is not possible on Tofinoreg-only. However, as the thresholds
are chosen statically, and as the calculation relies on momentary
information, it can be reasonably approximated using table
lookups (l). Tofinofull, in turn, provides a dedicated extern
for this functionality (3). The same is true for the square
root operation used in CoDel, as it can be approximated for
Tofinoreg-only and has an extern on Tofinofull (l/3). In contrast,
PIE’s update formula is too complex for direct calculation on
both platforms, yet it can also be approximated (l/l).
Information Backflow and Drop Position. Congestion de-
tection requires timely information on the queue state, and
the decision to drop a packet must be known when actually
dropping the packets. On Tofino, queue information is only
available in the egress when a packet has been dequeued; it
further represents the queue state at the time of dequeue. This
means that only AQM algorithms that can be fully executed
after dequeue are supported. CoDel conforms to this working
principle (3/3). RED and PIE, on the other hand, work on
incoming packets and thus require queue state information at
packet arrival before the packet is actually enqueued. Such
functionality is currently not supported on Tofino (7/7). The
only possible yet infeasible option is to use the dequeue
information and feed it back to the ingress.
Memory Access Patterns. Most AQM algorithms utilize state
variables for their operation, but access to the corresponding
register memory on Tofino is generally constrained. PIE
requires two distinct accesses to the drop probability: once
to scale its update value and once to actually update the
probability. While entirely impossible without externs, the
involved calculations are also too complex for Tofino register
actions (7/7). Similarly, CoDel accesses the next drop time
twice: first, to check whether it has already passed, and second,
to compute a new one if the old one has expired. This is too
complex for Tofinoreg-only, but the required operations can be
expressed using Tofino register actions (3). RED, on the other
hand, does not have such issues (3/3).
Takeaway. The three analyzed AQM algorithms require several
key primitives that are not natively supported by the pipeline-
based Tofino as inherent hardware properties are not considered
in AQM RFCs. In addition to having timely information on
the queue state in the ingress, the stage-locality of stateful
elements, combined with the limits on the number of operations
that can be executed per stage, are the major challenges that
currently make an RFC-compliant implementation of AQM
algorithms on ASICs hard if not outright impossible. Dedicated

externs make life easier, but they are currently available on
few platforms, and AQM design should rather use commonly
available primitives. What is consequently needed are AQM
algorithms that respect general hardware constraints of high-
speed switching pipelines without too much relying on special
extern support. In an effort to illustrate possible ways forward,
we next explore different paths of how to tackle this problem.

V. RESEARCH OBJECTIVES

With the current state of P4 and ASICs, innovating on
AQM algorithms or freely designing new functionality is only
possible outside of the traffic manager, e.g., by programming the
ingress or egress pipelines. This, however, pushes P4 beyond its
intended purpose. Furthermore, current AQM algorithms do not
consider the aforementioned hardware constraints of high-speed
ASICs, which, together, presents a major roadblock in bringing
state-of-the-art AQM functionality to high-speed links. Yet,
there are at least two ways to move forward: (a) approximate
existing AQM algorithms so that they fit on ASICs while
preserving their core behavior, and (b) design new algorithms
that account for hardware properties of ASICs.
Design Space for AQM on ASICs. Falling in the latter
category, Zhang et al. [17] propose ECN#, an AQM algorithm
designed for the Tofino that targets data center use. Based
on the idea of CoDel, ECN# is placed in the egress, and the
authors choose their calculation rules with the capabilities of
the Tofino in mind. They additionally use several techniques
to maximize the number of expressible functionality on Tofino
and show a glimpse of the large design space available on
ASICs, although it remains largely unexplored.

Possible implementations range from solutions that run en-
tirely in the data plane to those utilizing the CPU managing the
ASIC (control plane). While pure data plane implementations
run at line-rate, computations are limited and only triggered
upon packet arrival. In contrast, the CPU-powered control
plane can perform arbitrary computations but cannot provide
per-packet calculations due to additional delay and slower
processing compared to the data plane. Consequently, there
is significant potential in exploring this large design space.
While directly designing new algorithms, such as ECN#, is
certainly possible, we believe that there is a special value in
first investigating how established AQM algorithms can be
approximated given the specific constraints of current ASICs.
Choosing a Study Subject. Based on our findings in Table I,
RED and CoDel are best suited to match the given restrictions.
CoDel can be implemented on Tofino while RED only requires
a workaround for the information backflow problem, which
also exists for PIE. In contrast, an implementation of PIE
is challenging even on a full-fledged Tofino. However, PIE
offers some intriguing options for trade-offs that could still
enable an approximated implementation. First, the absence of
expensive per-packet processing makes it possible to explore
the option of moving calculations entirely to the control plane.
Second, some complexity of PIE is related to the additional
scaling of the probability update and can easily be removed;
yet, the impact on performance is unknown and warrants an

Delayref TUpdate α β
Default 15 ms 15 ms 0.125 1.25
Adjusted 125µs 117µs 0.1171875 157
Scaled - - 503 676205
Shifts - - <<9 <<19

TABLE II
PIE PARAMETERIZATION USED IN THIS WORK.

investigation. Third, there are several ways to approximate the
probability update calculations on the data plane.

Consequently, PIE is an ideal candidate to explore the large
available design space on ASICs; we choose to implement it
on the Intel Tofino as we will detail in the following.

VI. IMPLEMENTING PIE ON THE P4-ENABLED TOFINO

The unique combination of capabilities and constraints
offers several options for the implementation of PIE. Thus,
choosing between the available options can quickly become a
challenge. To demonstrate the impact of different constraints
and possibilities on AQM design, we have implemented
approximated versions of PIE for Tofino using P416 and Intel
SDE 9.2.0 in three ways: (1) relying on the control plane
(PIECP), (2) entirely in the data plane using registers (PIEDP),
and (3) replacing some of the computations of (2) by table
lookups (PIETABLE). Before describing the designs, constraints,
and corresponding trade-offs of our approaches in more detail,
we first give an overview of the settings, assumptions used,
and challenges faced throughout this work.

A. Overview

Scenario. PIEDP and PIETABLE use approximations and require
tuning to the envisioned RTT spectrum. For our investigation,
we choose low RTT scenarios as these are more challenging for
AQM design than higher RTTs. Additionally, the buffer sizes
of our test switches would be too small to follow common
buffer sizing rules when investigating higher RTTs [26].
Assumptions. Our implementations base on two assumptions:
Instead of the available nanosecond resolution, we i) only
use microsecond resolution for the delay measurements as
nanosecond fluctuations are hard to grasp given tUpdate is in the
microsecond range (see below); ii), we introduce an artificial
queue limit of 500µs to have a controlled buffer setup.
Setting PIE Parameters. In our local setting, we observe
RTTs of 350µs. Using the guidelines of RFC 8033 [6] (see
Sec. II), we choose delayref as 125µs and set tUpdate to 117µs
to allow for computation using the halving rule. Also adjusting
the control parameters, we obtain the parameterization shown
in Table II. Note that α and β are by default in Hz and need
scaling to the Tofino’s time-unit in µs; we use the α and β
values given in the row labeled with ’scaled’.
Implementation Challenges. Combining the detailed view
on PIE with our analysis in Sec. IV, several aspects make a
straightforward, naïve implementation of PIE difficult: first, it
is not clear how to compute the initial dropprob update as it
requires multiplications. Second, the scaling of the dropprob

update, as well as the decay of the dropprob itself, require
multiple read and write accesses to dropprob. When storing
dropprob in a register, these multiple accesses, and with them,
the scaling and decay are not possible [17].

Queue

Egress

Ingress delay = getReg(delay)
prob = RFC8033(delay, delayold, prob)
writeReg(dropprob)
delayold = delay

Timestamp: tsingress

PIECP drops here

Timestamp: tsegress

delayold = delay
delay = tsegress - tsingress

diffref = target – delay
diffold = delayold – delay

dropprob += diffref << alpha + diffold << beta

diffref diffold result

...

Control Plane (PIECP)

dropprob += result
PIETABLE

PIEDP

PIECP

PIEDP and PIETABLE drop here

Fig. 3. Three PIE variants: using control and data plane (PIECP), using stateful
memory in the data plane (PIEDP), using tables in the data plane (PIETABLE).

B. PIECP — PIE in Control and Data Plane

Even though designed to be simple, PIE comprises several
calculation steps that we found hard to map onto our hardware.
The switch-local control plane, however, can perform arbitrary
computations, although at the cost of significantly slower
performance. Thus, it can only be reasonably incorporated
for operations at rates much lower than the packet forwarding
rate. As this is the case for PIE, which only updates dropprob 2-3
times per RTT, offloading the expensive dropprob computations
to the control plane while keeping responsibilities on the ASIC
simple is a natural first approach that we follow.
Implementation. In our implementation of PIECP (illustrated
in Fig. 3), the data plane reads dropprob at the ingress and
drops a packet accordingly. For packets that are forwarded, it
measures the queuing delay and stores it in a per-queue register
when the packet enters the egress. The switch-local control
plane periodically samples this queuing delay by reading the
corresponding registers, updates dropprob, and writes the new
probability back to the ASIC. The dropprob updates include
the basic functionality (Fig. 1 a), the scaling (b), and the
exponential decay (c) and are thus according to the RFC.
Moreover, our approach uses little resources on the ASIC,
leaving plenty of space for other features.
Limitations. Involving the control plane causes dropprob update
delays of around 125µs. For us, this is still fast enough,
updating dropprob 2-3 times RTT (as suggested), but this update
time is slightly larger than our targeted update time of 117µs.
Regardless, the control plane clearly limits PIE’s applicability
to higher update rates. Thus, our remaining two approaches
try to implement PIE entirely in the data plane.

C. PIEDP — PIE in the Data Plane

The main challenge of implementing PIE in the data plane
are the tight computational capabilities: multiplications are not
natively supported [15], [16], and stage-local memory can only
be accessed within a single MAU [17]. Our implementation,
PIEDP, thus deviates from the real PIE (PIERFC) by simplifying
some operations and completely leaving out others.
dropprob Computation. The first challenge is that it is not clear
how to compute the dropprob update as it requires multiplication
(Fig. 1 a). PIEDP approximates the computations by express-
ing the multiplications through bit shifts. For PIE’s default

parameterization, there are fitting shifts1. However, our scaled
α and β parameters are no multiples of two; we resort to the
closest power of two, resulting in << 9 for α and << 19 for
β. PIERFC additionally requires a scaling of the dropprob update
and an exponential decay of dropprob (Fig. 1 b©/ c©), which,
together, exceed the number of possible operations within a
single MAU and thus require additional accesses to the dropprob

register. As these violate the single access rule, PIEDP omits
the additional scaling and the exponential decay. Apart from
these differences regarding the dropprob calculations, PIEDP

deviates from PIERFC in two other aspects.
Egress Drop. PIERFC and PIECP drop in the ingress to reduce
the load on the queue. The strict pipeline model of the Tofino,
however, disallows feeding information back from the egress
to the ingress without actually moving a packet from egress
to ingress, e.g., via recirculation. Obtaining the information in
the ingress is thus not feasible. As a simple solution, PIEDP

performs the dropping directly in the egress.
Sampling. PIERFC and PIECP use periodic sampling to further
reduce the computational load on the switch. The data plane,
however, works on a per-packet basis, and computations are
always subject to packet arrivals. To trigger the dropprob updates
irrespective of the actual traffic, we take advantage of Tofino’s
packet generator and create a stream of fixed-period sampling
packets that arrive at the desired update intervals.
Limitations. In contrast to PIECP, PIEDP only provides approxi-
mate results for the dropprob computations. The missing dropprob

update scaling and exponential decay should make PIEDP

more aggressive when congestion is low and slower to react
when congestion vanishes. Additionally, our implementation
currently uses several sequential computations and occupies
91 % of the overall available pipeline stages for the PIE-
specific implementation. While most of these stages are lightly
loaded, i.e., they leave plenty of space for other functionality
to be executed in parallel, this observation motivates our third
approach, PIETABLE, which intends to reduce the number of
occupied stages by using the available tablespace.
D. PIETABLE — PIE using Tables

Related work [15] has demonstrated that utilizing tablespace
to replace some computations in the data plane can help to
distribute resource use to different components and improve
performance. Following this idea, PIETABLE replaces PIEDP’s
bit shift dropprob approximations with table lookups of pre-
computed probability updates (allowing to use the precise
multiplicands instead of bit shifts). PIETABLE’s performance
consequently largely depends on the precision of the table
entries and thus on the number of stored key-value pairs.
Value Range. Following the dropprob update computation rule
in Fig. 1 a , the lookup table has to cover each possible
combination of delay − delayref (diffref) and delay − delayold
(diffold). Given that we use microsecond timestamps and a queue
limit of 500µs, our setting comprises 501× 1001 = 501 501
different combinations. While there is enough tablespace
available to us, it might not always be feasible to store all

1α = 1/8 =̂ >> 3 and β = 1 + 1/4 =̂ >> 2

Resource PIECP PIEDP PIETABLE
Stages 33.3 % 91.6 % 66.6 %
SRAM 2.4 % 2.5 % 7.4 %
TCAM 0.0 % 0.3 % 1.3 %
Hash Bits 2.7 % 2.9 % 3.6 %
VLIW Actions 1.8 % 6.0 % 3.6 %
(Exact + Ternary) Match Crossbar 1.6 % 3.4 % 3.6 %
(Stateful + Meter) ALUs 5.2 % 5.2 % 6.3 %

TABLE III
OVERALL RESOURCE FOOTPRINT OF OUR PIE VARIANTS.

combinations, e.g., when using a higher timestamp resolution
or queue limit, or when space is needed for the non-AQM
operations. Thus, to conserve space, we approximate dropprob

update values, e.g., using range matches. Finding the right
layout for the table, i.e., which key-value pairs to store, then
quickly becomes a challenge. In our setting, we choose a
maximum table size of 100 000 entries.
Lookup Design. Fundamentally, our implementation performs
combined range lookups of diffref and diffold and returns the
corresponding dropprob update value, as illustrated in Fig. 3. As
combining two range matches in one lookup is expensive, we
further divide the table lookup into two steps. We first perform
separate range matches for diffref and diffold to determine range
IDs. We then use these IDs to look up the final dropprob update
value with exact matches.
Table Layout. Diffref can take values from -125µs to 375µs,
i.e., 501 distinct values, while the range for diffold is from
-500µs to 500µs, i.e., 1001 distinct values. We map these
ranges to our tables as follows. For diffref, we use a resolution
of 1µs between -10µs and 10µs (exact match), while we are
more imprecise with a granularity of 2µs for the rest of the
spectrum (range match), overall, resulting in 248 values. For
diffold, we use range matches of 3µs over the whole spectrum
(335 values). In both settings, we represent the value of 0µs
as a distinct exact range. Our final table has roughly 83 000
values for looking up the dropprob update value.
Limitations. There are many possible layouts for the tables,
and in- or decreasing the resolution in some ranges impacts the
accuracy of the overall computation. When including lookup
tables, it is thus essential to carefully choose the key-value
pairs; an optimal layout is out of the scope of this work.
Regardless, it is not straightforward to decide how much of the
tablespace can or should be used for the lookups. Additionally,
PIETABLE inherits the main flaws of PIEDP, i.e., it does not
include the dropprob update scaling, the exponential decay, and
it also drops in the egress. Still, PIETABLE reduces the number
of stages used for the PIE features to 66%.

E. Resource Footprints

Due to the lack of a freely available P416 baseline program,
Table III directly compares the ASIC resource use of our three
PIE variants. PIECP uses the fewest resources as most of the
computation logic is implemented in the control plane. In
contrast, implementing the logic using arithmetic operations in
the data plane requires more stages and match crossbars for
sequential and conditional processing which is also reflected
by a higher share of VLIW actions used for PIEDP. PIETABLE

reduces some of this complexity (fewer VLIW actions and
stages) at the cost of higher SRAM and TCAM use.

Tofino B
PIE AQM

TCP Sender

Tofino A
Traffic Gen

Receiver

25 GbE

100 GbE

10 GbE

Fig. 4. The testbed consists of two Tofino switches and two hosts,
interconnected at different link speeds.

Takeaway. PIECP has a lightweight data plane implementation
and performs accurate dropprob computations, although at
the cost of CPU usage and limited applicability to low
RTTs. PIEDP occupies many stages and approximates the
dropprob using bit shifts. It further drops in the egress and
neither provides dropprob update scaling nor exponential decay.
PIETABLE reduces the required number of stages by replacing the
bit shifts with lookup tables but inherits PIEDP’s shortcomings.

So far, we have only compared our three PIE flavors quali-
tatively. To investigate the design impact on the performance,
we next compare the behavior of our implementations when
facing unresponsive UDP and responsive TCP traffic.

VII. PERFORMANCE IMPACT

Our implementations are inherently characterized by design
trade-offs. PIEDP and PIETABLE, e.g., only approximate the
dropprob update. To investigate the effects of the trade-offs on
the performance, we perform tests with unresponsive UDP and
responsive TCP traffic in the testbed shown in Fig. 4. We use
two Tofino switches, which are interconnected by a 100 GBit/s
link, and two end-host machines. The sender is connected via a
25 GBit/s link, while the receiver is connected with a 10 GBit/s
link. Consequently, the link to the receiver is the bottleneck in
our system, and a queue will form in the corresponding buffer
on Tofino B if there is congestion.

First, using UDP traffic, we evaluate how our implementa-
tions increase dropprob under load and how they decrease it
when congestion disappears. In a second setting, we multiplex
one to 250 TCP connections over the bottleneck and observe if
our implementations can actually control the queuing delay. For
each of our experimental settings, we perform 30 measurement
iterations and show averages and 99% confidence intervals.

A. Unresponsive Traffic

In this experiment, we compare how the different imple-
mentations increase and decrease dropprob. For this, we send
100 GBit/s of unresponsive UDP traffic from Tofino A to the
receiver and investigate dropprob on Tofino B while instructing
the AQM algorithms to not drop any packet. This way, we can
observe how dropprob increases subject to persistent congestion.
When dropprob would drop all packets, we reduce the traffic to
5 GBit/s, i.e., below the bottleneck bandwidth. The queue will
drain and dropprob should now decrease.

For each of our PIE flavors, Fig. 5 shows the time required
to first increase dropprob to 100% (Rise) and then decrease it
back down to 0% (Fall). We additionally compare the results
to two ns-3.31 simulations (modified to also not drop) of PIE:
PIEns3-rfc scales dropprob according to the RFC (see Fig. 1 b);

PIEns3−default PIEns3−rfc PIECP PIEDP PIETABLE
0

2

4

6

8

Ti
m
e
[s]

Rise Times
Fall Times

Fig. 5. Durations needed by our three PIE flavors and two ns-3 simulations to
reach 100% drop probability (Rise) under full load and to go back to 0% once
the load is gone (Fall). Note: the confidence intervals are hardly discernible.

PIEns3-default uses the scaling as implemented in ns-3, which
is more aggressive than PIEns3-rfc and increases PIE’s dropprob

update if the dropprob is greater than 0.1.
Results. The rise times of all our PIE variants compare
reasonably well to the simulation results of roughly 2 s to 3 s.
PIECP takes the longest to reach 100% drop probability as it
scales dropprob (see Fig. 1 b) to slow down the initial increase.
Remarkably, it is slower than PIEns3-rfc and PIEns3-default. We
suspect that this is due to its update rate, which is slightly
lower than it should be. In contrast, PIEDP and PIETABLE do not
scale dropprob and thus have faster rise times. Further, PIETABLE

has a faster increase than PIEDP, which we attribute to the
approximated bit-shifts in PIEDP that are less precise than the
approximated lookup tables (using precise multiplicands).

Similarly, PIETABLE decreases the drop probability slightly
faster than PIEDP when we lift the congestion. In comparison,
the other variants are much quicker thanks to their exponential
decay (see Fig. 1 c). Yet, PIECP again slightly deviates from
the behavior of PIEns3-rfc as it decreases dropprob faster.

Already from this simple experiment, we infer that design
choices, such as removing the dropprob scaling, significantly
affect the performance. While persistent congestion is well-
suited to compare the basic mechanisms, it fails to illustrate
if the implementations can effectively manage the congestion
subject to responsive traffic, which we investigate next.

B. Responsive TCP Traffic

In our second experiment, we instruct the AQM algorithms
to actually drop packets and investigate whether our imple-
mentations can control the queuing delay. Using our testbed,
we send 10 s of one to 250 concurrent TCP CUBIC streams
from the TCP Sender to the receiving host. Fig. 6 reports on
the combined TCP goodput as well as the queuing delay.
Results. Looking at the goodput, PIECP outperforms the other
two Tofino variants and is close to line-rate. This, however,
comes at the cost of high queuing delays as it fails to bring
the delay down to delayref. In contrast, PIETABLE allows almost
no goodput, and PIEDP only reaches 50% of line-rate with
an increasing number of flows. They both seem to be too
aggressive as the delay is way below delayref most of the time.
We again attribute these observations to the characteristics of
our implementations as the more reasonable results of PIEns3-rfc

and PIEns3-default indicate that our PIE parameterization is
generally capable of better performance in our setting.

1 5 10 25 50 100 250
TCP Connections

0

2

4

6

8

10
Go

od
pu

t[
Gb

ps
]

0 100 200 300 400 500
Queuing Delay [us]

0.00

0.25

0.50

0.75

1.00

CD
F

buffer

delayref

ns-3-def ns-3-rfc CP DP TABLE

Fig. 6. Average goodput and CDF for the queuing delay for different numbers of concurrent flows (more continuous lines (right plot) represents higher
concurrency) passing through our three PIE flavors. Note that most confidence intervals are hardly discernible.

Takeaway. While PIECP cannot control the queuing delay,
PIEDP and PIETABLE are too aggressive and overcontrol the
queue. We suspect that this is partly due to the missing scaling
of the dropprob update. Additionally, the parameterization of
α and β can also be a factor as our simulation results leave
room for improvement. Although we follow the RFC guidelines,
we note that it is not unambiguously defined how to adjust the
parameters to a change in tUpdate. Consequently, we draw
two conclusions: i) as the inherent characteristics of our
implementations are reasoned by the specific constraints of
pipeline-based switching ASICs, AQM standardization currently
lacks in incorporating these hardware platforms into their
designs. ii) AQM standardization currently lacks fail-safe
parameterization guidelines. In the following, we further
elaborate on the implications of our findings on AQM design.

VIII. IMPLICATIONS FOR AQM/ASIC DESIGN

Based on our analysis in Sec. IV and our experiments in
Sec. VII, we first identify several general implications for the
design of AQM algorithms for switching ASICs. We then
discuss how ASIC-side support for AQM can be improved.
Information and Processing Model. First, the AQM should
match the available information and processing model of the
ASIC. Currently, queue state information cannot be gathered at
the ingress before packet enqueue, and feeding this information
back to the ingress is infeasible. Consequently, AQM algorithms
should preferably work in the egress.
Complexity. Second, calculation rules for determining the
feedback of the AQM should be expressible on the ASIC.
This is a two-fold challenge as i) calculations are generally
constrained, and ii) as there are strict memory access rules due
to the stage-locality of memory. Thus, the operations that make
up the control-law should be simple, i.e., they should rely on
functionality that is typically used in packet processing, e.g., no
multiplications. Further, concepts challenging the stage-locality,
such as the scaling of dropprob in PIE, should be avoided.
Applicability. Third, the scaling of system parameters to other
network conditions should be straightforward and feasible.
For example, PIE’s default parameterization can easily be
expressed with bit shifts, while the RFC tuning guidelines do
not generate fitting bit shifts in our setting. Thus, the AQM
should be either tuning-free or have concise and precise ways
to adopt parameters to new settings.
Hardware-first Design. Fourth, AQM algorithms should fully
capitalize on the line-rate processing capabilities of ASICs. In

contrast to software switches, where sampling, like employed
in PIE, makes sense for load reduction, ASICs are capable of
constant line-rate processing. As such, sampling techniques
actually increase the complexity of the approaches, either
because they require external triggers or a data plane sampling
logic or because one needs to involve the CPU, which adds
another (unstable) component to the solution.
Implications for ASIC Design. There are also some aspects
of ASIC design that can improve the implementability of AQM.
Providing queue state information at the ingress before packet
enqueue generally enables the native implementation of AQM
algorithms such as RED and PIE that are located in the ingress.
Additionally, more flexible memory access structures, allowing
one early read access and then one later write access, would
allow for the calculation of more complex control rules. Ideally,
there should be standard ways of providing such functionality
so that AQM is easier to deploy across a wide range of ASICs
and not limited to platform-specific variants. Finally, making
the queue management accessible and programmable via P4
brings the potential of not only indirectly managing the queue,
as current approaches do, but of directly managing it.

IX. CONCLUSION

Current RFC-standardized AQM algorithms are often hard, if
not impossible, to implement on programmable, pipeline-based
ASICs, challenging the future management of congestion at
high-speed links. In this work, we demonstrate these challenges
by first analyzing how the design of popular AQM algorithms
contradicts the operation model and capabilities of a state-of-
the-art networking ASIC. We then implement three flavors of
the PIE AQM on an Intel Tofino switch to demonstrate the
possible implementation paths, challenges, and trade-offs on
this architecture when using P4. Our results further indicate that
design choices based on these constraints can have a significant
performance impact as none of our three implementations
successfully controls the queuing delay. Trade-offs regarding
the computation accuracy and the supported AQM features can
lead to a severe overcontrolling of the queue, while a too low
update rate can cause the opposite. We thus believe that there is
a need for AQM research and specifications that are tailored to
programable hardware. Lastly, congestion management should
become a core feature of ASICs and P4, demanding actual
support within the chips and the language, to, e.g., program
the traffic manager.

ACKNOWLEDGMENT

We thank Vladimir Gurevich for his insightful feedback and
the fruitful discussions. We also thank the anonymous review-
ers. Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy – EXC-2023 Internet of Production – 390621612.

REFERENCES

[1] S. Bauer, D. Clark, and W. Lehr, “The Evolution of Internet Congestion,”
in Research Conference on Communication, Information and Internet
Policy (TPRC), 2009.

[2] A. Dhamdhere, D. D. Clark, A. Gamero-Garrido, M. Luckie, R. K. P.
Mok, G. Akiwate, K. Gogia, V. Bajpai, A. C. Snoeren, and K. Claffy,
“Inferring Persistent Interdomain Congestion,” in ACM SIGCOMM, 2018,
pp. 1—15.

[3] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast Congestion
Control for TCP in Data-Center Networks,” IEEE/ACM Transactions on
Networking, vol. 21, no. 2, pp. 345–358, 2012.

[4] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
ACM Queue, vol. 9, no. 11, pp. 40–54, Nov. 2011.

[5] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled Delay
Active Queue Management,” Internet Requests for Comments, RFC 8289,
2018.

[6] R. Pan, P. Natarajan, F. Baker, and G. White, “Proportional Integral
Controller Enhanced (PIE): A Lightweight Control Scheme to Address
the Bufferbloat Problem,” Internet Requests for Comments, RFC 8033,
2017.

[7] T. Høiland-Jørgensen, D. Täht, and J. Morton, “Piece of CAKE: A
Comprehensive Queue Management Solution for Home Gateways,” in
IEEE International Symposium on Local and Metropolitan Area Networks,
2018, pp. 37–42.

[8] S. Hätönen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti, and M. Kojo,
“An Experimental Study of Home Gateway Characteristics,” in ACM
Internet Measurement Conference, 2010, pp. 260–266.

[9] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, 1993.

[10] R. Adams, “Active Queue Management: A Survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 15, no. 3, pp. 1425–1476, 2012.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-Independent Packet Processors,” SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, Jul. 2014.

[12] R. Kundel, J. Blendin, T. Viernickel, B. Koldehofe, and R. Steinmetz,
“P4-CoDel: Active Queue Management in Programmable Data Planes,”
in IEEE Conference on Network Function Virtualization and Software
Defined Networks, 2018, pp. 1–4.

[13] S. Laki, P. Vörös, and F. Fejes, “Towards an AQM Evaluation Testbed
with P4 and DPDK,” in ACM SIGCOMM Posters and Demos, 2019, pp.
148—150.

[14] M. Menth, H. Mostafaei, D. Merling, and M. Häberle, “Implementation
and Evaluation of Activity-Based Congestion Management Using P4
(P4-ABC),” Future Internet, vol. 11, no. 7, pp. 1–12, 2019.

[15] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson,
and S. Peter, “Evaluating the Power of Flexible Packet Processing for
Network Resource Allocation,” in USENIX Symposium on Networked
Systems Design and Implementation, 2017, pp. 67–82.

[16] S. Wang, J. Bi, C. Sun, and Y. Zhou, “Prophet: Real-time Queue Length
Inference in Programmable Switches,” in ACM Symposium on SDN
Research, 2019, pp. 158–159.

[17] J. Zhang, W. Bai, and K. Chen, “Enabling ECN for Datacenter Networks
with RTT Variations,” in ACM Conference on emerging Networking
EXperiments and Technologies, 2019, pp. 233–245.

[18] Kunze, Ike and Gunz, Moritz, “PIE for Tofino on GitHub.” [Online].
Available: https://github.com/COMSYS/pie-for-tofino

[19] B. Briscoe, K. De Schepper, M. Bagnulo Braun, and G. White,
“Low Latency, Low Loss, Scalable Throughput (L4S) Internet Service:
Architecture,” Internet-Draft https://datatracker.ietf.org/doc/html/draftietf-
tsvwg-l4s-arch-08, Work in Progress, 2020.

[20] J. Morton, P. Heist, and R. Grimes, “The Some Congestion Experienced
ECN Codepoint,” Internet-Draft https://datatracker.ietf.org/doc/html/draft-
morton-tsvwg-sce-02, Work in Progress, 2020.

[21] K. Nichols and V. Jacobson, “Controlling Queue Delay,” Communications
of the ACM, vol. 55, no. 7, pp. 42–50, 2012.

[22] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F. Baker,
and B. VerSteeg, “PIE: A Lightweight Control Scheme to Address
the Bufferbloat Problem,” in IEEE International Conference on High
Performance Switching and Routing, 2013, pp. 148–155.

[23] Intel, “Intel® Tofino™,” 2021. [Online]. Available: https://https:
//www.intel.com/content/www/us/en/products/network-io/programmab
le-ethernet-switch/tofino-series.html

[24] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding Metamorphosis: Fast
Programmable Match-Action Processing in Hardware for SDN,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 99–110,
2013.

[25] Â. C. Lapolli, J. Adilson Marques, and L. P. Gaspary, “Offloading
Real-time DDoS Attack Detection to Programmable Data Planes,” in
IFIP/IEEE Symposium on Integrated Network and Service Management,
2019, pp. 19–27.

[26] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router Buffers,”
ACM SIGCOMM Computer Communication Review, vol. 34, no. 4, pp.
281–292, 2004.

