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Abstract—The need for automated management is continu-
ously increasing, especially with the advent of network virtual-
ization and slicing technologies. However, finding the optimum
configuration for a virtual network before it is embedded onto
the substrate network is a problem that cannot be resolved by
exact and deterministic mathematical operations. In this paper
we propose a novel heuristic for building an algorithm based
on genetic programming for optimizing the placement of virtual
network function instances before they are deployed, so more
instances can be deployed on the same substrate network without
incurring in overloads and delays. Each solution given by our
algorithm is based on a previous solution, following dynamic
programming scheme to minimize processing and enforcement
efforts. Therefore, the algorithm accomplishes with the time
constraints set by current demands. We demonstrate this quality
and compare our algorithm to previous solutions, also based on
genetic programming and already providing quite fast responses
for the embedding problem.

I. INTRODUCTION

The wide adoption of Virtual Networks (VNs) is depending
on their ability to be quickly adapted to the new situations
found in the changing environments they usually operate. Net-
work Function Virtualization (NFV) and Network Slicing (NS)
facilitate the capabilities required for such adaptation, although
they raise their own challenges [1]–[3]. The most outstanding
challenge is to find out the best configuration for embedding
a VN onto a Substrate Network (SN).

In this paper we introduce the FADE architecture, standing
for Fast Analysis and Driving of virtual network Embedding
operations. It has the objective of automating the manage-
ment of large VNs, emphasizing the inclusion of fast and
efficient embedding operations. This is achieved by choosing
new configurations and enforcing them when needed. For
this, FADE includes a new algorithm based on the Ge-
netic Programming (GP) and Dynamic Programming (DP)
methodologies, together with a new heuristic function that is
particularly designed to exploit deductive reasoning techniques
to adapt VNs to dynamic requirements, as detailed below. This
algorithm makes our solution to perform better and be more
scalable than existing proposals.

The novelty behind the new solution is based on the appli-
cation of intelligent reasoning to the main steps of the manage-
ment process. First, performance measurements obtained from

the VN are analyzed together with events notified by external
detectors in order to find the most appropriate amount of
Virtual Network Function (VNF) instances needed to keep the
VN as much efficient as possible while avoiding the disruption
of its normal operation. After this, the best configuration
for the VN to be embedded onto the SN, is automatically
reasoned from current configuration by considering the new
amount of VNF instances and avoiding the costly operation
of removing/adding instances as much as possible.

An assignation of nodes from the SN (NSNs) to a VN is for-
malized as the Virtual Network Embedding Problem (VNEP).
A solution to this problem is a map from VNF instances
to NSNs. It must ensure that all nodes and links from the
VN are embedded onto the SN. These solutions must ensure
that the goals set by the tenants of both the VN and the SN
are respected. However, it is well known that conventional
methods to resolve the VNEP cannot be both subject to find
the optimum and resolved in polynomial time [4]. Therefore,
in this paper we design an algorithm, A, that constructs valid
configurations, viz. solutions of the VNEP, guided by a new
heuristic function. Our solution is based on GP to avoid
getting stuck in local optimums and the heuristic is specifically
designed to exploit the benefits of DP.

The most relevant innovation of FADE resides, on the one
hand, in the sequential application of H to analyze different
alternatives while A builds a new configuration. On the other
hand, FADE has improved scalability in comparison to State
of the Art (SotA) solutions. In addition, FADE considers the
impact of embedding whole VNs instead of individual Virtual
Machines (VMs), so the resulting configurations have better
consistency for both the VN and the SN. In summary, our
algorithm is 6 times faster than SotA solutions to estimate a
proper configuration for embedding a new VN or changing an
existing VN to a new configuration.

The remainder of this paper is organized as follows. First, in
Section II we formalize the VNEP and discuss the related work
that contextualize the present work. Second, in Section III
we describe our proposal to approach the VNEP. Third, in
Section IV we introduce the FADE architecture that incor-
porates the new enforcement algorithm. Fourth, in Section V
we evaluate the solution to demonstrate our claims. Fifth and
finally, in Section VI we conclude the paper and discuss our
future work.978-3-903176-32-4 © 2021 IFIP



Figure 1. Illustrative example of the changes required to adapt a VN after
deciding to add two new VNF instances and resolving the VNEP to get
the best configuration. GW is the gateway, PHY are NSNs that instantiate
functions, labeled as F, and SR nodes are high-end servers hosting resources,
labeled as T.

II. BACKGROUND AND PROBLEM FORMULATION

The main objective of the solution proposed in this paper, as
introduced above, is to automate the adaptation and embedding
of VNs on SNs. The ultra-low-latency target imposed by the
Tactile Internet [5] require the VNEP to be resolved within
a restricted time. In this section we formalize the VNEP and
discuss the most relevant existing solutions for it.

A. Virtual Network Embedding Problem

Resolving the VNEP provides configurations for the VN
that consist on the assignation of a NSN to each element of
the VN. The goal of the VNEP is set by administrators. It is,
usually, the minimization of the resources used from the SN
but, as discussed below, there can be additional goals and/or
constraints, such as minimizing the number of elements from
the VN deployed onto the same NSN.

We denote a solution to the VNEP as Ci. In Figure 1 we
illustrate a minimal network configuration, before and after an
adaptation that consists on adding two new VNF instances, F4
and F5. Meanwhile, F1 and F2 are not changed, F3 is moved
from PHY4 to PHY1, and the new functions respectively
deployed in PHY2 and PHY3. Each Ci is a set of element
pairs, (fi, si) ∈ F × S. All elements of the VN must be
assigned, so all elements from F must be in Ci. However,
Ci only has a subset of S because it is not required to use all
NSNs. This definition is formalized in the following equation:

Ci ={(f1, s1), (f2, s2), . . . , (fn, sn)}
(fi, si) ∈ F × S, ∀fi ∈ F, ∃si ∈ S

(1)

With this definition for a configuration we proceed to
define the estimation of cost, QCi

. As it must have a general
application, it must consider not just the VMs but also the

network links and/or paths. Therefore, the cost, QCi
, must be

directly proportional to the number of VNF instances deployed
in the network and directly proportional to the lengths of the
paths that connect the gateway of the network and the NSNs
used in the configuration. In addition, to reflect the effect of
overloading single nodes and/or the links associated with them,
QCi

must be also proportional to the number of VNF instances
that are deployed in every NSN. This cost is formalized in the
following equation:

QCi =
∑
si∈Ci

(
Li + ZNi

)
(2)

It relies on the definition of configuration shown in Equa-
tion 1, so Ci is a set of associations between fi and si. Li

is the length of the path from the gateway and si, Ni is the
number of VNF instances deployed in si, and Z, which is
defined by administrators, is exponentiated to Ni to define the
affinity (or repulsion) for several VNF instance to be deployed
onto the same NSN.

So far we have considered not just the deployment of
VNF instances onto the NSNs, which is where most solutions
end, but we have also considered the effect on the network
and the potential overloading of single nodes. However, as
discussed above, the embedding procedure must also choose
the configuration that minimizes the changes required to be
effected. Therefore, if the amount of servers is being increased,
the current configuration, C0, must be a subset of the new
configuration, Ci. Otherwise, if the amount of server is being
decreased, the new configuration, Ci, must be a subset of the
current configuration, C0. This constraint can be formulated
in the following equation:

Max |Ci ∩ C0| (3)

As the VNEP targets the minimization of of such cost
function, we can include the cost from Equation 2 to formulate
the global objective of the problem in the following equation:

Min

(
1

|Ci ∩ C0|
+
∑
si∈Ci

(
Li + ZNi

))
(4)

This general objective targets both minimizing the cost of
configuration and minimizing the changes needed to enforce
it. Both are not related, and cannot be linearly dependent, so
they justify the multi-objective of our solution. This way, using
this multi-objective target, the solution obtained for the VNEP
is as much efficient as possible in terms of both cost of the
resulting configuration and the cost of making the necessary
changes to obtain it.

B. Related Work

We can find in previous work several approaches to resolve
the VNEP. However, since Integer Linear Programming (ILP)
methods cannot provide a solution within the time constraints
we target in this paper, as introduced above, we discard all
approaches that use it. Instead, we consider the most outstand-
ing approaches that make use of Artificial Intelligence (AI)



methods, focusing on those that use a Genetic Algorithm (GA)
or build their solutions based on GP. We will compare our
soulution to the most relevant solutions using GA.

First, the architecture proposed by [6], [7] allows opti-
mizing the capacity of any VN, and modifying the amount
of resources assigned to its constituent VNF instances in
response or anticipation to different stimuli. It decides to
increase or decrease the resources the VN it manages by
using Machine Learning (ML). It also makes use of Case
Based Reasoning (CBR) for obtaining explanations to such
decisions, relying on both telemetry information taken directly
from the VNF instances and information reported by external
event detectors of different types. This makes the solution able
to consider, for instance, the occurrence of an earthquake or
a heavy rainfall to adapt VN [8]. Although this solution can
provide fast and efficient decisions for the allocation of VNF
instances, it lacks consideration of efficient embedding of the
decided instances, which is very important.

The work discussed in [9] presents a GA derived from the
definition of a problem for ILP, demonstrating that this is
not suitable for online scaling of VNFs in response to traffic
changes, measuring hours to finish. In contrast, by applying
GA to the problem, the authors are able to achieve a solution
that can decide server and network allocations for hundreds
of policies in milliseconds. However, the performance of GA
highly depends on the number of nodes. Moreover, it is
necessary to rely on local solutions because global solutions
require much more time to be found and, what is worse, they
require to re-arrange the network configuration to match the
optimum assignation of resources.

What has been clearly stated by previous work is that the
algorithms used to find out an optimal (or optimum) configura-
tion for the network to satisfy new requirements must consider
the current configuration in order to minimize the disturbances
to the existing workloads, viz. computation processes and
traffic flows. This encourages us to work in advancing the
SotA with the application of GP with a better heuristic and
the inclusion of DP. This advancement is important because,
although it is specialized on local optimums, with a proper
heuristic, it can find the global optimum in less time than ILP.
We will elaborate this case in future work to find out the best
alternative.

III. ENFORCEMENT ALGORITHM

In this section we discuss the algorithm that resolves the
VNEP for Spade, the overall management solution proposed
in this paper, as described in Section IV. The major quality
of this algorithm is that it is able to meet the time constraints
stated above while also being able to embed large VNs. To
do so, the algorithm is based on an heuristic function that
guides the selection and evolution of possible configurations
for embedding a provided VN onto a provided SN.

By using an heuristically driven search approach, with most
heuristics, an algorithm can be stuck into a local optimum.
Although most of the time such kind of optimums are good
enough for most VN embeddings, they can provide some

disparate configurations. To prevent such situation, our algo-
rithm follows the GP methodology. GP allows to consider
some degree of randomness from one iteration to the next,
so disparate solutions are also considered, breaking any local
optimum barrier. Our solution makes use of such randomness
by including the creation method of generating new solutions,
as detailed below. This extends the search space beyond the
path guided by the heuristic function and allows the algorithm
to find better optimal configurations, closer to the global
optimum. Moreover, this algorithm also follows the Dynamic
Programming (DP) methodology to build the configurations
incrementally, so the most relevant partial configurations are
cached for allowing the find procedure to avoid re-calculating
all of them when exploring different paths.

The configuration returned by our solution will be closer to
the optimum when the algorithm does more iterations, so it
makes more generations of configurations, some of which will
be very far from the best configuration of each iteration. To
find the global optimum, the algorithm should, theoretically,
run forever. However, with just as few as 10 generations, as
demonstrated in the evaluation below, our solution obtains
configurations with heuristic values that are deviated less than
5% from the distance between the optimum and the worst case.

In particular, our solution forces the algorithm to extend its
generations until it finds a configuration whose heuristic value
is separated more than 99.99% from the first local optimum,
so it is quite stubborn to find the optimum without incurring
in too much time expenses. To design this algorithm we first
define the heuristic function in the following equation:

h(c) =
∑
si∈c

g(si) +
∑
sj∈S

Z

∑
sk∈c

0 if sk ̸= sj

1 if sk = sj (5)

This function sums the lengths of all paths from the gateway
of the SN to all the NSNs that form part of the configuration,
si. The paths are computed previously by the controller of the
SN, usually an SDN controller, and stored in a database that is
queried by a function denoted as g(x). The function proceeds
by summing for each NSN, sj ∈ S, the result of elevating a
constant defined by a parameter, Z, to the number of NSNs,
sj , that are present in c. As the algorithm we design will build
incremental configurations, as stated by DP, we need to refine
the heuristic function in the following equation:

h(Cj) = h(Ci)− Z

∑
sk∈Ci

0 if sk ̸= sj

1 if sk = sj

+ g(sj) + Z

∑
sk∈Cj

0 if sk ̸= sj

1 if sk = sj

(6)

As seen in the equation above, the heuristic function is
split in two parts. First, it retrieves the heuristic value of
the configuration that is built immediately before it, Ci,
and adjusts it to obtain the heuristic value for the current



Algorithm 1 Building a valid configuration using the heuristic
function defined in Equation 6.

1: procedure MAKECONF(Ci, F, S)
2: Cj ← Ci

3: C ← Empty
4: for all fi ∈ F do
5: for all si ∈ S do
6: C ← C ∪ [Cj ∪ (fi, si)]
7: end for
8: SORTBYH(C)
9: Cj ← FIRST(C)

10: end for
11: return Cj

12: end procedure

configuration, Cj , by subtracting the exponent of Z for Ci and
adding both the length of the path of the newly selected NSN
as well as the exponent of Z for Cj . It is therefore making
use of the relation described in the following equation:

Cj = Ci ∪ [fj , sj ] (7)

This defines the tail recursion, through the right tail, for
the configurations. For this relation to be consistent, the
elements included in the representation of a configuration
must be sorted. Moreover, to get a configuration Cj from a
configuration Ci, the VNF instance, fj , that is added to Ci will
be the first of the VNF instances not added to Ci. They will
be, therefore, also sorted. This ensures the right tail recursion
is consistent for all values of h(Cj).

In Equation 6, the exponent derived from Z is the penalty
of instantiating more than one VNF instance onto the same
NSN. Therefore, the parameter Z is used by administrators
to control how hard the management solution will work to
avoid overloading nodes in contrast to avoiding spreading VNF
instances among all available NSNs.

This heuristic function is used in every iteration of the
algorithm that resolves the VNEP. The first point in which it is
used is shown in Algorithm 1. It receives a base configuration,
Ci, together with a set of VNF instances, F , and a set of NSNs,
S. The algorithm returns a new configuration, Cj , which is
the result of associating all instances to NSNs and attach
the associations to Ci. On an iteration, fi ∈ F is assigned
to all possible NSNs, and the association is attached to the
current Cj to build several new configurations. From them,
the configuration with lowest value of h is chosen as the new
Cj . The algorithm proceeds in this manner until all fi ∈ F
are assigned.

It is worth to note that not all possible combinations are
built, just for each iteration, so the complexity of the algorithm
is kept very reduced. The quality of the final solution depends
on the quality of the function used for estimating the heuristic
value. With this algorithm we can now proceed to define the
overall algorithm to obtain a configuration that resolves the
VNEP. We do not compare the configuration quality among

Algorithm 2 Getting a solution for the VNEP.
1: procedure GETSOLUTION
2: C0 ← MAKECONF(Empty)
3: Gi ← [C0]
4: while N > 0 do
5: Gjm ← MUTATE(Gi, L)
6: Gjb ← BREED(Gi, L)
7: Gjc ← CREATE(Gi, L)
8: Gj ← (Gjm ∪Gjb ∪Gjc)−Gi

9: SORTBYH(Gj)
10: PICKHOMO(Gj , L)
11: Gi ← Gi ∪Gj

12: N ← N − 1
13: end while
14: SORTBYH(Gi)
15: return FIRST(Gi)
16: end procedure

the different algorithms evaluated because it is mostly out of
the scope of this paper and it would add obscurity to the results
presented here.

By following the GP methodology, as shown in Algorithm 2,
we first obtain an initial configuration using the algorithm
described above, which is a somewhat good configuration to
begin with, and iterate N times in order to explore disparate
configurations from the search space. Each iteration uses three
different methods to generate new configurations: mutation,
breeding, and creation. Mutation obtains new configurations
by changing some arbitrary assignations, breeding merges two
different configurations to obtain a new one, and creation
obtains a random assignation for all fi ∈ F over all si ∈ S.

All new configurations are then joined and sorted by their
heuristic value. From this set, L configurations are picked
homogeneously, ensuring the first (best configuration) is in-
cluded. Apart from the amount of configurations picked, L is
used to control the amount of new configurations generated
by every method. Then, these configurations are joined to the
configurations of the previous generation and a new iteration
is performed. After N iterations, the best configuration from
the current generation is returned as solution.

IV. NETWORK MANAGEMENT AUTOMATION

In this section we discuss the design of FADE. Its major
role to achieve the target of this paper is to enclose the
algorithm presented above to drive its qualities to automate VN
management. This requires an architecture that incorporates
the required processes to retrieve telemetry data, analyze it
together with information from external events, which will
provide strong assertions of knowledge for the reasoning
engine to perform as best as possible to determine the amount
of resources required by the VN and, finally, enforce it by
using the algorithm presented in this paper.

The inclusion of the algorithm presented in this paper makes
FADE to advance the SotA in the domain of architectures for
VN management, such as [10], [11], especially in terms of



Figure 2. Abstract overview of FADE workflow.

adaptability. It is key for FADE to analyze external events, so
it incorporates a CBR, inspired by the solution presented in [7].
This enables the management solution to provide explanations
to its decisions, which can be rooted in some external event, so
it will actually correlate the amount of VNF instances required
by the VN and the information provided by the external event
detectors, such as the measurements taken by a seismometer
during an earthquake or the detection of a heavy rainfall [8].

In Figure 2 we show the components and overall workflow
of FADE. It includes the collector, the analyzer, the decider,
and the enforcer. These are the four main processes of the
MAPE-K closed control loop defined by the Autonomic Com-
puting (AC) paradigm [12], as well as the MANA and ETSI-
AFI reference models [13], [14]. The collector is responsible
of gathering and formatting the heterogeneous observations
that will be used in the control cycle. Then, the analyzer finds
the current load of the resources allocated to the managed
system (i.e. the MVN), the rate of packet drops, and the
occurrence of an event that can affect its normal operation.
The outputs from the analyzer are therefore the summarized
load, drops, and event. The decider determines the necessary
actions to adjust the resources to the present or near future load
of the managed system and, finally, the enforcer is in charge
of requesting the underlying and overlying infrastructure to
make the necessary changes to enforce decided actions.

The decision algorithm used by FADE to react and antici-
pate to changes in the environment is inspired on ARCA [6],
[7]. Therefore, it makes use of ML for the analysis of telemetry
and external events, more specifically, it uses a mix of Support
Vector Regression (SVR), the regression application of a
Support Vector Machine (SVM) [15], and a reasoner that
follows the CBR methodology. The analysis procedure has
self-assessment and self-correction capabilities by incorpo-
rating a mechanism based on threshold rules (THR) [16].
Combining THR with SVR provides quite effective results and
retains a high degree of simplicity. However, this method itself
cannot provide explanations to the decisions, which would be
essential for improving the overall reasoning process. Such
explanations are thus provided by the CBR. Both decisions
and explanations are provided to the embedding process,

which inputs them to the algorithm presented in this paper
to obtain the embedding configuration and communicate it to
the controller of the underlying infrastructure.

V. EVALUATION AND RESULTS

In this section we evaluate Spade to contextualize its per-
formance and general qualities among the SotA. For it we first
build a proof-of-concept (PoC) implementation of our solution
and then we execute it for VNs of different sizes.

A. Implementation

A key quality of the proposed solution is that, for each
iteration of the algorithm, it reasons which would be the best
configurations, from those obtained by adding an association
between VNF instance and NSN, on the one hand, and which
would be the best configurations to choose for every generation
of the algorithm to evolve towards the best configuration for
embedding the VN. This means that the algorithm heavily
relies on operations and primitives from the AI domain.

Taking such quality into account we choose Prolog as the
implementation language. It has, by default, strong semantics
for dealing with AI problems, especially those related to
reasoning and recursivity for finding solutions in a determined
or undetermined search space. All statements in Prolog are,
on the one hand, logical terms that define a truth, or, on the
other hand, predicates that define the rules for determining
the required truth for a goal to be accomplished. The Prolog
runtime finds the terms (atoms) and predicates that are required
to accomplish the global goal by reasoning on all available
knowledge. The runtime implements recursion natively so it,
therefore, is able to find complex solutions and is accompanied
with a set of primitive and standard operations, which facilitate
the coding of our algorithm.

We now proceed to implement the PoC by writing the
required predicates and atoms. Below we show the most im-
portant predicates, viz. the predicate that defines the heuristic
function, the predicate that defines the needed goals to build
a new valid configuration, and the top-most predicate that is
used to obtain the target solution.

Figure 3 shows the code for implementing the heuristic
function defined in Equation 6. As seen, Prolog expressiveness
allows the developer to keep the code very simple. The code
shows three predicates: h, hiter, and hinc. The last predicate
defines how to obtain the heuristic value for a configuration
Cj after adding a new association of Fj − Sj to Ci. Here
resides the incremental semantics for obtaining the benefits of
dynamic programming mentioned above.

The second predicate, hiter, defines how to obtain the
heuristic value for a configuration, C, without relying on the
heuristic of a previous configuration. Both hiter and hinc are
used by the first predicate, h, to define how to globally obtain
the heuristic value for any configuration. It first checks if the
heuristic value has been previously recorded using hdb and, if
so, it binds the value from the database to the result in Hj . If
not, it gets the heuristic value for the previous configuration



1 h([],0).
2 h(Cj,Hj) :-
3 hdb(Cj,Hk) -> Hj is Hk;
4 (
5 append(Ci,[Fj-Sj],Cj),
6 (
7 hdb(Ci,Hl) -> Hi is Hl;
8 (
9 hiter(Ci,Hi),

10 rkey(Ci,Ki),
11 recorda(Ki,Hi)
12 )
13 ),
14 hinc(Ci,Fj-Sj,Hi,Hj)
15 ).
16
17 hiter([],0).
18 hiter(C,H) :-
19 csubstrate(C,S),
20 sum(Hi,(
21 member(Si,S),
22 gpathlen(Si,Li),
23 count(member(_-Si,C),Wi),
24 Hi is Li + Z ** Wi
25 ),H).
26
27 hinc(Ci,Fj-Sj,Hi,Hj) :-
28 gpathlen(Sj,Lj),
29 count(member(_-Sj,Ci),Wi),
30 Hj is Hi - Z ** Wi +
31 Lj + Z ** (Wi + 1),
32 rkey([Fj-Sj|Ci],Kj),
33 recorda(Kj,Hj).

Figure 3. Declarative statements for the heuristic function.

by removing the latest association Fj − Sj , and checking Ci

in the database.
If the heuristic value for Ci is not found in the database, the

code uses hiter to obtain it by iterating through the elements
of Ci. Finally, either being obtained from the database or from
hiter, the heuristic value of Ci is used by hinc to obtain the
heuristic value of Cj and here finishes this definition.

Following the specification from the associated equation, the
inner of this code indicates that the heuristic value is obtained
by summing the lengths of all paths from the gateway to Si,
which is every NSN included in the provided configuration, C.
This is added to the sum of all Z**x, which is the coding of
Zx, where x is the count of NSNs included in the configuration
C. If a NSN appears multiple times, the count increases per
each time, otherwise it is kept to 1.

Figure 4 shows how to build a new configuration using
the heuristic function defined above. It is the translation of
Algorithm 1 to a declarative form. In general, this code
states that a new configuration is obtained by adding a new
association Fi−Si to a previous configuration C0, which can
initially be empty.

The key quality of this procedure is that the association
chosen for each Fi is the association that has a resulting
configuration with minimum heuristic value, by using the

1 makeConf([],_,Ci,_,Cf) :-
2 sort(Ci,Cf).
3
4 makeConf([Fi|FT],S,Ci,Hi,Cf) :-
5 combine(5,S,SPU),
6 sort(SPU,SP),
7 makeConfLoop(Fi,SP,Ci,Hi,C,_),
8 selectFirst(h,C,NC), !,
9 member(Cj,NC),

10 h(Cj,Hj),
11 makeConf(FT,S,Cj,Hj,Cf).
12
13 makeConfLoop(_,[],_,_,[],[]).
14 makeConfLoop(Fi,[Si|ST],C0,H0,
15 [Ci|CT],[Hi|HT]) :-
16 append(C0,[Fi-Si],CiU),
17 sort(CiU,Ci),
18 hinc(C0,Fi-Si,H0,Hi),
19 makeConfLoop(Fi,ST,C0,H0,CT,HT).

Figure 4. Declarative statements that implement the procedure of building a
new configuration guided by the heuristic function.

1 getSolution(C) :-
2 makeConf(C0),
3 getSolutionLoop([C0],G1a),
4 append([C0],G1a,G1b),
5 sortBy(h,G1b,[C|_]).
6
7 getSolutionLoop(CG,NG) :-
8 getSolutionLoop(CG,CG,10,NG).
9 getSolutionLoop(_,_,0,[]).

10 getSolutionLoop(CG,PG,N,NG) :-
11 N > 0,
12 generate(CG,NGi),
13 subtract(NGi,PG,NGj),
14 sortBy(h,NGj,NGk),
15 pickH(NGk,25,NGl),
16 append([PG,NGl],NPG),
17 N1 is N-1,
18 getSolutionLoop(NGl,NPG,N1,NGr),
19 append([NGl,NGr],NG), !.
20
21 generate(CG,NG) :-
22 mutateCollection(CG,MG),
23 breedCollection(CG,BG),
24 createCollection(CG,RG),
25 append([MG,BG,RG],NG0),
26 sort(NG0,NG).

Figure 5. Code for obtaining the best configuration from several generations
of configurations, which are obtained by being guided by the heuristic
function.

selectFirst predicate, which chooses the first elements of equal
value of h. Then, an arbitrary Cj is chosen from those
elements. This is done on each step until all Fi are already
associated to the necessary Si. When needed, the Prolog
runtime will automatically loop through all possible Cj from
those first elements in order to satisfy the required goal.

As global objective for the code we define the predicates
shown in Figure 5. It states that to obtain such configuration,
the engine must get a new generation of configurations,



Figure 6. Evolution of the time required by each solution evaluated to obtain a
valid configuration for VNs with different number of functions to be embedded
onto the SN of the same size.

NG, derived from the current generation, CG, by using the
generate predicate. Then, those configurations are sorted
by their heuristic value and 25 are homogeneously picked
by pickH. These configurations are provided to a loop that
finishes when all generations are done, which defaults to 10
generations. The best configuration is then returned.

The generate predicate receives a generation of configura-
tions and obtains a new generation by three different methods:
mutation, breeding, and creation. The mutation consists of
getting new configurations by changing the assignation of
some arbitrary Fi to a different Sj . The breeding obtains new
configurations by choosing two arbitrary configurations from
the provided generation and choosing an assignation from each
one for each Fj , so each child is a mixture from the parents.
The creation method gets new assignations of Fi to arbitrary
Si, so that the generated configurations are random. All those
new configurations are put together, removed duplicates, and
returned as the new generation of configurations.

Using these operations we build the PoC solution that
resolves the problem and obtains a valid and optimal config-
uration for embedding the provided VN to the provided SN.
We now proceed to evaluate it to demonstrate its qualities.

B. Results

We execute the PoC solution described above for different
number of functions of the VN to be embedded in a SN of the
same size. For each execution, we measure the time required
by our solution to find a configuration for the VN, viz. a set of
associations between VNF instances and NSNs. We compare
such time with the results obtained by the solutions proposed
by related work, which are all based on GA, as presented
in [9], viz. K-Fat, BCube, and VL2, which are named after
the topologies to which they are best suited, as described in
Section II.

In Figure 6 we show, for each solution evaluated in this
paper, viz. K-Fat, BCube, VL2, and Spade, the plot that

illustrates the relation between the number of functions of
the virtual network and the time required to obtain a valid
embedding configuration. We can see that they have very
different rates of growth. While the algorithms presented in the
related work have a quadratic growth, Spade grows linearly.
This is a great improvement for allowing the virtual network
to scale up without requiring a different management solution.

Analyzing these results we get, on the one hand, that
our measurements are fit to the polynomial described in the
following equation:

y = 208x+ 30 (8)

On the other hand, the results obtained with the solution
found in related work for K-Fat, BCube, and VL2 are re-
spectively fit to the polynomials described in the following
equations:

y = 6.107x2 + 662.5x+ 948.8 (9)

y = 5.948x2 + 695.8x+ 992.6 (10)

y = 3.972x2 + 744.0x+ 925.2 (11)

Comparing Equation 8 with Equations 9, 10, and 11, we
can see that our solution has improved previous work by a
polynomial degree, moving from a complexity of O(n2) of
the related work to a complexity of O(n) of our solution,
for the time required to provide an embedding solution for a
VN to be deployed in the SN in relation to the number of
instances of the VN. We can achieve such reduction by using
the dynamic programming scheme described above. This way,
each iteration reuses as much operations as possible from pre-
vious iterations. In effect, a new configuration in our solution
mostly relies on existing configurations, so minimizing the
changes required to embed a new configuration and allowing
the reduction of such degree of complexity. Putting this result
in terms of typical sizes of VNs, such as around 200 nodes,
we find that our solution requires less than the sixth part of
the time, so it is six times faster. Moreover, as the complexity
of our solution is linear we can determine that this is able
to manage networks twice as large by requiring just twice
the time, while the related work is not able to manage such
network sizes.

Once we have shown the performance of the solution in
relation to the amount of VNF instances, we proceed to
evaluate the configurations that are actually enforced in the
network. For this we explore the distribution of the VNF
instances among all available NSNs when using different
values for the parameter Z, which determines the behavior
of the solution in such terms, using a small VN (10 VNF
instances) in a small SN (20 nodes). As shown in Figure 7,
from Z = 0 to Z = 1, the number of NSNs used remains 1,
so all VNF instances are deployed in the same node.

As Z gets a value slightly greater than 1, the number of
NSNs increases quite suddenly. Then, when all VNF instances



Figure 7. Relation of the value of Z and the number of NSNs used when
deploying the resulting configuration.

Figure 8. Relation of the value of Z and the number of links of the SN that
are activated for the resulting configuration.

are assigned, the growth of the spread stops. This occurs when
Z gets a value close to 5

2 . After calculating and representing
the best fit to the obtained values for the spread, we can
easily see that the evolution of this behavior has a sigmoid
shape, which in this case is l

1+e−k(x−x0) + b, with l = 9,
x0 = 1.68, k = 4.17, and b = 1. It means that there is a tight
the response of the spread to Z, which is important for the
administrators of the network to determine the overall behavior
of the embedding operation.

In addition to the number of NSNs used, to determine
the effect on the underlying network of the configurations
provided by our solution, we now measure the number of
links of the SN that are directly or indirectly activated for

a particular configuration, which also changes depending on
Z. This is important because deploying a VNF instance on a
node that is far from the gateway will activate more links that
when deploying it in a node closer to the gateway. Therefore,
the performance of the whole network will be affected by this
metric. As shown in Figure 8, the VN begins with 20 links
activated, as it represents the mimum number of links needed
for all the VNFs and services deployed in the experimental
network. Then, being parallel to the evolution of the number
of NSNs used, the number of links also increases quickly
between Z = 1 and Z = 5

2 .
As a key point for this result we can confirm that the number

of links does not increase faster or to a greater extent than the
number of NSNs, being 29 the maximum number of links
used, which correspond to the additional 9 NSNs involved
in the configuration after spreading the VNF instances. This
remarks the scalability properties of our solution. Moreover,
after obtaining the fit for this measurements we see that
the shape of its evolution also follows a sigmoid function

l
1+e−k(x−x0) + b, with l = 9, x0 = 1.67, k = 4, and b = 20.
This shape has a close relation with the shape of Figure 7.
It remarks the importance of Z, which will definitely be a
determinant factor (and parameter) for network administrators
to define the behavior of the network.

The results presented here demonstrate our claims, so our
solution provides a clear improvement to the SotA while also
reinforcing the demonstration that advanced AI methods, such
as reasoning and GP, must be adopted by NM to break the
limits and drawbacks found in ML approaches. Furthermore,
we demonstrate that the configurations produced by our solu-
tion are scalable and predictable, allowing the administrators
of the network to instruct the behavior of our solution by using
different parameters.

VI. CONCLUSIONS AND FUTURE WORK

Increasing the complexity of VNs or the SNs that support
them is complicating the automation of NM tasks, not to
say if they are performed by humans manually. We therefore
proposed to advance the SotA with a new solution that is
between 3 to 6 times faster than related work when finding
the configuration for embedding a VN on a SN. The key
of our proposal is the application of GP together with a
powerful heuristic that allows finding highly close-to-optimum
solutions.

Our next work will settle the dynamic bounding of the
solution space to further improve the efficiency of our al-
gorithm. Moreover, we will explore new methods to make
new configuration generations that maximize the avoidance of
local optimal solutions. Finally, we will carry our PoC im-
plementation to a production-oriented test-bed to demonstrate
its benefits in real-world environments. This will show how a
whole solution works with the algorithm proposed here.
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