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Abstract—In practical, large-scale networks, services are re-
quested by users across the globe, e.g., for video streaming.
Services consist of multiple interconnected components such as
microservices in a service mesh. Coordinating these services
requires scaling them according to continuously changing user
demand, deploying instances at the edge close to their users,
and routing traffic efficiently between users and connected in-
stances. Network and service coordination is commonly addressed
through centralized approaches, where a single coordinator
knows everything and coordinates the entire network globally.
While such centralized approaches can reach global optima, they
do not scale to large, realistic networks. In contrast, distributed
approaches scale well, but sacrifice solution quality due to their
limited scope of knowledge and coordination decisions.

To this end, we propose a hierarchical coordination approach
that combines the good solution quality of centralized approaches
with the scalability of distributed approaches. In doing so, we di-
vide the network into multiple hierarchical domains and optimize
coordination in a top-down manner. We compare our hierarchical
with a centralized approach in an extensive evaluation on a real-
world network topology. Our results indicate that hierarchical
coordination can find close-to-optimal solutions in a fraction of
the runtime of centralized approaches.

I. INTRODUCTION

Modern services, e.g., for video streaming, consist of mul-
tiple interconnected components; this holds for examples like
microservices in a service mesh [1] or virtual network func-
tions (VNFs) in a network service [2]. Users from around the
globe may request these services and expect short delays and
high service quality. At the same time, operators are looking
for ways to lower their capital and operational expenditures.

Hence, services and their components need to be scaled
according to the current load such that user demand is
satisfied yet resources are not wasted. Instances of these
components can be deployed on any compute node in the
network. Instances deployed closer to users reduce end-to-
end delay and improve service quality. However, deploying
more instances increases costs (e.g., due to licensing and/or
resource consumption). User demand needs to be balanced
among multiple available instances and traffic needs to be
routed between the users and interconnected instances. In
doing so, limited compute and link capacities need to be

respected and the number of instances as well as path delays
should be minimized. Overall, optimized network and service
coordination (including scaling, placement, and routing) is
crucial for both users and operators to ensure high service
quality and low costs. Simultaneously, this is challenging due
to many influencing factors such as limited resources, trade-
offs between objectives, and continuously changing demand.

Even taking just some of these factors into account leads
to optimization problems that are NP-hard [3]. Even with
heuristic, non-optimal approaches, practical scalability is usu-
ally limited to small networks. A natural approach is hence
to split large networks into smaller domains, which are then
coordinated independently in a distributed fashion. While this
provides reasonable results within shorter runtimes, solution
quality may be sacrificed due to lack of global knowledge and
necessarily sub-optimal inter-domain coordination.

We propose a novel hierarchical coordination approach
where we combine benefits of both centralized and distributed
approaches. Our approach follows a divide-and-conquer strat-
egy where the network can be divided into arbitrary levels
of hierarchy. First, in a bottom-up phase, lower-level hierar-
chies aggregate and advertise information to the higher-level
hierarchies (cf. “one big switch” abstraction in SDN [4]). In
the following top-down phase, high-level coordinators make
inter-domain coordination decisions based on the advertised
information. All child coordinators then refine the coarse-
grained decisions of their parents in parallel.

A challenge here is that node and link capacity constraints
must be respected on all hierarchies. Decisions of higher-level
coordinators should guide child coordinators by reducing their
decision space but must not keep them from finding a valid
solution if any feasible solution exists. If no feasible solution
exists, e.g., because resources are already highly utilized, this
should be noticed at the top hierarchies to quickly reject
the corresponding service requests without the unnecessary
overhead of recursing to lower hierarchies. The advertised in-
formation (e.g., about available resources) needs to be detailed
and relevant enough to enable meaningful decisions at high-
level hierarchies. Still, it should be aggregated and abstract
enough to reduce coordination complexity on higher levels.

To navigate this trade-off, we define a suitable information978-3-903176-32-4 c© 2021 IFIP



advertisement scheme. We then formalize our hierarchical
coordination approach as mixed integer linear program (MILP)
and optimize it numerically. In our extensive evaluation on
a real-world network topology, we compare our hierarchical
approach with an equivalent centralized approach. We find that
our approach achieves comparable solution quality but is more
than 10x faster on average. Overall, our contributions are:
• We propose a generic coordination approach that works

with any given hierarchical structure (Sec. IV).
• We formalize an MILP that is solved numerically by

coordinators on each hierarchical level (Sec. V).
• We evaluate our approach on a real-world network topol-

ogy comparing it against a centralized approach (Sec. VI).
• For reusability, our implementation is open source [5].

II. RELATED WORK

Considerable effort has been focused on network and service
coordination in the context of network function virtualiza-
tion (NFV) [6] or cloud or edge computing [7], [8]. However,
most authors propose centralized approaches to make global
decisions for coordinating services in the entire network [9]–
[16]. These approaches typically only work in small net-
works and do not scale to practical large-scale networks [11].
Distributed approaches [17], [18] are scalable but lack co-
ordination between domains. To the best of our knowledge,
we propose the first hierarchical approach for network and
service coordination, which solves these inherent limitations.
By dividing the network into hierarchies, they can be optimized
in a scalable and distributed, yet coordinated fashion.

Nevertheless, authors have proposed hierarchical approaches
in related areas [19], [20]. In particular, virtual network
embedding (VNE) is well-studied [21] and closely related to
our problem. Samuel et al. [22] propose a distributed and
hierarchical approach that greedily solves the VNE problem
while different domains hide as much information from each
other as possible because they belong to competitors. While
this perspective is interesting, we assume domains to cooperate
and share relevant topology information to enable optimized
coordination. Due to limited information sharing and its greedy
nature, the approach by Samuel et al. easily gets stuck at
suboptimal solutions or fails to find any feasible solution. In
our approach, we ensure that any solution suggested by the
top hierarchy can be refined into a feasible embedding.

Similar to us, Ghazar et al. [23] assume that domains coop-
erate. However, the authors do not aggregate or abstract any
information such that computations on high hierarchical levels
become very expensive, comparable to centralized approaches.
Hence, the authors skip higher levels and directly select an
intermediate hierarchical level to embed the full request in one
of its sub-domains. If this is not possible because the domains
are too small, the process is repeated on the next higher level.
This leads to considerable overhead for large embeddings, e.g.,
where ingress and egress are far apart. Our approach efficiently

coordinates across domains by aggregating and simplifying
information on higher hierarchical levels.

In general, our network and service coordination problem
is considerably more complex than VNE. Unlike typical VNE
approaches, we consider routing from ingress to egress but also
dynamic reuse of components across services and dynamic
scaling, i.e., flexible number and resources per instance. Such
joint coordination is important to successfully balance trade-
offs [3], [34], [35]. Overall, there is a stronger interdependence
between decisions of different hierarchical levels and domains,
making the problem more challenging than VNE.

Finally, hierarchical approaches are common in traffic en-
gineering, which is a subproblem of network and service
coordination. For example, MPLS uses a path computation
element (PCE) to find shortest paths across different hierarchi-
cal domains (AS) [24]–[26]. Similar to our approach, topology
information from these different domains can be abstracted and
aggregated through topology aggregation mechanisms [27].
Related to our aggregation approach, Secci et al. [28] pro-
pose a full mesh aggregation containing the most relevant
topology information. Still, the authors assume that advertised
intra-domain paths do not overlap, i.e., do not share links.
In contrast, our approach supports overlapping intra-domain
paths and explicitly advertises constraints to avoid overloading
shared links. Hence, our approach allows more paths to be
advertised such that better embeddings can be found.

III. PROBLEM STATEMENT

We address the network and service coordination problem
where users request services in a network of distributed nodes.
Accordingly, the chained components of a service need to be
scaled and instantiated on network nodes and traffic routed
through them, connecting users and instances.

We model the network as graph G = (V,L) with nodes V
and links L. Each node v ∈ V has a compute capacity
κcap
v ∈ R≥0 (e.g., CPU)1. Each link l ∈ L connects two nodes

bidirectionally with a maximum data rate λcap
l ∈ R≥0 (shared

in both directions) and delay dl ∈ R≥0. Users in the network
request services, where each request r = (sr, v

in
r , v

eg
r , λr) ∈ R

is defined by the requested service sr, ingress node vin
r , egress

node veg
r , and required data rate λr. We assume that a request’s

traffic can be split over multiple paths from ingress to egress.
For unsplittable traffic, additional constraints could be added
to our MILP [29]. Let V in be the set of all ingress and V eg

the set of all egress nodes (V in, V eg ⊆ V ).
A service s ∈ S is defined by its chain of components Cs =
〈c1s, ..., cmss 〉, each providing parts of the service functionality
(e.g., security, compression, optimization, ...). A component c
may be reused across different services. We denote the set of
all components from all services as C. Each component c ∈ C
can be scaled flexibly and instantiated zero, one, or more times

1This generic compute capacity can easily be extended to multiple different
resource types, e.g., GPU, memory, and storage, by using a vector instead.



across different nodes in the network. Requests need to traverse
instances of all service components in the specified order.

An instance can process multiple requests in parallel, pos-
sibly belonging to different services. In doing so, it requires
resources proportional to the total data rate it is processing. In
particular, we model resource requirements as linear function
κc(λ) = αc · λ of the total traversing data rate λ. All
instances of a component c have the same component-specific
coefficient αc. Furthermore, components may augment or
compress traversing data affecting the data rate (e.g. WAN
optimizers) [30]. Function µc(λ) = βc ·λ defines the outgoing
data rate for instances of component c, based on the total
traversing data rate λ and coefficient βc. While such linear
functions are a fairly accurate representation of real-world
component characteristics [31], [32], the model can easily be
extended to more flexible piece-wise linear functions [33].

We adopt the perspective of serverless computing and focus
on inter-node coordination. When instantiating a component c
on node v, we assume that within node v (intra-node) a system
like Kubernetes [36] or an operating system transparently
deploys c on the node’s internal resources (machines, cores).

IV. HIERARCHICAL COORDINATION APPROACH

The main idea of our approach is to divide the network into
smaller domains and coordinate them in a hierarchical manner.
Each domain is a part of the network that may recursively
consist of sub-domains, forming a hierarchy. This hierarchical
approach allows both efficient parallel coordination of different
domains yet necessitates coordination between domains for
highly optimized results. We assume that dividing the network
into hierarchies of domains and sub-domains is out of scope
and happens before coordination starts, e.g., based on node
locality or business aspects. Our approach is not tied to any
structure and works with any given domains and hierarchies.

Given domains and hierarchies, our approach consists of two
phases: First, domains aggregate and advertise relevant infor-
mation (e.g., about available resources) to their coordinators
in a bottom-up manner. Second, based on this information,
the coordinators make coordination decisions in a top-down
manner. We choose top-down coordination to allow high-level
coordinators to optimize inter-domain decisions and guide
lower-level coordinators. Starting coordination directly at a
lower level would often lead to worse solutions. We ensure that
each high-level coordination decision can be further refined
into a feasible solution or directly reject requests at the top
level. Hence, we avoid overhead of jumping up and down
between levels to backtrack and fix infeasible embeddings.
To enable efficient top-down coordination, a main challenge
is advertising relevant but aggregated information from lower
levels in phase 1. More detailed information allows higher
quality coordination but also increases complexity. In the fol-
lowing, we introduce our notation for domains and hierarchies
and describe the two phases in more detail (see Alg. 1).

Algorithm 1 Hierarchical Coordination Algorithm

1: for k = 1 up to k̂ − 1 do . Phase 1
2: for i ∈ {1, ..., nk−1} in parallel do
3: Aggregate sub-domain information as D̄k−1

i

4: Advertise D̄k
j = {D̄k−1

i |∀i} to coord. j on level k+ 1

5: for k = k̂ down to 1 do . Phase 2
6: for j ∈ {1, ..., nk} in parallel do
7: Embed request rkj into D̄k−1

j by solving the MILP
8: Split request rkj into rk−1i for all coord. i on k− 1

Fig. 1: Example with k̂ = 2 hierarchies. Ingress and egress
nodes are shown in blue and border nodes in orange.

A. Domains and Hierarchies

We denote the total number of hierarchical levels as k̂
and a specific level as k ≤ k̂ ∈ N0, where k = 0 is the
substrate network G = G0. In the example of Fig. 1, the
substrate network G0 = (V 0, L0) is split into n0 = 3 separate
domains D0

1, D
0
2, D

0
3 with D0

i = (V 0
i , L

0
i ). Each domain D0

i is
coordinated separately by its coordinator on k = 1, in parallel
with the other domains D0

j . At level k = 1, nodes are grouped
again into domains that are handled by coordinators on k = 2
(a single domain D1

1 in Fig. 1). This definition recursively
extends to an arbitrary number of k̂ hierarchies.

While we assume that all nodes V k on level k belong to
some domain Dk

i (i.e., V k =
⋃nk
i=1 V

k
i ), not all links Lk are

part of some domain. In particular, we distinguish between
intra-domain and inter-domain links. Intra-domain links Lki
connect nodes within a single domain Dk

i (lighter in Fig. 1).
Inter-domain links do not belong to any domain but connect
nodes across two different domains (thicker in Fig. 1). We
define border nodes Bki ⊆ V ki as the subset of nodes that have
an inter-domain link to another domain (orange in Fig. 1). For
example in Fig. 1, B0

2 = {v5, v6, v7}.

B. Bottom-Up Information Advertisement (Phase 1)

Each domain’s coordinator scales and places services as well
as routes traffic inside the domain. It needs to know about
available compute capacity, data rate limitations, and delays
within the domain. A domain on level k may comprise multiple



Fig. 2: D̄1
1 advertised to the coordinator on k = 2 in Fig. 1.

levels of sub-domains and cover large parts of the network.
Thus, it is crucial to hide unnecessary information of lower
levels from higher-level coordinators to reduce complexity and
ensure scalability. Hence, domains aggregate and advertise
relevant information of their sub-domains to their coordinators
as follows (ln. 1–4 in Alg. 1).

For a sub-domain Dk
i domain information D̄k

i =
(Vki ,Pki ,Lki ) is advertised to the coordinator. Fig. 2 illustrates
the advertised domain D̄1

1 to the coordinator on k = 2,
containing aggregated information about sub-domains D0

1–
D0

3 from Fig. 1. First, the advertised information includes
a subset Vki ⊆ V ki of the domain’s nodes. Subset Vki =
{V in ∩ V ki } ∪ {V eg ∩ V ki } ∪ Bki includes all ingress and
egress nodes within V ki as well as the domain’s border nodes
but no intermediate nodes. The advertised network in Fig. 2
includes ingress v1 and egress v11 as well as border nodes
v3–v8 but not intermediate nodes v2, v9, and v10. In this small
example, the majority of nodes is advertised to the coordinator.
However, in larger networks with more intermediate nodes and
additional levels of sub-domains, more nodes would be hidden
and excluded from Vki to ensure efficient coordination.

In addition to nodes Vki , domain Dk
i also advertises in-

formation about its intra-domain paths Pki and inter-domain
links Lki . Paths in Pki indicate connections between nodes
inside a domain, possibly via multiple hops. For example in
Fig. 2, v1 can reach v3 via intermediate, hidden node v2 and
thus has a path p1 to v3. Links Lki are inter-domain links
between Dk

i and another domain.
To support coordination, each intra-domain path p ∈ Pki is

annotated with further information about available compute
capacity, data rate limitations, and delay along the path.
This is necessary for coordinators to decide where to place
instances and how to route traffic within the domain. The
coordinator needs to know how much traffic (with which data
rate) and at which delay can be routed through the domain.
Traffic may arrive from a neighboring domain or originate
at an ingress node inside the domain. The destination may
be another neighboring domain or an egress node inside the
domain. To this end, paths are calculated between all ingress,
egress, and border nodes of a domain (i.e., Vki ) by solving
the corresponding maximum flow problem. We use the Ford-
Fulkerson algorithm [37] with Edmon Karp path selection [38]
to find paths with maximal data rate between nodes in Vki .

Why advertise complex, annotated paths and not just the
domain’s total data rate and compute resources? Such a naive

approach would fail to inform the coordinator about path delay
and possible bottlenecks, which could result in embeddings
that can no longer be refined into feasible solutions. Hence, we
set a path’s data rate limit λcap

p to the data rate of the bottleneck
link on the path. Since paths may partially overlap (e.g., p1, p2
in Fig. 2), Pλp denotes the set of all paths (including p)
traversing the bottleneck link and sharing its data rate. The
path’s delay dp correspond to the sum of link delays along
the path. We do not consider queuing delays, but they could
be added based on the current load along the path. Similarly,
compute resources are advertised as properties of a path rather
than of individual nodes since intermediate nodes of sub-
domains are hidden from the coordinator. Path p’s compute
capacity κcap

p is the sum of compute capacities of all nodes
along the path, including the source and destination node. To
avoid that partially overlapping paths overload shared compute
resources, we split κcap

p = κexcl
p + κpool

p into a first part of
resources that are exclusively used by p and a second part that
is shared with other overlapping paths. Shared resources κpool

p

constitute a pool of resources shared among all paths in Pκp
(including p). If p does not overlap with any other path,
Pκp = {p}, κpool

p = 0, and κcap
p = κexcl

p . For domains at level
k ≥ 2, the approach works similarly based on the properties
of advertised paths from the domains at k − 1.

C. Top-Down Coordination Decisions (Phase 2)

In phase 2 (ln. 5–8 in Alg. 1), the advertised information
from phase 1 is used for coordination as described in the
following. Phase 2 starts at the highest hierarchical level k̂ and
works top-down, where each coordinator optimizes coordina-
tion in its own domain using our MILP formulation (Sec. V).
A coordinator on level k + 1 only knows the advertised
information D̄k

i = (Vki ,Pki ,Lki ). Hence, the coordinator scales
and places services and routes traffic on the advertised paths
rather than directly on substrate nodes or links.

For example, assume the top-level coordinator on k̂ = 2 in
Fig. 1 needs to handle a request for a service consisting of
two components Cs = 〈c1, c2〉 with ingress v1 and egress v11.
The coordinator only knows the advertised domain D̄1

1 shown
in Fig. 2. Based on this information, it may decide to place an
instance of c1 on path p1 close to the ingress and an instance
of c2 on p5 close to the egress. It could then route the traffic
from v1 in D0

1 through D0
2 to v11 in D0

3 along p1, l1, p3, l3, p5.
This coordination decision on k = 2 then needs to be

refined by coordinators on k − 1. These child coordinators
decide the specific scaling, placement, and routing within each
domain (D0

1, D
0
2, D

0
3 in the example), again by solving the

MILP. The parent coordinator has to ensure that its decisions
are feasible and can lead to valid solutions. To build on and
refine the decisions of the parent coordinator, the original
request rkj handled on level k is adjusted and split into
separate requests rk−1i for all child coordinators on k − 1.
In the aforementioned example, c1 was placed on p1 and



Fig. 3: D̄0
1 advertised to the coordinator on k = 1 in Fig. 1.

traffic routed from ingress v1 via p1, v3, l1 to domain D0
2 .

Hence, the child coordinator of D0
1 on k = 1 would receive a

request for a service consisting just of Cs = 〈c1〉 with ingress
node v1 and egress v3. Similarly, the coordinator of D0

2 would
receive a request for routing traffic from v5 to v7 (without
any placement) and the coordinator of D0

3 for placing c2 with
ingress v8 and egress v11.

To enable pure routing requests without any placement,
we augment all services with auxiliary ingress and egress
components cin, ceg ∈ C. These components are added at the
front and end of a service chain, respectively, and do neither
consume resources (κc(λ) = 0) nor alter traversing traffic
(µc(λ) = λ). Hence, a pure routing request would require
an empty component chain Cs = 〈cin, ceg〉.

Coordinators on k = 1 constitute a special case since they
directly coordinate on parts of the substrate network rather
than any further sub-domains. To enable the same consistent
coordination workflow with the same MILP used for k > 1, we
automatically generate advertised domains D̄0

i for substrate-
level domains D0

i as follows. For each substrate node vj ∈ V 0
i ,

we advertise a separate sub-domain D̄sub
j containing vj , an

additional dummy node v′j , and intra-domain paths pj , p
′
j

between the two nodes. Fig. 3 shows how domain D0
1 on

Fig. 1 would be advertised as D̄0
1 to its coordinator on

k = 1. The intra-domain paths are annotated with compute
capacity equal to the substrate node’s capacity κcap

vj and have
unlimited data rate and zero delay. In doing so, coordinators
on k = 1 can scale, place, and route on these advertised paths,
similar to coordinators on k > 1. Coordination decisions on
k = 1 are then transparently and automatically mapped to
placement solutions on the real substrate network, where any
instances placed on paths pj , p′j are mapped to and deployed
on corresponding substrate node vj .

Following this top-down coordination approach, decisions
by high-level coordinators are further refined by child coordi-
nators. Child coordinators solve the MILP (Sec. V) in parallel,
improving response time, while the parent coordinator’s deci-
sions ensure proper coordination between domains.

V. MIXED INTEGER LINEAR PROGRAM

We formalize the mixed integer linear program (MILP) that
coordinators on each level k solve for each domain Dk

i based
on advertised information D̄k

i = (Vki ,Pki ,Lki ). We summarize

TABLE I: Parameters

Symbol Definition

κ
cap
v Compute capacity of node v
λ

cap
l , dl Maximum data rate and delay of link l
r = (sr, vin

r , v
eg
r , λr) Request r ∈ R for service sr , from ingress vin

r
to egress vout

r with data rate λr
Cs = 〈c1s, ..., c

ms
s 〉 Chain of ms components constituting service s

κc(λ), µc(λ) Resource requirements and outgoing data rate
for instances of c based on ingoing data rate λ

0 ≤ k ≤ k̂ Hierarchy k and top-level hierarchy k̂
Dki = (V ki , L

k
i ) Domain i on hierarchy k

D̄ki = (Vki ,Pki ,Lki ) Advertised information about domain Dki
dp Delay of advertised path p ∈ Pki
λ

cap
p Maximum data rate of p shared with paths Pλp
κ

cap
p = κexcl

p + κ
pool
p Compute capacity of p, partly exclusive, partly

shared with overlapping paths Pκp

TABLE II: Decision Variables

Symbol Domain Definition

xc,p {0, 1} Is an instance of component c is placed on path p?
λc,p R≥0 Total ingoing data rate for an instance of c at p
µc,p R≥0 Total outgoing data rate of an instance of c at p
κc,p R≥0 Resource requirements of an instance of c at p
κshare
p R≥0 Path p’s share of compute resources taken from

resource pool κpool
p shared with paths in P comp

p

yintra
r,c,c′,p,p′,p′′ {0, 1} Is traffic of request r routed via intra-domain path p′′

from an instance of component c at path p to an
instance of c′ at p′?

yinter
r,c,c′,p,p′,l {0, 1} Is traffic of r routed via inter-domain link l from an

instance of c at p to an instance of c′ at p′?
λintra
r,c,c′,p,p′,p′′R≥0 Data rate of r that is routed via intra-domain path p′′

from an instance of c at p to an instance of c′ at p′

λinter
r,c,c′,p,p′,l R≥0 Data rate of r that is routed via inter-domain link l

from an instance of c at p to an instance of c′ at p′

λtotal
r,c,c′,p,p′ R≥0 Total data rate of r from instance c at p to c′ at p′

λr,c,c′,p R≥0 Data rate of r traversing instances of c or c′ on p
λmax
r,p R≥0 Data rate upper bound for all traffic of r on p
λmax
p R≥0 Data rate upper bound for all traffic on path p
dtotal
r R≥0 Total delay for processing and routing request r

our notation in Tables I and II. The scaling and placement-
related variables in the first part of Table II are 0 if the
placement (i.e., an instance of component c at path p) does not
exist. Similarly, the routing-related variables in the second part
of the table are only defined for components c, c′ where c′ is
a direct successor of c in the service function chain requested
in r. Otherwise, the corresponding variable is 0. Compared
to typical MILPs, we here need additional constraints for
approximating and bounding resources and data rates and for
routing based on the abstract, advertised paths Pki .

A. Objective

minw1 ·
∑

c∈C,p∈Pki

xc,p + w2 ·
∑
r∈R

dtotal
r (1)



The objective in Eq. 1 minimizes the number of placed
instances, weighted by w1, and the total delay for processing
all requests, weighted by w2. This corresponds to lower costs,
e.g., for licenses or resources, and better service quality. In
our evaluation, we choose a lexicographical order, prioritizing
the number of instances over total delay. Other objectives
can easily be implemented by choosing suitable weights and
possibly including additional decision variables from Table II.

B. Constraints

1) Ingress Traffic and Chaining: Eq. 2 states that the total
traffic leaving ingress component cin placed at path pin (at the
ingress) to any other instance equals the request’s data rate λr.
Eq. 3 ensures that flow is conserved between chained instances.
In particular, all outgoing traffic of c′ at p′ corresponds to all
ingoing traffic modified by function µc′(λ).∑

c′∈C,p∈Pki

λtotal
r,cin,c′,pin,p′ = λr ∀r ∈ R (2)

µc′

 ∑
c∈C,p∈Pki

λtotal
r,c,c′,p,p′

 =
∑

c′′∈C,p′′∈Pki

λtotal
r,c′,c′′,p′,p′′

∀r ∈ R, c′ ∈ C \ {cin, ceg}, p′ ∈ Pki (3)

2) Scaling and Placement: Whenever traffic is sent between
two instances, Eq. 4 and 5 ensure that both instances indeed
exist and are placed accordingly. Using the Big M method, M
is a large constant that ensures binary variable xc,p is set to
1 if any traffic traverses the instance. Since we minimize the
number of instances in our objective (Eq. 1), the solver sets
xc,p = 0 if the instance is not traversed by any traffic.

λtotal
r,c,c′,p,p′ ≤M · xc,p ∀r ∈ R, c, c′ ∈ C, p, p′ ∈ Pki (4)

λtotal
r,c,c′,p,p′ ≤M · xc′,p′ ∀r ∈ R, c, c′ ∈ C, p, p′ ∈ Pki (5)

Eq. 6 sets variable λc′,p′ to the total data rate of ingoing traffic
for an instance of c′ at p′. Eq. 7 and 8 set resource requirements
and outgoing data rate for the instance accordingly. Eq. 9
ensures that the resource pool κpool

p shared between paths in
Pκp is not over-utilized. Based on this, Eq. 10 guarantees that
the overall compute capacity of path p, consisting of partly
exclusive and partly shared resources, is not over-utilized by
the total resource requirements of instances placed at p.

λc′,p′ =
∑

r∈R,c∈C,p∈Pki

λtotal
r,c,c′,p,p′ ∀c′ ∈ C, p′ ∈ Pki (6)

κc,p = κc(λc,p) ∀c ∈ C, p ∈ Pki (7)

µc,p = µc(λc,p) ∀c ∈ C, p ∈ Pki (8)∑
p∈Pκp

κshare
p ≤ κpool

p ∀p ∈ Pki (9)

∑
c∈C

κc,p ≤ κexcl
p + κshare

p ∀p ∈ Pki (10)

Fig. 4: Flow conservation for routing traffic from c at p with
data rate λtotal

r,c,c′,p,p′ through node v ∈ Vki to c′ at p′.

3) Routing: Eq. 11 and 12 ensure that the data rate routed
via intra-domain paths or inter-domain links does not exceed
the total data rate between two instances.

λintra
r,c,c′,p,p′,p′′ ≤ λtotal

r,c,c′,p,p′ ∀r ∈ R, c, c′ ∈ C, p, p′, p′′ ∈ Pki
(11)

λinter
r,c,c′,p,p′,l ≤ λtotal

r,c,c′,p,p′ ∀r ∈ R, c, c′ ∈ C, p, p′ ∈ Pki , l ∈ Lki
(12)

Eq. 13 and 14 set binary routing variables yintra
r,c,c′,p,p′,p′′ and

yinter
r,c,c′,p,p′,l using Big M, similar to Eq. 4 and 5.

λintra
r,c,c′,p,p′,p′′ ≤M · yintra

r,c,c′,p,p′,p′′

∀r ∈ R, c, c′ ∈ C, p, p′, p′′ ∈ Pki (13)

λinter
r,c,c′,p,p′,l ≤M · yinter

r,c,c′,p,p′,l

∀r ∈ R, c, c′ ∈ C, p, p′ ∈ Pki , l ∈ Lki (14)

While Eq. 3 ensures flow is conserved between instances of
the whole service chain, Eq. 15 ensures flow conservation on
intermediate nodes during routing. Particularly, we consider
routing via a node v from an instance of component c at
path p to an instance of c′ at p′, where the total traffic has
data rate λtotal

r,c,c′,p,p′ . We denote vsrc as source node and vdst as
destination node as illustrated in Fig. 4. ∑

p′′∈Pki ,p
′′ends at v

λintra
r,c,c′,p,p′,p′′ +

∑
l∈Lki ,l ends at v

λinter
r,c,c′,p,p′,l


−

 ∑
p′′∈Pki ,p

′′starts at v

λintra
r,c,c′,p,p′,p′′ +

∑
l∈Lki ,l starts at v

λinter
r,c,c′,p,p′,l


=


0 if vsrc = v = vdst or vsrc 6= v 6= vdst

−λtotal
r,c,c′,p,p′ if vsrc = v 6= vdst

λtotal
r,c,c′,p,p′ if vsrc 6= v = vdst

∀v ∈ Vki , r ∈ R, c, c′ ∈ C, p, p′ ∈ Pki (15)

4) Link Capacities and Delay: Eq. 16 ensures that the total
traffic on inter-domain links does not exceed their capacity.∑

r∈R,c,c′∈C,p,p′∈Pki

λinter
r,c,c′,p,p′,l ≤ λ

cap
l ∀l ∈ Lki (16)

The corresponding restriction for intra-domain paths is more
complex and thus split into multiple constraints (Eq. 17–20).
Eq. 17 ensures that all paths Pλp sharing the same bottleneck



link as p (including p itself) together do not exceed the max-
imum data rate of path p. Eq. 18 defines an upper bound for
the total data rate on path p based on traffic routed through p
(first part) and traffic being processed by instances on p, which
may modify the data rate of traversing traffic (second part). The
latter data rate can be bounded by considering the maximum
data rate on p between any two chained components c, c′ ∈ C
placed on p (Eq. 19). In turn, this data rate is calculated in
Eq. 20 based on three overlapping parts of traffic: Traffic from
an instance of c on another path p′ going to c′ on p, traffic
within p from c, c′ instances on p, traffic from c on p to
an instance of c′ on another path p′. These bounds slightly
over-approximate the actual data rate on intra-domain path p,
which depends on the refined coordination decisions from
child coordinators. However, the key point is that they ensure
that link capacities are not exceeded and routing decisions by
parent coordinators can be refined into feasible solutions.∑
p′∈Pλp

λmax
p′ ≤ λcap

p ∀p ∈ Pki (17)

λmax
p =

∑
r∈R,c,c′∈C,
p′,p′′∈Pki

λintra
r,c,c′,p′,p′′,p +

∑
r∈R

λmax
r,p ∀p ∈ Pki (18)

λmax
r,p = max

c,c′∈C
λr,c,c′,p ∀r ∈ R, p ∈ Pki (19)

λr,c,c′,p =
∑

p 6=p′∈Pki

λtotal
r,c,c′,p′,p + λtotal

r,c,c′,p,p +
∑

p 6=p′∈Pki

λtotal
r,c,c′,p,p′

∀r ∈ R, c, c′ ∈ C, p ∈ Pki (20)

Finally, Eq. 21 calculates the total delay based on all traversed
intra-domain paths and inter-domain links, which is minimized
in the objective (Eq. 1). It is also possible to bound and
minimize the end-to-end delay rather than the total delay using
additional variables and constraints. However, we found that
it considerably increases complexity and yields similar results
as minimizing the total delay and thus focus on the latter.

dtotal
r =

∑
c,c′∈C,
p,p′∈Pki

 ∑
p′′∈Pki

yintra
r,c,c′,p,p′,p′′dp′′ +

∑
l∈Lki

yinter
r,c,c′,p,p′,ldl


∀r ∈ R (21)

VI. EVALUATION

To evaluate our approach, we implemented it using
Python 3.6 and Gurobi 8.11 [39]. Our code is publicly avail-
able on GitHub [5] to encourage reproducibility and reuse.

A. Evaluation Setup

We evaluate our approach on real-world network topology
Janos [40], which is a US network with 39 nodes and 122 links.
We set link delays according to the distance and propagation
delay between nodes and chose node and link capacities
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Fig. 5: Comparison of solution quality.

uniformly at random with κcap
v ∈ [8, 64], λcap

l ∈ [20, 40].
Furthermore, we consider two services s1, s2 consisting of
a load balancer and a deep packet inspector (DPI) with
Cs1 = 〈cLB, cDPI〉 and Cs2 = 〈cDPI〉. We generate requests
for these services based on a randomly selected subset of
10 ingress and egress nodes and data rate λr ∈ [1, 5] GB/s
chosen uniformly at random. As evaluation parameter, we
increase load by increasing number of requests from 1 to 5.

On these scenarios, we compare the following approaches:
k̂ = 1: A typical flat approach with a single centralized coordi-

nator, finding globally optimal solutions (for comparison).
k̂ = 2: Our hierarchical approach with two hierarchies: One

coordinator on k = 2 and two on k = 1.
k̂ = 3: Our approach with an additional hierarchy: One coor-

dinator on k = 3, two on k = 2, and four on k = 1.
We selected domains within a hierarchy based on node locality
(GPS position) using the k-means algorithm [41].

We executed the evaluation on machines with an Intel Xeon
E5-2670 CPU, allocating 8 cores at 2.6 GHz and 128 GB RAM
per experiment run. The results show the mean and 95 %
confidence interval over 25 repetitions.

B. Solution Quality
First, we compare the solution quality of our hierarchical

approach (k̂ = 2 and k̂ = 3) with the centralized approach
(k̂ = 1) in terms of number of placed instances and total
delay, which are both minimized in our objective (Sec. V-A).
The centralized approach finds globally optimal solutions and
thus constitutes a lower bound regarding both metrics.

Fig. 5a shows the number of placed instances with in-
creasing load for the different approaches. Our hierarchical
approach finds close-to-optimal solutions with few additional
instances compared to the optimal, centralized approach. As
expected, the hierarchical approach with k̂ = 2 is slightly
closer to the optimum (3.7 % on avg.) than the one with k̂ = 3
(8.1 %). This is because the latter has an additional layer of
abstraction where more information is aggregated and hidden
from the top-level coordinator.
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Fig. 6: Comparison of wall-clock runtime (log. scale).

Fig. 5b shows similar results for the total delay. To improve
comparability, we here set the same fixed number of instances
(derived from k̂ = 3 in Fig. 5a) for all three approaches and
only minimize total delay. Hence, k̂ = 1 now has the same
number of instances as k̂ = 2 and 3 but represents the optimal
lower bound regarding total delay. Our hierarchical approach
achieves short total delay for both k̂ = 2 (within 13 % on avg.
from optimum) and k̂ = 3 (17 %).

C. Runtime

While the solution quality of our hierarchical approach is
slightly worse than the optimum, its reduced complexity and
improved scalability enables much faster execution. Fig. 6a
shows the total wall-clock runtimes for each approach on
a logarithmic scale when executing all coordinators within
one hierarchy in parallel. While numerical optimization with
MILPs is generally slow, our hierarchical approach is much
faster than the centralized approach. The additional hierarchy
of k̂ = 3 leads to even shorter runtimes than k̂ = 2 since
it hides more complexity from the top-level coordinator. On
average, k̂ = 2 is 88 % and k̂ = 3 is 470 % faster than k̂ = 1.

Nevertheless, the runtime grows faster with increasing re-
quests for k̂ = 2 and k̂ = 3 than k̂ = 1. With more requests,
more ingress/egress nodes are included in advertised set Vki
and, consequently, more intra-domain paths are advertised in
Pki . Hence, the problem input size and resulting complexity
grows in two ways (requests and advertised information) for
our hierarchical approach. We further explore the impact of
advertised information in Sec. VI-D.

D. Impact of Advertised Information

In Sec. VI-B and VI-C, domains advertise all paths found by
solving the maximum flow problem (Sec. IV-B), often multiple
paths per source-destination pair. With more nodes Vki , this
drastically increases the number of advertised paths Pki . To
improve scalability, we here limit the number of advertised
paths per source-destination pair and evaluate the impact on
solution quality and runtime. In particular, we compare k̂ = 3
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Fig. 7: Solution quality with less advertised information.

with all, two, or one advertised paths, denoted as full, 2p, and
1p in figures, respectively.

Fig. 7 shows that, even with fewer advertised paths, k̂ = 3
still finds close-to-optimal solutions. Fewer advertised paths
lead to slightly lower solution quality, i.e., more instances
(1.4 % on avg. with one vs. all paths) or higher delay (2.8 %),
since coordinators lack some information. At the same time,
Fig. 6b shows that advertising fewer paths considerably re-
duces complexity and improves runtime. With just one adver-
tised path per source-destination pair, k̂ = 3 is on average
3.4x faster than with full advertised paths and 10.7x faster
than k̂ = 1. Moreover, runtime grows slower with increasing
requests when advertising fewer paths.

VII. CONCLUSION

Our approach for hierarchical network and service coordi-
nation combines the benefits of centralized and distributed
approaches. It achieves close-to-optimal solution quality at
a fraction of the runtime compared to optimal, centralized
solutions. To control the trade-off between optimal solution
quality and fast runtime, operators can adjust the number of
hierarchical levels and the amount of information advertised
from lower to higher levels. The resulting MILPs can be
solved in parallel for all coordinators at one level and can
easily be adjusted to optimize any objective of interest. We
believe our proposed hierarchical approach using bottom-up
information advertisement and top-down coordination to be a
useful framework in general. In future work, this framework
may be applied to other kinds of optimization methods such
as heuristics to improve their performance and scalability.
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[35] S. Schneider, S. Dräxler, and H. Karl, “Trade-offs in dynamic resource
allocation in network function virtualization,” in IEEE GLOBECOM
Workshops. IEEE, 2018, pp. 1–3.

[36] Cloud Native Computing Foundation, “Kubernetes: Production-grade
container orchestration,” https://kubernetes.io/ (accessed Jan 31, 2020),
2020.

[37] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” in
Classic Papers in Combinatorics. Springer, 2009, pp. 243–248.

[38] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” Journal of the ACM (JACM),
vol. 19, no. 2, pp. 248–264, 1972.

[39] G. Optimization, “Gurobi solver,” https://www.gurobi.com/, 2020.
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