
Automated Factorization of Security Chains
in Software-Defined Networks

Nicolas Schnepf, Rémi Badonnel, Abdelkader Lahmadi, and Stephan Merz
Université de Lorraine, CNRS, Inria, LORIA

Campus Scientifique, Villers-les-Nancy, France
{schnepf, badonnel, lahmadi, merz}@inria.fr

Abstract—Software-defined networking (SDN) offers new per-
spectives with respect to the programmability of networks and
services. In particular in the area of security management, it may
serve as a support for building and deploying security chains
in order to protect devices that may have limited resources.
These security chains are typically composed of different security
functions, such as firewalls, intrusion detection systems, or data
leakage prevention mechanisms. In previous work, we suggested
the use of techniques for learning automata as a basis for
generating security chains. However, the complexity and the
high number of these chains induce significant deployment and
orchestration costs. In this paper, we propose and evaluate
algorithms for merging and simplifying these security chains in
software-defined networks, while keeping acceptable accuracy.
We first describe the overall system supporting the generation
and factorization of the security chains. We then present the
different algorithms supporting their merging, and finally we
evaluate the solution through an extensive set of experiments.

Index Terms—Security Management, Software-Defined Net-
working, Chain Synthesis, Merging Methods

I. INTRODUCTION

The interest in software-defined networking (SDN) is
mainly due to its facilities for programming and managing
networks and services [1], [2]. The SDN paradigm decouples
networks into a data plane and a control plane. The data plane
typically corresponds to programmable switches deployed in
the network, while the control plane supports the configuration
of these switches by one or several controllers that can react
to network events and adapt the network configuration to
specific contexts. The south-bound interface relies on dedi-
cated protocols, such as the OpenFlow protocol, while the
north-bound interface benefits from higher level languages,
such as the Pyretic language [7]. This language, part of the
Frenetic framework [8] and embedded in Python, is intended
for configuring the controller and describing the forwarding
strategies. A Pyretic program is compiled into low-level rules
that are interpretable by switches.

In the area of security management, this programmability
brings flexibility to the deployment and adjustment of security
mechanisms in network infrastructures. In particular, it enables
dynamically building and orchestrating chains that compose
different security functions. For instance, these security func-
tions may include firewalls, intrusion detection systems, and
data leakage prevention mechanisms. They may directly be
implemented on the SDN layer or be provided as middleboxes

using network function virtualization. They can be used to
observe and protect applications on devices that may have
restricted resources, such as mobile devices and connected
objects. While it is possible to automatically build security
chains that are consistent and satisfy security properties, it
may generate numerous and complex security chains and result
in several thousands of rules even for simple configurations.
In order to reduce the complexity of security chains that
are to be deployed on an SDN platform, we propose in this
paper an automated method for factorizing security chains. The
objective is to support efficient merging and simplification of a
set of security chains while still providing adequate protection
to applications. Our main contributions in this paper are: (i)
designing the overall architecture supporting the factorization
of security chains in software-defined networks, (ii) specifying
dedicated algorithms for factorizing a set of security chains
and their security functions, (iii) implementing a proof-of-
concept prototype in Python and Prolog, and (iv) evaluating
its performances through experiments carried out in Android
environments.

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of existing work related to security
chains. Section III provides some important background with
respect to the model and generation of security chains in
our context. Section IV describes the proposed factorization
approach, through the description of the considered architec-
ture and the specification of algorithms. Section V gives a
performance evaluation of our solution. Section VI concludes
the paper and points out future research perspectives.

II. RELATED WORK

Constructing security chains is an important topic that has
been covered quite extensively in the literature. Hurel et al.
[3], [4] have shown the benefits of building such chains that
can be partially deployed on cloud or fog infrastructures, to
support the protection of end-user devices. Techniques for
chaining service functions such as [5] support the composition
of virtualized network functions, including security functions,
and benefit from deployment optimization techniques. Another
approach consists in synthesizing security chains depending
on intended properties: in [6] we proposed a logical system
based on constraint programming for the automated generation
of security chains. Nevertheless these approaches do not978-3-903176-15-7 c© 2019 IFIP

374



address the case where several chains have to be generated
or orchestrated to gather in a virtual environment.

There also exists interesting work on high level languages
dedicated to programming SDN controllers with support for
verification. In particular, the Pyretic language, part of the
Frenetic family of SDN programming languages [7], [8],
provides a simple and intuitive syntax for specifying security
policies at the level of a SDN controller. It includes an
extension, called Kinetic [9], for the verification of the control
plane in software-defined networks. We previously introduced
a complementary technique [10] for verifying both the control
and the data plane. These techniques aim at verifying security
chains a posteriori, while our current work aims at methods
that build security chains that ensure certain properties a priori.

Complementary to formal verification the placement of
security chains depending on network resources is also a
challenging research problem. In [11] authors proposed an
interesting approach for the efficient provisioning of security
chains in SDN; nevertheless this work only concerns place-
ment of single chains and do not consider the case where
several chains have to be placed. In [12] authors proposed
another interesting approach for provisioning security func-
tions based on application requirements; nevertheless this work
again focus on optimizing single chains, placing large sets of
chains remains a lacking problem in the literature.

III. BACKGROUND ON SECURITY CHAINS

Before we present our factorization algorithms, we explain
how we represent security chains and introduce relevant
notation. A security chain c corresponds to a graph whose
vertices are security functions, such as firewalls, intrusion
detection systems (IDS) and data leakage prevention services
(DLP) that are applied to the network traffic [4]. In the
following, we assume for simplicity that a given chain contains
at most one security function of any given type, and our
algorithms preserve this property. This assumption is however
not fundamental to our approach. A chain c is characterized
by the two attributes c.secFunctions , representing the set
of security functions it contains, and c.edges representing
the links between these security functions. The operation
c.getTypes() retrieves the types of security functions in
c, while c.getSecFunction(tp) returns the (unique) security
function of the chain corresponding to a given type tp.

Each security function sf is characterized by three at-
tributes: sf .type , sf .rules and sf .default . The sf .type at-
tribute indicates the type of the security function, such as
stateless firewall. The sf .rules attribute contains a dictionary d
of rules. Each rule r has two attributes r .guard and r .action .
The actions are indexed based on their corresponding guard
in the dictionary. We can retrieve the set of keys of the dictio-
nary with the d .getKeys() operation. Finally, the sf .default
attribute defines a default action to be applied, when there is no
guard that matches the traffic. The behavior of a security func-
tion is as follows: incoming network traffic is matched against
the rules of the security function. If some guard matches the
traffic, then the security function applies the corresponding

action. If no guard matches, it applies the default action. When
multiple guards match, one of the corresponding actions is
chosen according to a prioritization based on the index in
the dictionary. Each edge e is characterized by two attributes
corresponding to its source e.src and its destination e.dst to
interconnect security functions.

The security functions are modeled with the Pyretic lan-
guage for the sake of compatibility with our previous work,
nevertheless they can be supported by moderner SDN pro-
gramming languages. Security chains can be composed in
sequence and in parallel. These operations may also be applied
to individual security functions, considered as singleton chains.
The sequential composition c1 � c2 of two security chains
c1 and c2 leads to a composite security chain where all
packets accepted by c1 are then forwarded to c2. Similarly, the
parallel composition operation c1 + c2 leads to a composite
security chain where all packets are analyzed in parallel
by c1 and c2. Security chains are instantiated for software
defined networks supporting the Pyretic language. The security
functions that compose them are directly implemented on
SDN switches that enable packet forwarding, blocking, and
counting. Advanced analysis techniques such as deep packet
inspection are obtained by forwarding packets to the controller,
which is natively supported by the Pyretic framework.

A. Baseline approaches for the combination of chains

In the context where several applications would be protected
in parallel we would have several security chains requiring to
be combined. Before introducing our factorization algorithm
we will point out two approaches that serve as baselines.

A first naive approach for combining chains consists in
composing a set of security chains in parallel using the
composition operator + provided by Pyretic. We refer to
this approach as the parallel merging of chains. Whereas its
implementation is simple, this solution generates a number
of security functions that grows linearly with respect to the
number of applications to be protected. The number of security
functions as well as security rules is kept unchanged with
respect to the initial set of security chains. The only benefit is
that it leads to a single security chain to be deployed.

A second approach, that we call grouped merging, con-
sists in applying the behavior learner and inference engine
simultaneously for a set of applications. Given a fixed set of
types of security functions, this approach bounds the number
of functions that will be generated, since we generate at
most one function per type. However, it introduces additional
complexity with respect to some security functions, such as
data leakage prevention, which combines properties related to
network traces with the permissions associated with applica-
tions. The corresponding rules are therefore generated based
on the Cartesian product of the unsafe IP destination addresses
to be matched and the data to be protected. When multiple IP
addresses and multiple permissions need to be considered, this
leads to a quadratic number of rules. Moreover, the Cartesian
product changes the semantics of the generated security chain
compared to individual chains. Instead of associating the

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 375



unsafe addresses of an application with the corresponding
permissions, each unsafe IP address is associated with each
permission, which may result in an overly restrictive chain.

IV. AUTOMATED FACTORIZATION OF SECURITY CHAINS

We described a technique for inferring security chains based
on learning finite automata (Markov models) that represent
the network behavior of an Android application, in previous
work [13]. This approach tends to generate a high number
of security chains, and we therefore propose algorithms for
combining a set of chains into a single synthetic chain. Our
algorithms can however be useful for merging chains that
are constructed in a different way. We will briefly describe
the system that we propose for constructing chains and then
present the factorization algorithms. Our case study is focused
on Android applications, but the overall ideas apply to other
networked environments as well.

A. Overview of the considered system

The overall system that we propose is driven by an or-
chestrator interacting with different components to analyze the
behavior of applications, generate adequate security chains and
factorize them into a single security chain. This security chain
is then deployed by a controller in the SDN environment using
programmable switches. The main components are the orches-
trator driving the system, the learner building the behavioral
model of applications, the generator inferring security chains,
the storage manager storing security chains, and the factorizer
that merges security chains.

stl fw = R(1,1) + R(1,2) + R(1,3) + . . .+ R(1,n1)

ids = R2,1) + R(2,2) + R(2,3) + . . .+ R(2,n2)

stf fw = R(3,1) + R(3,2) + R(3,3) + . . .+ R(3,n3)

+match(dstip = 45 .67 .89 .123 )�
(TCPFilter +HTTPFilter)

dlp = R(4,1) + R(4,2) + R(4,3) + . . .+ R(4,n4)

dpi = R(5,1) + R(5,2) + R(5,3) + . . .+ R(5,n5)

chain = stl fw � ids � stf fw � dlp � dpi

Figure 1. Example of a security chain generated for protecting a given
Android application.

The behavior learner receives network traces that are pro-
duced by Android applications, captured using dedicated net-
work probes. It builds finite automata characterizing the appli-
cations to be protected. This analysis can be performed offline,
assuming that application behaviors are reasonably stable.
The chain generator interprets these models, determines their
properties, and automatically generates corresponding security
chains, relying on logical inference rules. Since security chains
are inferred for each model separately, a large number of
chains may be generated, and each chain may contain many
rules. An example of a simple chain generated by the behavior
learner to protect an application is given in Fig. 1 where

R(i,j ) denotes rules indexed on the index of the security
function and of the rule. This security chain is composed
of five security functions, a stateless firewall noted stl fw ,
an intrusion detection system noted ids , a stateful firewall
noted stf fw , a data leakage prevention service noted dlp
and a deep packet inspection service noted dpi . Each security
function is specified by indicating its rules. In this simple
example, the overall chain is obtained by composing the
security functions in sequence. The performance bottleneck is
the behavior learner: it can take minutes to elaborate the finite
automata of an application. After generation, security chains
are stored in a database, where they are indexed based on the
name of the application for which they were generated. Thus,
learning and inference are decoupled from the factorization
and deployment of security chains, and chains can be looked
up efficiently at run time.

B. Factorizing security chains

The objective of factorizing security chains is to transform
a set of security chains into a single one. It aims at minimizing
the overall number of security functions that are involved in
the protection of an Android device and its applications, but
also to reduce the number of rules that are required to define
these security functions. In contrast with the two baseline
approaches presented in the previous section, our merging
approach consists in factorizing a set of security chains,
after having generated them. It is based on two algorithms:
merge functions (Algorithm 1) produces a single security
function from two given functions, while merge chains (Al-
gorithm 2) factorizes two entire security chains. In order to
handle potential conflicts when combining two functions that
may have contradictory rules for certain network traffic, we
assume given priorities amongst rules, abstractly represented
by an operator ≤r where smaller rules have higher priority.
Different realizations of ≤r can be implemented by the
network administrator, such as taking into account the level
of reliability of the IP destination addresses.

Algorithm 1 takes two security functions sf1 and sf2 (as-
sumed to be of the same type) as inputs. It first retrieves the
sets of guards of sf1 and sf2 and evaluates their intersection
and symmetric difference. Rules whose guards do not have a
counterpart in the other function cannot be in conflict. They are
are therefore simply added to the resulting function. For guards
that appear in both security functions, the priorization operator
≤r is used to decide which action should be associated to the
guard in the resulting security function. Algorithm 2 merges
two security chains c1 and c2 and relies on the previous
algorithm. It first identifies the security functions that have
the same type in both security chains. It applies Algorithm 1
in order to merge these functions. Security functions of a
type that has no counterpart in the other chain are simply
added to the resulting chain. Finally, the edges of the resulting
chain are built based on those of the considered security
functions described in the input chains. By repeatedly applying
Algorithm 2 to the chains generated for a set of Android appli-
cations, we obtain a single chain for protecting all applications.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference376



Algorithm 1 Factorization of security functions.
function MERGE FUNCTIONS(sf1, sf2 : SecFunction)

. Build the rules appearing in only one function
guards1 := sf1.getKeys()
guards2 := sf2.getKeys()
rules := new Dictionary()
for g ∈ guards1 \ guards2 do

rules.put(g , sf1.rules.get(g))
end for
for g ∈ guards2 \ guards1 do

rules.put(g , sf2.rules.get(g))
end for

. Add the rules matching the same network traffic
for g ∈ guards1 ∩ guards2 do

r1 := sf1.rules.get(g)
r2 := sf2.rules.get(g)
if r1 ≤r r2 then

rules.put(g , r1)
else

rules.put(g , r2)
end if

end for
return new SecFunction(sf1.type, rules)

end function

C. Examples of merged security chains

We will illustrate the chains obtained using the different
approaches discussed previously, using a simple example.
Consider three Android applications app1, app2 and app3. The
behavior learner builds Markov models for each application
based on the traces collected by network probes and on
the permissions requested by each application. From these
models, the chain generator infers a security chain, expressed
in Pyretic, for each application. The example shown in Fig. 1
corresponds to the chain generated for protecting the first
application app1. Similar security chains are generated for
protecting the applications app2 and app3. For simplicity, we
will focus on the security rules related to the data leakage
prevention (DLP) security functions that these security chains
contain. We will denotes the guards of security rules by
Gi and the corresponding actions by Aj but these abstract
model of rules can be implemented in Pyretic or in any other
SDN programming language. Parallel merging will result in
a single security chain, part of which appears in Fig. 2. It is

dlp1 = G1)� A1) +G2)� A1)

dlp2 = G1 � A1) +G1)� A2 +

G3)� A1) +G3)� A2) +

G4)� A1) +G4)� A2)

dlp3 = G5)� A3) +G6)� A3)

Figure 2. Extract of a security chain resulting from parallel merging.

Algorithm 2 Factorization of security chains.
function MERGE CHAINS(c1, c2 : SecChain)

res := new SecChain()
. Factorize security functions having the same type

for sf1 ∈ c1.secFunctions, sf2 ∈ c2.secFunctions do
if sf1.type = sf2.type then

sf := MERGE FUNCTIONS(sf1, sf2)
res.secFunctions.add(sf )

end if
end for

. Add remaining functions to the result
for sf ∈ c1.secFunctions \ res.secFunctions do

if sf .type /∈ c2.getTypes() then
res.secFunctions.add(sf )

end if
end for
for sf ∈ c2.secFunctions \ res.secFunctions do

if sf .type /∈ c1.getTypes() then
res.secFunctions.add(sf )

end if
end for

. Add the proper connecting edges to the result
for cn ∈ c1.edges do

src := res.getSecFunction(cn.src.type)
dst := res.getSecFunction(cn.dst .type)
cn := new Edge(src, dst)
res.edges.add(cn)

end for
for cn ∈ c2.edges do

src := res.getSecFunction(cn.src.type)
dst := res.getSecFunction(cn.dst .type)
cn := new Edge(src, dst)
res.edges.add(cn)

end for
return res

end function

formed by composing in parallel three DPL security functions,
noted dlp1, dlp2, and dlp3. The security rules associated to
each security function are unchanged from the initial set of
security chains. In this example, we obtain a chain containing
3 security functions and 10 security rules.1 As we explained
previously, grouped merging involves building the Cartesian
product of IP addresses and permissions for constructing the
combined chain. In our example, assuming that IP addresses
and permissions of the considered applications are distinct, we
obtain a single DPL security function containing 18 security
rules. In contrast, merging the chains using Algorithm 2
factorizes both security functions and their constituent rules.
The DLP security function of the resulting chain is shown in
Fig. 3: we obtain a single function containing 9 rules, which
is smaller than the results of the two other approaches.

1Observe that parallel merging will typically lead to chains that contain
several functions of the same type.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 377



dlp = G1)� A1) +G2)� A1) +

G1)� A2) +G3)� A1) +

G3)� A2) +G4)� A1) +

G4)� A2) +G5)� A3) +

G6)� A3)

Figure 3. Extract of a security chain obtained using factorized merging.

V. PERFORMANCE EVALUATION

The proposed system has been implemented in Python.
It includes a total of 8869 lines of code, including the
implementation of the three merging approaches. The chain
generator implemented in SWI-Prolog (version 7.6.4) is based
on the logical inference rules described in [6] for generating
the initial security chains. We evaluated the performances of
the proposed solution through an extensive set of experiments.
The experimental setup was based on a MacBookPro laptop
with an Intel Core i7 (2.5 GHz) processor and 16 GB of
RAM. During these experiments, we considered a set of log
files (more than 7000 network flows) captured from Android
applications summarized in Table I. In order to compare the
performances of the merging approaches, we considered the
following evaluation criteria:

• the complexity of the resulting security chains, measured
as the numbers of security functions and rules;

• the overhead induced by the proposed system in terms
of response times;

• the detection accuracy of the security chains.

A. Complexity of security chains

In a first series of experiments we are interested in evalu-
ating the complexity of security chains, with respect to the
number of security functions and rules. We compared the
three different approaches: parallel merging, which simply
composes chains in parallel after their generation, grouped
merging, which directly generates a security chain for a set
of applications to be protected, and finally factorized merging
where the chains are invidually generated for each application

Table I
ANDROID APPLICATIONS CONSIDERED DURING EXPERIMENTS, WITH

STATISTICS ON THEIR FLOWS, SECURITY FUNCTIONS (SF) AND RULES.

App. # flows # IP/ports # sf # rules
disneyland 282 5 4 44
dropbox 1000 17 5 311
faceswitch 151 30 5 425
lequipe 1000 208 4 1640
meteo 1000 89 4 716
ninegag 1000 124 4 930
pokemongo 275 24 5 485
ratp 779 3 4 28
skype 1000 442 5 6529
viber 1000 176 5 4163

Table II
NUMBER OF RULES OF THE DIFFERENT SECURITY CHAINS.

App. Parallel merging Grouped merging Factorized merging
1 311 311 311
2 1951 3987 1947
3 2376 6033 2367
4 2420 6153 2407
5 3136 8289 3119
6 3164 8361 3143
7 9693 25949 9667
8 13856 51041 13825
9 14341 61181 14305
10 15271 71147 15231

and are then combined using the proposed algorithms. The
obtained results with respect to the number of security rules
are synthesized in Table II, plotting the total number of
security rules for the three different approaches. The curves
corresponding to the parallel and factorized merging turned
out to be identical during these experiments, although they
may differ in general, depending on the level of redundancy
amongst rules. As expected, we can observe that the number
of security rules for the first and third approaches (parallel and
factorized merging approaches) grows linearly as a function of
the number of applications to be protected, while this number
grows quadratically with the second approach (grouped merg-
ing approach). As previously mentioned, this phenomenon
can be explained by the fact that some security rules, such
as the ones related to data leakage prevention, rely on the
Cartesian product of parameters, such as IP addresses and
application permissions. The number of security functions (not
shown in the figure) grows linearly with the parallel merging
but is constant with the grouped and factorized merging
approaches. These experiments clearly show the benefits of
the factorization algorithms for minimizing the numbers of
security functions and security rules in the security chain.

B. Overhead of merging chains

In a second series of experiments we quantify the overhead
of the proposed system in terms of response time. The ob-
jective is to evaluate the feasibility of the proposed solution
in practice. These results do not include the learning phase
related to the building of Markov models, but they include
the time taken by the inference engine. The response times of
the three different generation methods are not presented here,
nevertheless we can clearly observe that the overhead of factor-
ized merging compared to naive parallel merging is negligible.
Grouped merging provides better performances than either
parallel or factorized merging, this is due to the fact that there
is only one chain generated for the entire set of applications.
The downside to grouped merging is that is also requires
an execution of the learning phase just before the chain
inference. Assuming that chains for individual applications can
be retrieved from the database, a more realistic comparison
of the response times of grouped and factorized merging
appears in Table III: the overall time including the additional

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference378



Table III
OVERALL TIME FOR GROUPED AND FACTORIZED MERGING.

App. With learning time With database retrieval
1 32.798 0.473
2 421.186 1.042
3 473.458 1.484
4 483.122 1.924
5 635.582 2.413
6 641.354 2.863
7 999.467 3.557
8 1181.953 4.189
9 1226.743 4.634
10 1421.65 5.139

learning phase of grouped merging dominates that required by
factorization by more than two orders of magnitude.

These results clearly illustrate the fact that learning Markov
models at runtime is not feasible. In our overall architecture,
we suggest that Markov models and security chains for in-
dividual applications be computed proactively and that the
security chains be stored in a database. Depending on the
applications that are active on the device, the corresponding
security chains are loaded and merged into a single chain
that is then deployed by the SDN controller. Assuming that
applications are stable over a relatively long period, the cost
of learning can thus be amortized over several phases of
deployment.

C. Accuracy of the security chains

Our third series of experiments addresses the accuracy
of the security chains with respect to detecting attacks or
misbehavior. We quantify accuracy using the numbers of
true/false positives and true/false negatives observed for the
security chains. More precisely, we measure accuracy as the
ratio between the sum of true positives and true negatives vs.
the number of flows. During the experiments, we considered
the case of a simple port scanning attack of 50 flows. We
used the first 70% of the application logs for the learning
phase, while the remaining 30% was used for the evaluation
of accuracy. To evaluate the accuracy of the individual chains,
we fixed a certain detection rate, defined as the number of
flows corresponding to an attack that must be observed before
blocking the traffic to the concerned IP address. We varied
this detection rate in order to measure the average, minimum
and maximum values of accuracy, that are synthesized in the
first, third and fourth columns on Table. IV. We can observe
that this accuracy may highly differ from one application to
another, due to the profile of applications.

We wanted also to quantify whether the merging approaches
had an impact on this accuracy. We performed the same exper-
iments, but considering each of the three security chains pro-
duced by the different merging approaches (parallel, grouped
and factorized). We expected that the grouped merging ap-
proach induced degraded accuracy performances. This was not
the case: the performance results were equal for the three
merging approaches with our data set, and were identical
to the performances provided by the security chains taken

Table IV
ACCURACY OF INDIVIDUAL AND MERGED SECURITY CHAINS WITH

RESPECT TO EACH APPLICATION TO BE PROTECTED.

App. Avg. Acc. Avg. Acc. Min. Max.
(indiv.) (merg.) Acc. Acc.

disneyland 0.992 0.992 0.986 1.000
dropbox 0.997 0.997 0.993 1.000
faceswitch 0.812 0.812 0.518 0.990
lequipe 0.518 0.518 0.496 0.537
meteo 0.837 0.837 0.510 0.998
ninegag 0.509 0.509 0.498 0.526
pokemongo 0.743 0.743 0.512 0.994
ratp 0.940 0.940 0.692 0.999
skype 0.998 0.998 0.998 0.998
viber 0.683 0.683 0.502 0.997

individually. We expected this to be the case for the parallel
and factorized merging approaches which largely preserve the
behavior of the individual security chains. The obtained results
may be explained by the fact that applications mostly contact
distinct IP addresses, which minimizes potential conflicts with
respect to security rules. The average accuracy values for each
of the three merged security chains are represented by a single
column (second column) in Table IV. This one clearly shows
that the merging approaches preserved accuracy performances.
The same phenomenon was observed for the minimum and
maximum accuracy values.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed in this paper an automated method
for factorizing security chains in software-defined networks.
This method is intended as a complement to the inference-
based generation techniques we proposed in earlier work.
The factorization algorithms presented here are designed to
compose several security chains into a single one in order to
minimize the number of security functions and rules while
preserving the semantics of the original chains. The presented
algorithms have been implemented in Python and have been
integrated into our proof-of-concept prototype that also con-
tains the learning and inference components. The performance
of this implementation has been evaluated through a series
of experiments. In particular, we have compared different
approaches to factorizing security chains in terms of the
complexity of the resulting chains, their accuracy, and the
overhead incurred in computing the combined chains. The
proposed factorization method is able to minimize the number
of security functions and rules. It also facilitates the building
of security chains at runtime, through a decoupling from the
generation of individual chains.

As future work, we are interested in performing com-
plementary experiments with more elaborated attacks, based
on additional datasets collected from Android applications,
but also other constrained environments, such as connected
objects. We are also planning to pursue our efforts on formal
verification and to investigate different optimization techniques
for supporting the deployment of these security chains.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 379



REFERENCES

[1] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN, an
Intellectual History of Programmable Networks,” SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87–98, 2014.

[2] N. Feamster and H. Kim, “Software-Defined Networks: Improving
Network Management with SDN,” in IEEE Communications Magazine,
February 2013.

[3] G. Hurel, R. Badonnel, A. Lahmadi, and O. Festor, “Towards Cloud
Based Compositions of Security Functions for Mobile Devices,” in
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM’15), 2015.

[4] ——, “Behavioral and Dynamic Security Functions Chaining for An-
droid Devices,” in Proceedings of the 11th IFIP/IEEE/ACM SIG-
COMM International Conference on Network and Service Management
(CNSM’15), 2015.

[5] A. F. Ocampo, J. Gil-Herrera, P. H. Isolani, M. C. Neves, J. F.
Botero, S. Latré, L. Zambenedetti, M. P. Barcellos, and L. P. Gaspary,
“Optimal Service Function Chain Composition in Network Functions
Virtualization,” in Proceedings of the IFIP International Conference on
Autonomous Infrastructure, Management and Security (IFIP AIMS’17).
Springer International Publishing, 2017, pp. 62–76.

[6] N. Schnepf, S. Merz, R. Badonnel, and A. Lahmadi, “Rule-Based
Synthesis of Chains of Security Functions for Software-Defined Net-
works,” in Proceedings of the 18th International Workshop on Automated
Verification of Critical Systems (AVOCS’18), 2018.

[7] N. Foster, M. J. Freedman, A. Guha, R. Harrison, N. P. Kata, C. Mon-
santo, J. Reich, M. Reitblatt, R. Jennifer, C. Schlesinger, A. Story, and
D. Walker, “Languages for Software-Defined Networks,” in Software
Technology Group, 2016.

[8] N. Foster, M. J. Freedman, R. Harrison, C. Monsanto, and D. Walker,
“Frenetic, a Network Programming Language,” in Proceedings of the
16th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’11), 2011.

[9] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable Dynamic Network Control,” in Proceedings of the
12th USENIX Conference on Networked Systems Design and Implemen-
tation (NSDI’15), 2015.

[10] N. Schnepf, S. Merz, R. Badonnel, and A. Lahmadi, “Automated
Verification of Security Chains in Software-Defined Networks with
Synaptic,” in Proceedings of the 3rd IEEE Conference on Network
Softwarization (NetSoft’17), 2017.

[11] A. S. Sendi, Y. Jarraya, M. Pourzandi, and M. Cheriet, “Efficient
provisioning of security service function chaining using network
security defense patterns,” IEEE Transactions on Services Computing,
p. 1, 2017. [Online]. Available: doi.ieeecomputersociety.org/10.1109/
TSC.2016.2616867

[12] R. Doriguzzi-Corin, S. Scott-Hayward, D. Siracusa, and E. Salvadori,
“Application-centric provisioning of virtual security network functions,”
in Proceedings of the 3rd IEEE Conference on Network Functions
Virtualization and Software Defined Networking (IEEE NFV-SDN 2017),
2017.

[13] N. Schnepf, S. Merz, R. Badonnel, and A. Lahmadi, “Towards Gener-
ation of SDN Policies for Protecting Android Environments based on
Automata Learning,” in Proceedings of the 16th Network Operations
and Management Symposium (IEEE/IFIP NOMS’18), 2018.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference380


