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Abstract—Internet of Things (IoT) has become a common
paradigm for different domains such as health care, trans-
portation infrastructure, smart homes, smart shopping, and e-
commerce. With its interoperable functionality, it is now possible
to connect all domains of IoT together to provide comprehensive
services to the users. Because numerous IoT devices can connect
and communicate at the same time, there can be events that
trigger conflicting actions for an actuator or an environmental
feature. This paper provides a formal method approach, IoT
Confict Checker (IoTC2), to ensure safety of controller and
actuators’ behavior with respect to conflicts. Any policy violation
results in detection of the conflicts. We define the safety policies
for controller, actions, and triggering events and implement them
in Prolog to prove the logical completeness and soundness. In
addition to that, we have implemented the detection policies in
Matlab Simulink Environment with its built-in Model Verification
blocks. We created a smart home environment in Simulink
and showed how the conflicts affect actions and corresponding
features. The scalability, efficiency, and accuracy of our method
are tested in this simulated environment.

Index Terms—Internet of Things(IoT), Formal Method, Con-
flicts, Policies, Simulation, Safety, Security

I. INTRODUCTION

Recently, the security of Internet of Things (IoT) has
become a hot topic in the technology community. The de-
ployment and application of IoT devices covers a variety
of fields, ranging from the smart homes to transportation
management system. It is projected that there will be as many
as 50 billion connected devices by 2020 [1]. IoT presents a
unique advantage in that is connects devices within and across
domains, e.g. smart homes, traffic route guidance systems,
shopping systems, ride sharing, and parking management
systems. IoT applications and devices share required data and
provide unified services to the users.

However, the distributed nature of IoT leaves devices and
communication channels exposed to attackers and many of
these devices and protocols are resource-constrained. This,
combined with the fact that many of these devices receive
infrequent updates leaves them highly susceptible to attack. An
attacker can trigger an event that leads to conflicting actions for
the same object or feature of the environment. As for example,
an attacker can create multiple events that trigger a thermostat
to increase and decrease temperature of a room at the same
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time. Sending two different commands in the thermostat at
the same time continuously can damage it, by artificially
shortening the device’s lifespan. In this way, the attacker not
only damages an asset, but also may drive the occupants of
the room to leave due to fluctuations in the comfort level of
the room. Moreover, misconfiguration is possible as there are
numerous rules or policies for taking actions by the controllers
after events have occurred.

Attackers can leverage these conflicts and vulnerabilities to
gain physical access to a smart building. For example, an at-
tacker may compromise a carbon monoxide sensor and falsely
trigger the alarm indicating the presence of carbon monoxide,
which in turn sends a command to the smart windows to
open allowing fresh air into the building. Occupants will leave
the building due to the alarm. A thief can target the opened
windows to enter the building. Additionally, an attacker can
create series of attacks (cascading attack) [2]. Even with IoT
technology in the early stages of development and deployment,
the guarantees of maintaining safe and secure operation of an
environment through IoT devices can attract more users. Even
legacy, or dumb devices can be attached to the system and be
operated through a controller.

Due to the limited computational and memory capacities
of IoT devices, it is not always possible to secure and
monitor each and every device and communication channel. A
controller or a group of controllers provide the computational
and storage capacity to make decisions based on events coming
from the edge devices (i.e. sensors) and issue commands to
the appropriate actuators. The automated decisions made by
a controller may try to command a device which is already
performing a different action. Moreover, devices connect to
the IoT controller intermittently. Events can occur any time
or an attacker can force specific events to happen in order to
take advantage of misconfigurations (i.e. rule conflicts) in the
IoT system. Furthermore, the operational policies for an IoT
system can change over time based on the requirements of
the building and its occupants. Hence, it is important to check
whether a recently triggered event causes a conflict based on
the ruleset that is stored in the controllers. ProvThings [3] pro-
poses a provenance-based approach for explaining anomalies
in IoT systems. ProvThings and IoTC? can work in concert to
provide a solid security foundation for IoT systems.



In this paper, we propose IoTC?2, a formal methods approach
to ensure safety properties for the controllers and actuators in
an [oT system. The main contributions of the paper are:

« a formal approach to defining the safety properties of an
IoT system

« a technique for detecting conflicts within the rulesets of
the IoT system that violate the safety properties of the
system

« an implementation of IoTC? that can be used in real-time
to ensure the safety of the IoT system

An IoT system provider, or the app developer, can leverage
our framework while writing rules for an IoT system. Once
the conflict creating actuators/controllers are distinguished by
our framework, the app developer can modify operational
rules to avoid the conflicts as much as possible. Furthermore,
IoT vendors can instrument the controller or app with our
policies to monitor how many safety property violations have
occurred in an IoT environment. This helps in classifying and
differentiating anomalies in an IoT system. It should also be
noted that actuation commands are issued from the controllers.
Hence, multiple controllers that try to command the same
actuator are in scope for this work. IoTC? contains all the
rules for the IoT system so that when events trigger a rule
or a set of rules, [oTC? makes sure the safety properties are
maintained. When a violation of the safety properties occurs,
it is due to conflicts in the rules defined for the system. The
framework is also capable of detecting conflicts that are caused
by misconfiguration of operational rules. The conflicts are
detected even before the conflicting actions take place. IoTC?
can identify the specific type of violation that has occurred. We
have implemented an IoT environment simulation in Matlab’s
Simulink environment to understand the impact of conflicts in
an [oT system.

II. I0TC?2 FRAMEWORK

The architecture of the IoTC? is shown in Figure 1. All
of the rules used for operation in each controller of the IoT
system are the input for [oTC2. Whenever there is a change in
any rule or an additional rule is added to a controller, it is also
configured in I0TC2. As mentioned earlier, because these rules
are generated by a human, they are finite in number. Therefore,
it is feasible to accommodate all rules in IoTC?. The second
type of input for our framework is the sensor measurement
with timestamps. To start, our framework receives copies of
the traffic from the sensors to the controllers. As soon as IoTC?
receives the sensor measurement, by using the rules from
the controller, IoTC2 determines what actions the controller
will emit for the actuators. Next, [oTC? determines the list
of actuators, affected features, and issuing controllers. Using
these lists, IoTC? determines whether or not these activities
violate the safety properties (or create conflicts) within the
IoT system. IoTC? has the capability to output the number of
conflicts and their type in the IoT system.
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Fig. 1: IoTC? Framework for Conflict Detection

III. FORMAL METHOD FOR DETECTING CONFLICTS

In this section, we present our formal method for detecting
safety property violations in IoT systems. In the following
description, we rely on the notation defined in Table 1. We
start by defining some general properties of the IoT system
model, events, triggers, and actions.

Notation | Explanation

eﬁ Event ¢ generated at time ¢

ai;{f n(t) | Actuator m taking action n on feature f at location [
cP Controller p

z’ Object =’ can be the same or different from object =
T Object £ must be different from =

TABLE I: Notation used

Definition 1: If there are features f, and f, such that
changes in f, affect f,, then these features are dependent. It
can be the case that feature f, and feature f, are not directly
dependent, however feature f, affects f, and f, affects f,. In
this case, f, is indirectly dependent on f,. Regardless, they
are noted as:

fe L f, (1)

Definition 2: If two events are the same or similar by

their characteristics and functionality and they occur within
a bounded time frame, these events are called overlapping
events. They are noted as:
o
=e 2)
Whenever two events are not overlapping, they are considered
disjoint events.

€1

A. Controller Safety Policies
The controller is a crucial component of an IoT system that
receives measurements from sensors and based on those mea-
surements, it generates actuation commands for the appropriate
actuators. We define the controller safety policies as follows:
o There are no two rules where two or more controllers can
trigger the same actuator at the same time.

Cri-((el = abl, Ia(E, =dl ) 3

meEcp,n me&cp,n’

An IoT system may have a number of rules where the same
actuator /m is controlled by more than one controller ¢, and
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cp. If the same actuator is accessed at the same time ¢, a
conflict occurs. The actions (denoted by subscript n and
n') on the actuators, and the affected features (superscript
f and f’) can be same or different, which does not change
this policy. The following are examples of conflict scenarios
that can be captured by this rule.

— A smoke detector and a water-leak detector (controlled
by different controllers) can each trigger an alarm. But
if the same alarm sounds at the same time, it will be
hard to distinguish which event triggered the alarm. The
policy formalized here restricts multiple controllers from
triggering the same action at the same time.

o There are no two rules where two controllers can trigger
actions that affect the same, or dependent, features at the
same time.

I, Lf
Cy: _'((62 = amfecp,n) A (65’ = a ] )

" m’Ecp,n’ (4)
ANf=FfVIE=1))

There can be more than one rule that can trigger different
actions (the subscript m and m’ denote different actuators).
However, these different actuators can impact the same,
or dependent features. The same features are identified
with =" . On the other hand, the notion 4 denotes the
dependency among two features f and f’. An example of
such violation a is:
— A window opener and a thermostat can be two different
actuators controlled by different controllers, but can affect
the same feature (temperature) of the room.

B. Multiple Action Trigger Policies

When an actuator is issued commands to perform multiple
actions at the same time, conflicts can occur. In order to
prevent conflicts, we have the following safety property:

o There are no two rules where two or more overlapping
events (from any sensor) can trigger multiple actions (dif-
ferent action n’ / opposite action 7 / dependent action 71)
on the same actuator.

m,n*

Cs: —((el = afg{fn) A (el = (aﬁnfn Aabf oAbt )

An action n on actuator m is the reference action and
any action (n/, @, or 72) other than n is considered as the
conflicting action on the same actuator m. An example of
this safety policy violation is given below:

— Both room one and room two have temperature sensors
but no thermostat. The corridor that joins both room has a
thermostat, but no sensor. Temperature decreases in room
one and temperature increases in room two can trigger the
same thermostat. Hence, the thermostat can be triggered
to increase the temperature and decrease the temperature
at the same time.

o There are no two rules where overlapping events can trigger

actions that affect the same or dependent features.

Cu: =((el = alf ) A (ehy = abl)

m,n m,n

ANGZPYA(f =)V (FL 1))

We differentiate two features by f and f’. There can be two
rules that get activated at the same time by two overlapping
events, resulting in two different actions, n and n. These
two actions affect features f and f’ which are either the
same or dependent. The following are examples of conflicts
when this safety policy is violated:

(6)

— Luminance level can be impacted by overlapping events.
Window blind and room lights are two different actuators
that impact luminance.

No two or more completely disjoint events can trigger
multiple action on the same actuators

C{,Z ﬁ((eﬁ = af”;zf,n) A (62/ = (aﬁnljﬁ N alyf v ai;l)iﬁ))

m,n*
- 0
A=(i = 1))
As disjoint events are not easy to relate, it is possible that

these are overlooked when devising the IoT operational
rules. Examples for such conflicts are:

(7

— Management can impose a rule stating that when it is
after 6 pm, the temperature need not be controlled.This
means that the temperature of a smart building will follow
the basic thermal model of the building. On the other
hand, movement in a room will trigger the thermostat
to increase/decrease the temperature for better occupant
comfort.

No two completely disjoint events can trigger multiple
actions that affect the same, or dependent features.

Co: ~((el = abf ) A (el = dbTy A= 2 )

M=)V £ )

Two rules can be triggered by completely disjoint events
at the same time. The actuator and its location are kept
unchanged by notation m and [, respectively. The actions
are differentiated by n and n/. At the same location and
with the same actuator, two features f and f’ got affected.
When these two features are dependent, f 2 f' will return
true.

®)

— A window opening or closing and a thermostat turning
on or off are two completely disjoint events that impact
the temperature of the room

C. Multiple Event Handling Policies

A controller actuates an IoT device when an event occurs.

There is relatively little control over how and when an event
is generated. However, the way multiple events are handled,
can be controlled. Therefore, we focus on formalizing event
handling policies. The formalization is as follows:

« No single sensor with single objective can create more
than one event within a specific time limit.
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Cr: =((ef = apl) A (€5 = af,) ©)

Here, two events ¢ and ¢’ are prohibited from same sensor
j within a time limit ¢’. A sensor might send the same
measurement to the controller more than once due to any
physical or communication issue. This should be handled
in a proper way so that same actions are not taken by the
same actuator.
A sensor can send same temperature measurement (e.g.
60F) twice to the controller within a 30 second interval.
The controller would instruct the thermostat to increase
the temperature by 10F each time it receives the input
from the sensor. Therefore, the temperature of the room
is increased to 8OF.

D. Completeness of IoT Safety Properties

Definition 3: If an 10T system, comprised of sensors $1...m,,
controllers cntrly . ,, and actuators a;._,, violates any safety
properties ci..p, a conflict ¢* € Con flict has occurred.

Completeness means that you can prove anything that’s true.
The safety policies were implemented using Prolog. If there
exists a conflict ¢* € Conflict in the IoT system operations,
IoTC? finds it using Selective Linear Definite-clause with
Negation as Failure SLDNF [4]. However, the Dept First
Search (DFS) strategy of Prolog makes it logically incomplete.
We followed the way proposed by [5] where the built-in dept-
first search of Prolog was overruled by iterative deepening. In
doing so, we have used tail-recursion. In each recursive call,
the number of actions triggered, or the controllers associated
with it, or the events that triggered the actions are stored in
three separate lists. In this way, the search space is being
completed in lists. Then this list is traversed to find the
conflicts in the system. Whenever, a resolution refutation is
found, our Prolog implementation finds it and adds O (zero)
to the accumulator rather than stopping the search process on
that node.

E. Soundness of IoT Safety Properties

Definition 4: The safety properties of IoTC? is sound, if for
all sensors sy, controllers cntrly . ,, and actuators a;__,, all
possible operations in the system are a subset of the authorized
operations allowed by IoTC?.

With the definition of soundness from 4, we can conclude
that all safety properties, expressed in conjunctive normal form
(CNF) make it logically sound as given in equation 10.

Cf!Cl/\CQ/\Cg/\C4/\C5/\CG/\C7 (10)

IV. EVALUATION

For our evaluation, we created an IoT environment us-
ing Matlab’s Simulink. The basic purpose was to observe
the interaction among the sensors, actuators, and controllers.
Simulink is a robust and widely accepted simulation tool
for power electronics, nuclear energy, manufacturing produc-
tion, aerospace, transportation, supply chain management, etc.
I0TC? was implemented in the Simulink testbed to monitor

the testbed and detect conflicts. We designed a smart house
with three rooms with corridors attaching each of the rooms.
The thermal model of the house was adapted from [6]. The
rooms have facilities for smoke detection, carbon monoxide
detection, smart lights, smart window shutters and blinds,
smart doors, etc. Operational rules for automating these IoT
devices are implemented using appropriate Simulink blocks.
We run each simulation several times to observe whether
IoTC? can detect conflicts in the smart house successfully.
We have used the built-in model verification blocks (e.g.,
Assertion, Check Dynamic Gap, Check Dynamic Range, etc)
of Simulink to help our detection. IoTC? outputs the total
count of each different type of detected conflict in a given
simulation step regardless of how many events have occurred
there. Not only are the detected conflicts shown, but also their
effects on features or actuators. The Simulink model for the
testbed is available in [7].

First, we evaluate the effects of conflicts on actuators or
the environment feature. Later, we discuss how well IoTC?
can detect the conflict in a simulated environment. Our first
experiment was conducted to observe the effects of conflicts as
mentioned in the example of equation 6. The simulation was
run for 500 units of time ( Figure 2(a)). The second experiment
observes the example mentioned for equation 8 and given in
Figure 2(b). The blue line indicates the expected temperature
reading while the red line indicates how much the temperature
reading deviates due to the conflicts. The third experiment
captures the impact on temperature as stated in the example
under equation 5. The temperature, as shown by the red line
in Figure 2(c), is the temperature of the corridor, calculated
by Simulink. The blue line is the temperature reading during
different period of time from room two.

At this point, we move our focus on counting the number
of conflicts in a given time by varying different parameters.
First, we consider the case where the same alarm (actuator)
gets triggered when smoke is detected or a water leak is
detected (operated by two controllers). We vary the probability
of smoke detection and water leak detection by a small
percentage in each time unit. The simulation was run for
2000 time units. It is shown in Figure 3(a) that the same
alarm gets triggered by different events at the same time with
the increase of simulation time. In the next experiment, we
count the number of times the window shutters of the smart
home are open and the thermostat turns on at the same time
(Figure 3(b)). Next, we run a simulation as if the humidity is
not affected by temperature. Then, we re-run the simulation
with humidity being dependent on temperature. As can be
seen in Figure 3(c) when there is greater temperature variation
outside the smart home, the humidifier inside the house gets
turned on and off more often. In our next experiment, as
shown in Figure 3(d), IoTC? counts the number of times the
luminance of a room exceeded a comfortable range due to
conflicting actions between the smart lights and the smart
window blinds. The next experiment measures the number
of conflicts between management rules and operational rules
as mentioned in the example under equation 7. As expected
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(Figure 3(e)), more actuations on the thermostat are needed
when conflicts occur. In our last experiment, IoTC? counts
the additional count of humidifier actuations due to conflicts
between operational rules and management rules. The results
are shown in Figure 3(f).

V. RELATED WORK

Most of the research efforts in IoT has been on management,
efficiency, interoperability, and deployment of these systems
in the real world. Recently, confidentiality, access control,
privacy, and trust issues of IoT technology have been discussed
in [8]-[10]. In IoTSAT [11], a formal framework was proposed
for security analysis based on device configurations, network
topologies, user policies, and IoT-specific attack surface. Re-
cently, the work by [12] proposes a verification framework
with satisfiable module theory (SMT) for a smart environment
with respect to event-condition-action (ECA). However, this
research did not propose either safety properties or address
conflicts for the smart environment. The work by [13] made
an effort classify conflicts into a set of finite categories. They
specified the relation among all building management rules
and classified all type of rule conflicts into five categories. Our
approach is quite different. Rather than classifying conflicts,
we specified safety properties for the components of IoT and
the violation of those properties leads to conflicts.

Some preliminary work in the areas of formal modeling and
verification for IoT driven domains has been done [14], [15].
The closest to this work in terms of detecting conflicts are
Depsys [16], and HomeOS [17]. Depsys specified and detected
conflicts after collecting the functionalities of 35 smart apps
used in smart home. It detects the conflicts after they have
occurred and in order to address the conflicts priorities have
been set to the apps so that no two apps can access the
same actuator. HomeOS is a large-scale application running
on a centralized server that enables devices to talk to one
another. That is, it acts as an event handler which aids in
resolving device conflicts. Our approach, on the other hand,
detects conflicts as soon as an event is generated which may
immediately cause an action or a set of actions that result in
conflicts. We have left the automated resolution of conflicts as
future work.

VI. CONCLUSION

The conflicts that are possible in IoT system are often
overlooked both in the design phase and during operations.
IoT is an automated system and hence the accumulated effects
of conflicts on an environment feature or actuator can have
more effects initially anticipated. The safety and security of
IoT systems is largely dependent of its conflict-less behavior.
Hence, the safety properties we formalized in IoTC? consider
conflicts as the preeminent threat to the safety and security of
IoT system. Furthermore, our model has shown how conflicts
can lead to additional actuations which eventually result in
more energy consumption. In addition to the contributions
mentioned above, we believe our proposed framework will
have significant impacts when employed in the policy monitor
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block of ProvThings [3]. However, the enforcement of the
proposed safety policies for a system is an open challenge. The
implementation of an inlined reference monitor (IRM) [18]
for enforcing the safety policies of our framework is another
interesting research direction. 10T systems are emerging more
and more in our daily life, and mechanisms are needed to
ensure that these systems are safe, secure, and energy efficient
if IoT systems are to be widely deployed and accepted.
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