
Normalization of Unstructured Log Data into
Streams of Structured Event Objects

Daniel Tovarňák
Institute of Computer Science

Masaryk University
Brno, Czech Republic
tovarnak@ics.muni.cz

Tomáš Pitner
Faculty of Informatics

Masaryk University
Brno, Czech Republic

tomp@fi.muni.cz

Abstract—Monitoring plays a crucial role in the operation
of any sizeable distributed IT infrastructure. Whether it is a
university network or cloud datacenter, monitoring information
is continuously used in a wide spectrum of ways ranging from
mission-critical jobs, e.g. accounting or incident handling, to
equally important development-related tasks, e.g. debugging or
fault-detection. Whilst pursuing a novel vision of new-generation
event-driven monitoring systems, we have identified that a
particularly rich source of monitoring information, computer
logs, is also one of the most problematic in terms of automated
processing. Log data are predominantly generated in an ad-
hoc manner using a variety of incompatible formats with the
most important pieces of information, i.e. log messages, in the
form of unstructured strings. This clashes with our long-term
goal of designing a system enabling its users to transparently
define real-time continuous queries over homogeneous streams
of properly defined monitoring event objects with explicitly
described structure. Our goal is to bridge this gap by normalizing
the poorly structured log data into streams of structured event
objects. The combined challenge of this goal is structuring the
log data, whilst considering the high velocity with which they are
generated in modern IT infrastructures. This paper summarizes
the contributions of a dissertation thesis „Normalization of Un-
structured Log Data into Streams of Structured Event Objects“
dealing with the matter at hand in detail.

Index Terms—log management, logging, data integration, nor-
malization, stream processing, monitoring

I. INTRODUCTION

Computer logs are one of the few mechanisms available for
gaining visibility into the behavior of an IT infrastructure and
its elements. They are also considered to be one of the richest
and most valuable sources of such behavior-related monitoring
information. However, log data are repeatedly reported to be of
poor quality, mainly because a considerable portion of logs is
unstructured by nature. This renders them to be unsuitable for
straightforward automated processing and analysis. In many
cases, even semi-structured log data can be considered sub-
optimal for direct processing, i.e. when being processed by
systems that expect some kind of schema to be imposed
on the processed data. During the operation of any modern
IT infrastructure, vast floods of heterogeneous log data are
generated by many distributed producers spread across the
infrastructure’s layers and tiers.

These facts directly clash with a vision of a new-generation
event-driven monitoring system enabling its users to transpar-

ently define real-time continuous queries over homogenous
streams of properly defined monitoring events. The continuous
queries would be used to detect complex events, for example,
one thousand of unsuccessful logins of user root in 5 minutes,
representing patterns of simpler events present in the monitoring
information, e.g. user login in this case. Bluntly put, a holistic
application of the Complex Event Processing approach to the
monitoring and log analysis domain.

II. CONTEXT AND PROBLEM STATEMENT

In the context of our work, an ideal state of affairs would
be if all the log data, generated by the given IT infrastructure,
were accessible in an interoperable and scalable manner as
streams of structured event objects. Structured event object is
a serialized piece of data, representing an occurrence, which is
described via an explicit and strict data schema. Event stream
is an infinite sequence of such objects adhering to the same
schema. This fact would allow for all of the log data to be
accessed in a transparent and unified way within the notion
of a loosely coupled event-driven architecture. As a result,
the log data consumers would not only be able to directly
utilize the Complex Event Processing approach for advanced
correlation and monitoring queries, but it would be also possible
to research novel monitoring approaches, e.g. based on machine
learning, pattern mining, or predictive modelling. All of this
over high-quality source data.

In its current state, log data are continuously generated
at high rates by many distributed producers using several
transport protocols and many heterogeneous representations.
Moreover, a predominant portion of log entries takes the form
of unstructured or semi-structured data with the main piece of
information, i.e. log message, represented as a free-form string
mixing natural language with run-time context variables.

We propose to close this gap by the means of data normal-
ization, i.e. transformation and unification of data transport,
data representation, data types, and data structures resulting
in a common format. Normalization is a recognized data
integration pattern in the context of message-driven and, in turn,
event-driven architectures. The presented dissertation thesis [1]
deals with multiple knowledge gaps in areas inherent to the
normalization of heterogeneous low-grade log data into streams
of properly defined event objects.

978-3-903176-15-7 © 2019 IFIP
671

A. Logging Mechanisms

Logging is a programming practice. It is used by software
developers to communicate information outside the scope
of a program in order to trace its execution. Whilst the
unstructured nature of log entries, i.e the respective elements
written into log, can be remedied with a reasonable effort,
the unstructured nature of log messages is stemming from the
way they are created. The default logging mechanism of a
vast majority of programming languages is traditionally based
on a simple string parameterization allowing the developers
to mix natural language with logging variables encapsulating
execution context. Whilst very flexible, it immensely hinders
the automated processing of log messages, which need to be
explicitly parsed in order to impose some structure on them.

Since the existing literature dealing with the improvement
of log data quality at their imminent source is very scarce,
we have decided to research the possibility of designing a
logging mechanism allowing the developers to communicate
log messages in a manner resulting in the generation of fully
structured log data. Due to the intended audience of this paper,
this research area will not be extensively discussed here.

B. Log Abstraction

Log abstraction is one of the most crucial tasks in the process
of log data normalization. It addresses the unstructured nature
of log messages in a reactive manner, i.e. after the log data
are generated. Simply put, log abstraction is the separation of
the static and dynamic part of the log message so that both
parts can be accessed independently. The static part is referred
to as message type, which corresponds to the parameterized
log message template in logging code, and the dynamic part
corresponds to the actual logging variables and their values.
Regular expressions corresponding to individual message types
are typically used in practice to facilitate the actual abstraction.

Log abstraction can be seen as a two-tier procedure. First, a
set of message types and corresponding matching patterns must
be defined/discovered, and only after that can be this pattern-set
used to pattern-match each incoming log message in order to
extract dynamic information and impose some structure on it.
We have identified challenges in both these tiers.

C. Log Data Normalization Description and Execution

In the course of the normalization process, pattern-matching
and log abstraction of log messages is only one type of many
different tasks that are usually needed to transform the log data
into the desired state. In our case, the desired state is represented
by structured event objects. The other tasks include, but are
not limited to: string manipulation, e.g. whitespace trimming
or pattern replacement; structure alteration, e.g. movement or
renaming of data fields; type manipulation, e.g. type conversion
or date parsing. These tasks must usually follow some kind
of an execution logic and a conditional execution based on
the content of the log data is also often needed. Moreover,
there must be a way to define explicit data schemes of the
transformed data in order to render it fully structured.

Currently, we are not aware of any general-purpose data
transformation language that would be able to describe such log
data transformation logic, let alone provide a way to execute
it. On the other hand, we deem the use of general-purpose
programming languages unsuitable due to the limited flexibility
and inconvenience for domain experts. We believe that in this
case, the use of some domain-specific language (DSL) is a
proper path. This is indeed the path taken by many of so-called
log data management tools, which have emerged due to the
need for log data transformation and normalization.

Unfortunately, none of these tools is capable enough for
the transformation of unstructured and semi-structured log
data into fully structured event objects with explicitly defined
schemes, which primarily stems from their internal orientation
on semi-structured data and from untyped nature of their DSLs.
Therefore, we orient on researching the possibility of describing
and executing the above-mentioned transformations in a manner
allowing for the normalization of heterogeneous log data into
streams of event objects.

III. RESEARCH GOAL AND CONTRIBUTIONS

In terms of methodology, we follow the one of design science,
which deals with the design and investigation of artifacts in
context, so that they can better contribute to the achievement
of some goal that benefits its stakeholders. In the light of
the above-mentioned facts, the primary research goal of the
thesis is to improve the way log data can be represented and
accessed in order to allow the log analysis practitioners to
analyze them in a unified and interoperable manner. The main
contributions of the thesis are represented by the design and
evaluation of the following computer science artifacts.

Original Contributions
Design and evaluation of two prototypes of structured logging
mechanisms for Java programming language. Both mechanisms
allow the developers to communicate structured log messages,
including their explicit data schemes, yet they differ in the
provided flexibility and imposed overhead.

Design and evaluation of a message type discovery algorithm
based on word frequency clustering, which is addressing several
deficiencies of the existing algorithms for mining historical log
data. The algorithm exhibits superior accuracy and improved
usability in practice.

Design and evaluation of a multi-pattern matching approach
based on a special trie-based data structure. The approach is
highly-scalable with respect to the number of matching patterns,
and its prototypical implementation exhibits a very respectable
performance for real-world pattern sets.

Design and evaluation of a log data normalization approach
based on prototype-based programming consisting of a DSL
with the ability to describe log data transformations in an
object-oriented manner, and of a normalization engine with the
ability to execute these transformations, consequently resulting
in the log data taking the form of streams of event objects.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions672

Table I
EXAMPLE OF MESSAGE TYPE DISCOVERY IN THE TASK OF LOG ABSTRACTION

Log Messages Message Types Regular Expressions
User Jack logged in
User John logged out
Service sshd started
User Bob logged in
Service httpd started

⇒ User * logged * : [$1, $2]
Service * started : [$1] ⇒ User (\w+) logged (\w+)

Service (\w+) started

IV. LOG ABSTRACTION – MESSAGE TYPE DISCOVERY

The discovery of message types for the purposes of log
abstraction is a tiresome process when done entirely manually.
Log data generated by a single application or software
project can contain hundreds of unique message types since
their logging code can contain hundreds of unique logging
statements. For this reason, the research in this respect is
focused on automated approaches for message type discovery.
In the literature, two orthogonal groups of approaches can be
identified – the message type discovery can be based either on
source code analysis, or on data mining techniques.

Since the source code of the targeted log data producer may
not be always available for analysis, which is true especially
for proprietary hardware and software appliances, we have
turned our attention towards approaches that discover message
types from historical log data via data mining techniques.

A number of works emerged in this area over the years,
utilizing different approaches primarily based either on cluster
analysis or custom heuristics, eventually the combination
of both. We have studied the existing algorithms (and their
implementations) and identified several deficiencies, mainly in
terms of their practical usability for our goals.

1) The algorithms often produce overlapping message types,
i.e. it is possible for an individual log message to
correspond to more than one discovered message type,
which is not suitable for the purposes of log abstraction.

2) It is common for the discovery algorithms to be fine-tuned
to yield the best results. However, there are algorithms
that do not support any fine-tuning at all, or in contrast,
provide up to 5 mostly unbounded parameters.

3) The common step of each approach is the tokenization of
the log messages. The studied approaches predominantly
use space as a fixed delimiter, unable to work with multiple
delimiters, which decreases their accuracy.

4) The algorithms do not support multi-word variable posi-
tions leading to sub-optimal results.

A. Our Approach

In order to address the above-mentioned deficiencies, we
have decided to design a new message type discovery algorithm
combining different techniques used in the studied approaches.
The approaches used in this area take advantage of the
observation that although the log messages are free-form, they
are generated by a limited set of fixed logging statements and
thus the generated log messages are likely to form clusters
with respect to variable positions.

We refer to the algorithm as to the Extended Nagappan-
Vouk (ENG) since it is based on the original idea of frequency
table and intra-message word frequency proposed in [2]. Other
than that, the algorithm is significantly improved in order to
support multiple delimiters for tokenization, support multi-word
variables, report distinct message types with no overlapping,
and finally, the algorithm can be parameterized via a single
parameter controlling its sensitivity and the granularity of the
reported message types. The discovery algorithm is able to
generate pattern sets in a special format directly suitable for log
abstraction via pattern matching as can be seen in Listing 1.

regexes: # regex tokens
INT: [integer, "[0-9]+"]
BOOL: [boolean, "\btrue\b|\bfalse\b"]
WORD: [string, "[0-9a-zA-Z]+"]

patterns: # patterns describing the message types
grp0:
mt1: 'User %{WORD:var1} logged %{WORD:var2}'
mt2: 'Service %{WORD:var1} started'

Listing 1: Example output of the designed algorithm

B. Evaluation Summary

The accuracy evaluation of message type discovery is a
typical task that can be achieved via classic information retrieval
techniques for clustering evaluation [3]. Assuming the discovery
does not produce overlapping message types, each discovered
message type induces a strict cluster of log messages in the
original data set and it is possible to calculate a number of
external criteria that evaluate how well the discovered clustering
matches the gold standard classes (message types). Similarly
to many others, we use F-measure (F1 score) as the external
criterion to be used for message type discovery accuracy
evaluation. F-measure is a harmonic mean of precision and
recall, other common external criteria.

F1 = 2 · Precision · Recall
Precision + Recall

Thanks to the work of He et al. [4] we have been able to
evaluate the accuracy of our algorithm on externally provided
heterogeneous log message data sets and accompanying ground
truths, which adds to the evaluation validity. Moreover, we
were able to compare the algorithm’s accuracy with accuracies
reported for some other algorithms for message type discovery.
In their evaluation study, the authors used five real-life log
message data sets ranging from supercomputers (BGL and
HPC), through distributed systems (HDFS and Zookeeper), to
standalone desktop software (Proxifier), in order to evaluate

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions 673

accuracy of four different message type discovery algorithms
(SLCT, IPLoM, LKE, and logSig). The data sets were randomly
sampled for 2000 log messages from each dataset in order to
shorten the running times of some of the more computationally
intensive algorithms. The ground truth (gold standard) was
created manually by the authors. The reported results (F-
measures) of the evaluated algorithms as well as results our
algorithm are summarized in Table II.

It can be seen that the proposed algorithm exhibits a superior
accuracy in an evaluation based on five real-world data sets
with externally provided ground truth. When using its default
settings (ENG), the algorithm achieved very high accuracy with
an average F-measure of 0.953. When considering the best
algorithm settings for each data-set (ENG*), it exhibited an
average F-measure of 0.996.

Table II
F-MEASURES FOR EVALUATED ALGORITHMS

BGL HPC HDFS Zookeeer Proxifier AVG
SLCT 0.61 0.81 0.86 0.92 0.89 0.818
IPLoM 0.99 0.64 0.99 0.94 0.90 0.892
LKE 0.67 0.17 0.57 0.78 0.81 0.600
LogSig 0.26 0.77 0.91 0.96 0.84 0.748
ENG 0.9251 0.986 1.00 0.9999 0.8547 0.953
ENG* 0.9985 0.986 1.00 0.9999 1.00 0.996

V. LOG ABSTRACTION – MULTI-PATTERN MATCHING

Given a set of matching patterns representing individual
message types and an input log message, the combined goal of
pattern-matching for log abstraction is to determine if the input
fully adheres to any of the message types, and, if so, uniquely
identify it and extract the values present on the respective
variable positions of the message type. A commonly used
naïve approach is based on the iteration of the given pattern set
until a match is found. However, this is infeasible for velocities
in which the log data are currently generated since there can
be hundreds or even thousands of message types in a single
pattern set. Therefore, scalable approaches for log message
abstraction based on multi-pattern matching are needed. We
have recognized two approaches, which can be utilized for
multi-pattern matching in terms of log abstraction, both based
on limiting the searched pattern-space – multi-regex matching
and tree-based organization.

Multi-regex matching is based on combining the respective
finite automata corresponding to the individual regular expres-
sions into an equivalent finite automaton consequently used
for pattern matching. However, we have learned that in terms
of practical multi-regex matching implementations suitable for
log abstraction, the situation is unsatisfactory, and there is an
inherent complexity when implementing such an approach.

A. Our Approach

In our work, we have focused on addressing the problem
from a different direction – what if we wanted to avoid the
complexity of multi-regex matching altogether by leveraging
the specific goals of log abstraction and characteristics of

the matching patterns created for this purpose? Tree-based
approaches address the problem of multi-pattern matching in a
more straightforward way by organizing the matching patterns
in various tree-like structures with the goal of segmenting and
limiting the searched pattern-space. This tree-like organization
can be either inter-pattern, i.e. organizing the individual patterns
as a whole with respect to some observed knowledge, or intra-
pattern, i.e. organizing the individual pattern components, words
for example, into a tree-like matching structure.

We have designed an elegant multi-pattern matching algo-
rithm based on a clever intra-pattern organization that is able to
practically eliminate the need for multi-regex matching, whilst
imposing only minimal limitations on the way the matching
patterns can be created. The basic idea of our approach is
based on organizing the pattern set into a special data structure
we refer to as regex trie (REtrie) as seen on Figure 1.

Service˽ User˽id:˽

%{INT}

˽logged˽

%{STRING}

˽started

in out

Figure 1. Regex trie (REtrie) containing three matching patterns

Trie is a tree-like data structure used for storing strings.
Alongside with hash table, trie is one of the fastest data
structures for string retrieval when implemented properly. In
our case the search process follows a depth-first traversal, i.e.
it backtracks when it is unable to continue on the current trie
path. Thanks to the explicit priorities, the most specific patterns
are tried first. In the case a path can be found from the trie
root to a node with a non-empty leaf value, a successful match
is returned, together with values captured by the regex tokens.
This way, each log message can be matched against the whole
pattern set represented by the regex trie at once.

B. Evaluation Summary
We have performed a series of experiments based on two

real-world pattern sets and also partially generated data sets in
order to evaluate the practical implementation of the presented
data structure and the related multi-pattern matching approach.
The results showed that the performance of regex trie scaled
well with respect to the number of patterns (thousands) as well
as the number of CPU cores. The tested Erlang implementation
consisting of mere 300 lines of code exhibited a decent speed-
up, stopping at an overall throughput of more than 1.9 million
abstracted log lines per second on 8 cores1.

1Intel® Xeon® CPU E5-2650 v2 @ 2.60GHz with 64GB RAM.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions674

VI. END-TO-END LOG DATA NORMALIZATION

From the data integration perspective, normalization can be
performed on four different translation layers. The transport
layer determines the way the data are transferred over the
network. The second layer determines the data representation,
i.e. how the data are serialized into individual elements, conse-
quently determining if they are unstructured, semi-structured,
or structured. The data types layer is extremely important since
it defines the data types on which the domain model is based.
The fourth, data structures layer, describes a top-level domain
model, i.e. what logical entities will be dealt with and what
relationships will they have, if any. In terms of data integration,
the most loosely coupled outcome of normalization takes the
form of a Canonical Data Model, i.e. a common data format
unifying the three top layers – the bottom layer is assumed to
be based on messaging. In our case, the Canonical Data Model
is represented by structured event objects and their individual
types, whose data schemes are explicitly defined.

In the course of the normalization process, the parsing of
different formats of log entries and abstraction of log messages
is only one type of many different tasks that are actually needed
to transform the log data into the desired state. Other common
tasks that are somewhat inherent to the log data normalization
process include: input and output adaptation, data serialization
and deserialization, parsing, transformation, and enrichment.

Whilst some of the already existing log management tools
are quite capable and they support many of these tasks, in
one form or another, they have very limited capabilities in
terms of structuring the log data into event objects, which
mainly stems from their orientation on basic semi-structured
data manipulations and predominantly untyped nature of their
corresponding domain-specific languages. Although we have
been able to implement end-to-end log data normalization logic
by using these tools, it was always at the cost of manual type
enforcement, ex-post schema definition, and combination with
additional external functionality, which was rather error-prone.

A. Our Approach

To address the problems pointed out above we have first
designed an abstract log data normalization approach that
allows for the data transformations to be carried out in a
statically typed object-oriented paradigm, instead of being
oriented on dynamically typed or untyped transformations
of associative arrays, as it is common in practice. Then, we
have created a domain-specific language and related execution
logic implementing this approach that is covering the most
common transformation operations with specific orientation on
data lacking explicit structural information, i.e. unstructured
and semi-structured data. Last, but not least, we have created
a normalization engine prototype that is able to perform
this execution logic whilst handling the tasks that are not
necessarily the responsibility of the DSL, e.g. data serialization,
or timekeeping. A simple result of log data normalization, as
discussed throughout this paper, is illustrated by Listing 2.

1) Prototype-Based Normalization: The designed normal-
ization approach can be described as a series of object-
to-object transformations, which is partially based on the
notion of prototype-based object inheritance, sometimes also
referred to as prototype-based programming. Prototype-based
programming is a variant of object-oriented programming in
which new objects are created by reusing attributes of existing
objects, which serve as prototypes [5]. There is no notion of
instantiation as in the case of class-based programming.

In our approach, every piece of data intended for normaliza-
tion starts as an object with a properly defined object type it
belongs to. As soon as an object is created/constructed, it is
immutable, i.e. the object and its attributes cannot be further
modified. The only way to achieve such a modification is to
clone the existing object, referred to as the prototype, and per-
form a finite sequence of attribute manipulations, i.e. additions,
deletions, and transformations, which will subsequently result
in the construction of a new immutable object that is based on
the prototype. The typed data objects that are the result of this
object-to-object transformation represent the normalized event
records that can be serialized into structured event objects and
exposed as data streams.

2) Domain-Specific Language: The simple domain-specific
language that implements the normalization approach presented
above is based on YAML data format and the actual compila-
tion/execution logic is backed by Erlang programming language.
The normalization logic is described via a transformation
descriptor written in the DSL, which is then compiled into a
sequence of instructions that can be executed in Erlang. During
the compilation, a basic type-checking is performed and an
explicit type information and external schemes are generated,
which are describing all the defined object types. This means
that it is possible to enumerate all the event/object types that can
be yielded by the normalization process before the execution.

3) Normalization Engine: We have aimed at a minimalistic
design of the normalization engine with the goal of keeping the
necessary requirements to a bare minimum. The engine, written
in Erlang, instantiates the input adapters as per their definition in
the transformation descriptor, executes the transformation logic,
and serializes the resulting event records via data serialization
format of choice. The engine is also responsible for schema
generation. The normalized event objects are then written into
a messaging system via an output adapter. Currently, Apache
Kafka serves as the primary delivery system.

<137>Apr 5 19:31:10 serena audd[631]: User xtovarn logged in

UserSession() {
syslog=SyslogInfo() {

timestamp=1459877470000, severity=1, facility=17,
hostname="serena", app_name="audd", procid=631

},
user="xtovarn",
action="LOGIN"

}

Listing 2: Example of an unstructured Syslog log entry with log
message in natural language and a corresponding normalized
event object representing a successful user login

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions 675

B. Evaluation Summary

In a real-world setting and the context of online data process-
ing we consider throughput to be one of the most important
performance metrics. We have evaluated the presented approach
in terms of end-to-end throughput on real-world data sets for
a workload consisting mainly of log message abstraction. The
performed experiments showed that the approach is able to
normalize approximately two hundred thousand unstructured
log entries per second, with the normalization engine running
on a single commodity server, and the delivery system running
on three dedicated machines. The hardware setup of the
benchmarking cluster is shown in Table III.

Table III
HARDWARE SETUP FOR THE CONDUCTED EXPERIMENTS

Node type (#) Hardware
Benchmarking
(1×)

• Intel® Xeon® E5410 @ 2.33GHz
• 4 cores, 16GB RAM, SATA7.2k

Normalization
(1×)

• Intel® Xeon® E5-2650 v2 @ 2.60GHz
• 8/16 HT cores, 64GB RAM, SATA7.2k

Messaging
(3×)

• 2 × AMD Opteron™ 4284 @ 3.0GHz
• 2 × 8 cores, 64GB RAM, SATA7.2k

VII. CONCLUSION AND FUTURE WORK

The thesis [1] summarized in this paper represents a com-
prehensive material dealing with one of the richest sources of
behavior-related monitoring information, i.e. log data. Although
the value of log data is widely recognized, so is their poor
quality, which is rendering them unsuitable for automated
processing. In this work, we have dealt with the primarily
unstructured nature of log data, and especially log messages,
which typically represent the most important information
present in the generated log entries.

We have addressed the matter at hand by improving the
quality of log data, their structure, representation, and the
way they can be accessed, by their normalization into fully
structured event objects with defined data schemes, which can
be exposed as data streams. The results related to this thesis
were published on multiple occasions [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15].

The achieved results offer virtually endless possibilities with
respect to new approaches for log data analysis, correlation,
storage, mining, pattern detection, prediction, root cause analy-
sis, or machine learning in many application areas. In addition,
thanks to the proposed concepts, it is possible to implement
an architecture that allows for ingestion and normalization of
large amounts of heterogeneous monitoring data into a central
location, rendering them readily available for real-time analysis,
detection, alerting, and long-term retention.

We plan to reap the benefits of such a unified access to
high-quality event data in our future endeavours. One of our
biggest ambitions in this area is the utilization of the presented
results for a holistic realization of the distributed event-driven
monitoring architecture for real-time security monitoring based
on information from corresponding log data producers and
other important security information sources, e.g. IP flows.

ACKNOWLEDGEMENTS

The publication of this paper and the follow-up research
was supported by the ERDF „CyberSecurity, CyberCrime and
Critical Information Infrastructures Center of Excellence“ (No.
CZ.02.1.01/0.0/0.0/16_019/0000822).

REFERENCES

[1] D. Tovarnak, “Normalization of Unstructured Log Data into Streams
of Structured Event Objects [online],” Dissertation thesis, Masaryk
University, Faculty of Informatics, Brno, 2017, available from <https:
//is.muni.cz/th/rjfzq/thesis-twoside-final-bw.pdf> [cit. 2018-10-28].

[2] M. Nagappan and M. A. Vouk, “Abstracting log lines to log event types
for mining software system logs,” in 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010), 2010, pp. 114–117.

[3] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval. Cambridge University Press, 2008.

[4] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on
log parsing and its use in log mining,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2016, pp. 654–661.

[5] M. Abadi and L. Cardelli, A Theory of Objects, 1st ed. Springer-Verlag
New York, Inc., 1996.

[6] D. Tovarnak and T. Pitner, “Towards Multi-tenant and Interoperable
Monitoring of Virtual Machines in Cloud,” in Proceedings of
the 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, ser. SYNASC ’12. IEEE
Computer Society, 2012, pp. 436–442. [Online]. Available: http:
//dx.doi.org/10.1109/SYNASC.2012.55

[7] D. Tovarnak, A. Vasekova, S. Novak, and T. Pitner, “Structured and
Interoperable Logging for the Cloud Computing Era: The Pitfalls and
Benefits,” in Proceedings of the 2013 IEEE/ACM 6th International
Conference on Utility and Cloud Computing, ser. UCC ’13, 2013, pp.
91–98.

[8] D. Tovarnak, “Towards Distributed Event-driven Monitoring Architecture
[online],” Ph.D. thesis proposal, Masaryk University, Faculty of Infor-
matics, Brno, 2013, available from <http://theses.cz/id/0jawn5/?lang=en>
[cit. 2017-02-02].

[9] D. Tovarnak, F. Nguyen, and T. Pitner, “Distributed Event-Driven Model
for Intelligent Monitoring of Cloud Datacenters,” in Proceedings of the
7th International Symposium on Intelligent Distributed Computing, ser.
IDC ’13. Springer International Publishing, 2014, pp. 87–92. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-01571-2_11

[10] F. Nguyen, D. Tovarnak, and T. Pitner, “Semantically Partitioned
Peer to Peer Complex Event Processing,” in Proceedings of the 7th
International Symposium on Intelligent Distributed Computing, ser. IDC
’13. Springer International Publishing, 2014, pp. 55–65. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-01571-2_8

[11] D. Tovarnak and T. Pitner, “Continuous Queries Over Distributed Streams
of Heterogeneous Monitoring Data in Cloud Datacenters,” in Proceedings
of the 9th International Joint Conference on Software Technologies -
Volume 1: ICSOFT-EA, ser. ICSOFT ’14, INSTICC. SciTePress, 2014,
pp. 470–481.

[12] D. Tovarnak, “Practical Multi-Pattern Matching Approach for Fast and
Scalable Log Abstraction,” in Proceedings of the 11th International
Joint Conference on Software Technologies - Volume 1: ICSOFT-EA, ser.
ICSOFT ’16, INSTICC. SciTePress, 2016, pp. 319–329.

[13] M. Cermak, D. Tovarnak, M. Lastovicka, and P. Celeda, “A Performance
Benchmark for NetFlow Data Analysis on Distributed Stream Processing
Systems,” in Proceedings of the 2016 IEEE/IFIP Network Operations
and Management Symposium, ser. NOMS ’16, 2016, pp. 919–924.

[14] T. Jirsik, M. Cermak, D. Tovarnak, and P. Celeda, “Toward Stream-Based
IP Flow Analysis,” IEEE Communications Magazine, vol. 55, no. 7, pp.
70–76, 2017.

[15] J. Vykopal, R. Oslejsek, P. Celeda, M. Vizvary, and D. Tovarnak, “KYPO
Cyber Range: Design and Use Cases,” in Proceedings of the 12th
International Conference on Software Technologies - Volume 1: ICSOFT,
ser. ICSOFT ’17, INSTICC. SciTePress, 2017, pp. 310–321.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions676

