
Passive Inference of User Actions through IoT
Gateway Encrypted Traffic Analysis

Pierre-Marie Junges, Jérôme François, Olivier Festor
Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

firstname.lastname@inria.fr

Abstract—Internet of Things (IoT) devices become widely used
and their control is often provided through a cloud-based web
service that interacts with an IoT gateway, in particular for
individual users and home automation.

In this paper, we propose a technique to infer private user
information, i.e., actions performed, by considering a vantage
point outside the end-user local IoT network. By learning the
relationships between the user actions and the traffic sent by
the web service to the gateway, we have been able to establish
elementary signatures, one for each possible action, which can
be then composed to discover compound actions in encrypted
traffic.

We evaluated the efficiency of our approach on one IoT
gateway interacting with up to 16 IoT devices and showed that a
passive attacker can infer user activities with an accuracy above
90%.

Index Terms—Internet of Things, fingerprinting, encrypted
traffic, security, privacy

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), the use
of heterogeneous IoT devices becomes widespread. However,
many of them suffer from security issues including the lack
of updates or the use of default credentials. As a result, IoT
devices are now targets for attackers, and compromised IoT
devices can led to the creation of major botnets like Mirai
[1] or BrickerBot [2]. In addition to these security concerns,
IoT devices in smart homes also present a risk of user privacy
leakage [3, 4, 5, 6].

Analyzing the IoT traffic is of paramount importance to
evaluate the level of private data a malicious user can infer or
to profile malicious actions such as attacks that is now mixed
within the IoT traffic. We thus propose a traffic analysis tech-
nique dedicated to IoT gateways, more precisely by observing
the Internet traffic of the IoT gateway, which interacts with a
cloud-based web service. Such a case neither assumes to be
able to observe IoT device communications themselves, and
so to be in their close vicinity, nor supposes to eavesdrop the
end-user commands.

Considering a vantage point outside the end-user network,
our objective is to evaluate the actions performed by the end-
users that are indirectly exposed by an IoT gateway. Therefore,
it may support the privacy assessment of an IoT deployment
but also anomaly detection. Indeed, creating normal profiles
for user actions can be then leveraged to detect anomalies [6].

Our proposed technique is able to gather information about
the actions performed by the user. Due to the use of proprietary
and/or encrypted channel, it relies on decomposing the size
of encrypted application data, monitored between the IoT
gateway and the web service, in elementary sizes represent-
ing individual contents, i.e., the user actions. We evaluated
our proposed solution on one off-the-shelf IoT gateway and
demonstrated that actions performed by a user on the IoT
devices can be passively inferred.

The paper is structured as follows. Section II introduces
the related work on IoT fingerprinting and network traffic
analysis. Section III defines the targeted problem. Section IV
describes our proposed technique while Section V presents its
evaluation. Section VI concludes our paper.

II. RELATED WORKS

For security purposes, researchers proposed several finger-
printing solutions to identify IoT devices in a network. A
device type identification technique for IoT IP-based devices
using header values (e.g., IP addresses, port numbers, protocol)
and a random forest classifier to identify an IoT device from
a signature is presented in [7]. In [8], a self-learning device
type identification technique uses period-related features (e.g.,
period duration, number of periodic flows) computed from the
packet flows. A behavioral fingerprinting based on header and
payload based features (e.g., TCP payload length, network
protocol observed) is proposed in [9].

Our proposed solution is focused on identifying the actions
performed on the IoT devices but some actions can be rep-
resentative of the use of particular devices. In addition we
exclusively rely on the traffic between the IoT gateway and
a web service because we considered the IoT devices to be
neither accessible nor visible from our vantage point.

IoT devices in smart homes may also lead to user privacy
leakage [3, 4, 5, 6]. In [3], from the network traffic generated
by Bluetooth Low Energy (BLE) weareable fitness trackers,
it is possible to identify a person and its activity. In [4], the
authors demonstrate that the network traffic rate from WiFi
devices can reveal user activities. Similar inferences have been
noticed in [5] using timestamps from wireless X10 motion
and contact sensors. In [6], the investigated IoT devices used
different wireless protocols (i.e., Wi-Fi, ZigBee and BLE) and
a multi-stage privacy attack is able to identify the actions
and the states of the IoT devices present in a end-user local
network.978-3-903176-15-7 © 2019 IFIP

7

Cloud

Attacker

User

Cloud

Attacker

c:{a1,a2} c:{a1,a2} c:{a1,a2} a1

a21 2 3User

User local networkInternet

Fig. 1: Attacker model considered in this paper

Again, our work mainly differs by considering exclusively
external traffic between the IoT gateway and a web service.
However, such traffic is often encrypted and so limits the
exposure of the IoT devices and their related activities.

From that perspective, a passive fingerprinting technique us-
ing clustering algorithms and the sizes of the first few packets
of an SSL connection can recognize the corresponding web-
application [10]. Similarly in [11, 12], identities of accessed
web pages can be also recovered from packet or payload sizes
within the encrypted HTTP connections. Fine-grained profiling
of user activities is possible by reconstructing the sizes of
loaded objects [13].

Finally, to reduce the lack of privacy protection in the IoT
world, countermeasures using blockchain [14] or privacy-by-
design frameworks [15] have been proposed.

III. PROBLEM DEFINITION

Fig. 1 shows an example of the IoT system our work focuses
on. The user connects to a mobile application, (1) requests a
command c containing the actions a1 and a2 to be executed
on two IoT devices, (2) the web service sends c to the IoT
gateway over an encrypted communication channel and (3)
the latter transmits a1 and a2 to the intended IoT devices
using a wireless protocol (that can be proprietary and/or IoT
specific and/or encrypted). Our technique aims at decomposing
the encrypted application data, observed during step (2), to
deduce information about the IoT devices accessed and related
requests during step (3).

A. Motivation

Considering a vantage point within the end-user IoT net-
work, inferring user activities [6] may be relatively straight-
forward because the network traffic of each individual IoT
device is observable. However, this forces the attacker to be
in a close vicinity which thus limits the practicability of the
attack.

The presence of IoT gateways in the end-user local net-
work makes the user privacy assessment harder because the
gateways receive, from a web service, commands that may
concern multiple heterogeneous IoT devices at the same time
(see Fig. 1) that cannot thus be directly monitored.

However, by communicating with a web service through
the Internet, the network traffic of the IoT gateway, often
encrypted using secure protocols, can be observed. In this

work, we evaluate the level of private user information (mainly
user actions requested) exposed by an IoT gateway on the
Internet.

B. Challenges and assumptions

Considering our point of observation, our approach raises
some challenges:
• C1 - No individual IoT device signature. IoT devices

may be requested by the users to perform multiple actions
and the number of IoT devices might be large. Indeed,
assuming the user has m IoT devices with n possible
actions for each, the user may request to perform any of
these n actions on up to m IoT devices. For example
this leads to 19607 combinations, with only m = 5 and
n = 7. As a consequence, it is not possible to learn the
traffic generated by every individual combination.

• C2 - Gateway abstraction. The IoT gateway receives
and processes generic actions. Indeed, even though IoT
devices might be completely different (e.g., protocols,
brands, models), the IoT gateway receives actions from
a single control channel by the web service.

• C3 - Encryption. IoT gateway network traffic is en-
crypted (often using SSL/TLS), so extracting original
content from application data is impossible.

Based on preliminary studies and related work described in
section II, we make the following assumptions:
• A1 - Sending actions to the IoT devices. When the user

performs multiple actions on multiple IoT devices in one
command, we assume these actions are merged into one
actions list c.

• A2 - Incidence of the actions on the packet size. The
larger the list c sent from the user to the web service, the
larger the corresponding application data sent from the
web service to the IoT gateway. So, actions performed
on IoT devices have an incidence on the application data
observed (i.e., on the size), even if encrypted.

• A3 - Command size stability. When the same action
is performed multiple times, its payload size does not
change significantly.

• A4 - Data structures similarity. In Fig. 1, we can expect
some similarities, in their content (actions provided),
between the data sent by the web service to the IoT
gateway during step (2) and the original data sent by the
user during step (1). Such a content would thus impact
on the size of the encrypted payload.

IV. INDIRECT KNOWLEDGE EXTRACTION

Identifying IoT gateway in a network is not the focus of
this paper but the reader can refer to techniques from related
works [7, 8]. Here, we consider as known the IP address of
the IoT gateway.

Our approach follows three main steps to learn the signa-
tures of individual actions:
• From known user actions, extract relevant features from

the corresponding network packets sent by the web ser-
vice to the IoT gateway.

IFIP/IEEE IM 2019 Workshop: 5th IEEE/IFIP Workshop on Security for Emerging Distributed Network Technologies (DISSECT)8

• Signature construction using the features previously ex-
tracted.

• Learning of possible variations between our signatures
and the observed encrypted application data sizes.

Once learning achieved, user actions can be identified (testing).
Each of these steps is described in details in next subsec-

tions.

A. Features extraction
Network traffic is often encrypted (C3), so few features are

relevant. However, in regards of assumptions A1, A2 and A3,
we suppose that each individual action contributes to change
the application data size. Thanks to A4, knowing the data sent
by the user to the web service, we can deduce what should
contain the data sent by the web service to the IoT gateway.
Hence, the main feature used is the encrypted application data
size.

Rather than learning all possible combinations of actions
(C1), we will learn individual encrypted sizes (for each
action) that can be composed together, assuming an acceptable
approximation error, which has also to be learnt.

The size of each possible action a1, a2, ..., an can be derived
using the following steps: (1) perform the action ai on one IoT
device with the user application, (2) extract the data di sent
to the web service, (3) find the corresponding packets si sent
by the cloud-based web service to the IoT gateway and (4)
repeat the operation using two IoT devices to get another data
structure d2i with its corresponding packets s2i. The rationale
behind this process is the existence of additional content (such
as timestamps), ac, in the message that is not dependent on
the actions or their number. Using two iterations with one and
two devices will thus allow to isolate the part solely related
to the actions.

In equations (1) and (2), both data structures di and d2i
are composed of the descriptions of the actions ai and the
additional content ac and we initially consider the size of ac
to be constant.

In equation (2), ai is present two times because d2i is the
data structure sent when we requested ai to be performed on
two IoT devices.

di =< ai, ac > (1)
d2i =< ai, ai, ac > (2)

The corresponding packets are si and s2i respectively.
Assuming |si| (resp. |s2i|), the encrypted application data

size of si (resp. s2i). Then, it is possible to compute the size
of the action ai (i.e., |ai|):

|ai| = |s2i| − |si| (3)

because d2i − di =< ai, ai, ac > − < ai, ac >=< ai >
The size of the additional content ac (i.e., |ac|) is derived

as follows:

|ac| = |si| − |ai| (4)

because di− < ai >=< ai, ac > − < ai >=< ac >
Our final set of features is composed of |ac| and |ai|1≤i≤n

computed from equations (3) and (4).

B. Learning of the signatures

Once all |ai| are computed, any size |s| from encrypted
application data sent by the web service to an IoT gateway
can be rewritten as in equation (5), with |ac| the additional
content size, |ai| the size of the action ai, nb ai ∈ N the
number of occurrences of ai in s and ε ∈ Z, a variation value.

|s| = |ac|+ ε+

n∑
i=1

|ai| × nb ai (5)

C. Learning the variations between the theoretical and ob-
served sizes

We introduced ε in (5) because we consider that the en-
crypted application data size observed may not be exactly
equal to the one we can compute using previously inferred
|ac| and |ai|1≤i≤n. The ε embeds so both variations of the
actions or the additional content.

Hence, ε is simply the expected difference between these
two sizes (observed and computed by composing |ac| and
|ai|1≤i≤n).

To automatically learn this value, we can control the user
(i.e., perform actions) by requesting m different combinations
of actions Aj = {nb a1, ..., nb an} with j = 1...m to be
performed and retrieved their corresponding encrypted payload
size |sj |. Therefore, each εj can be derived using (5) and a
learning dataset is so built with the m tuples < |sj |, εj >. As
a result, for each new observed encrypted size |sj | (when we
do not control the actions), we search for the closest size in
this dataset to deduce the related εj , i.e. k-Nearest Neighbors
classifier (kNN) in one dimension.

D. User action identification

Assuming now the user performs a new command A with
A = {nb a1, ..., nb an}. The objective is so to automatically
infer the value of each nb ai with i = 1...n, knowing only
the global encrypted payload size |sc| received by the IoT
gateway.

Firstly, using the classifier previously trained (kNN), εc is
assigned from |sc| and equation (5) can be rewritten as follows:

|sc| − |ac| − εc =
n∑

i=1

|ai| × nb ai (6)

While the left part can be fully computed and considering
each nb ai ∈ N, our problem is similar to the change-making
problem [16] and we can use its dynamic programming
algorithm to solve equation (6). Finally, a combinations set
C = {A1, ..., Am} such as each Aj = {nb aj1, ..., nb ajn}
with j = 1...m satisfies equation (6) is returned. Each
combination is a candidate result, so our technique does not
guarantee to return a unique set of actions. In the evaluation,
we will particularly evaluate how each set is close to the real
actions requested and aims at reducing as most as possible the
number of sets.

IFIP/IEEE IM 2019 Workshop: 5th IEEE/IFIP Workshop on Security for Emerging Distributed Network Technologies (DISSECT) 9

TABLE I: Actions Per Device

Device Actions

Gateway None

Smart plug On, Off, On {1,...,10} mins

Smart lamp holder On, Off, On {1,...,10} mins, P, P {1,...,10} mins

V. EVALUATION

A. Setup

Our evaluation setup is composed of one IoT gateway G
from a french home automation manufacturer M whose the
name cannot be disclosed, controlling 12 smart plugs and four
smart lamp holders. All the available actions per device are
listed in Tab. I. We noted P, a personalized pre-configured
action by the user (e.g., 50% light intensity) and actions P are
solely performed by lamp holders.

On one hand, by predicting the actions performed, our
method can also deduce the type of IoT devices in certain
cases, for instance predicting only P actions is representative
of a lamp holder. On the other hand, as showed in Tab. I, some
actions (e.g., On and Off) are common to both investigated
device types.

M proposes a web service (WS), among others, to let the
user control the IoT devices. We investigated two functional-
ities offered by the WS:
• Single action: execute the same action on one or multiple

devices of the same type;
• Scenarios: perform distinct actions on one or multiple

devices of any types
Scenarios are named and created by the user. Once the

scenarios created, the user is able to execute them.

B. Methodology

We used Mozilla Firefox version 64.0 on a 16.04 Ubuntu, to
connect to WS and its Network Monitor tool retrieve data prior
to encryption for labeling traces. In our experiment setup, we
used port mirorring to capture the web service-gateway traffic.
In practice, it can be done by an intermediate player such as
a network operator or by an attacker relying on a man-in-the-
middle attack.

We performed different actions using both investigated
functionalities and discovered the identical starting sequence
when the gateway receives actions from WS. Firstly, WS sends
one UDP packet with the unencrypted keyword OPEN to
request the gateway to initiate the TLS 1.2 session during
which WS transmits the actions requested to be performed.
Hence, the user actions to identify are actually encrypted as
expected. Shortly after, G initiates multiple TLS 1.2 sessions
with the web service. These following sessions will be used
in section V-C to identify the number of IoT devices, which
have performed an action.

C. Reduction

In general, the user can also monitor in real-time its IoT
devices status (e.g., actions log, sensor triggered) using the

web service. However, the IoT end-devices are not directly
connected to Internet and this information is thus provided
through the IoT gateway. After receiving the actions intended
for nbIoT devices, G initiates nbs new TLS 1.2 sessions with
WS, those ones are actually extra information that will allow
us to reduce the number of solutions (i.e., C). We noticed that
the new opened TLS sessions are generally close to each other
in terms of inter-arrival time (i.e., time between two Client
Hello packets). We assume they represent the feedback of the
IoT devices in regards to the user request. From empirical
observation, we inferred in (7), a relationship between nbs,
the number of TLS sessions following the reception of a
request, and nbIoT the number of IoT devices concerned by
this request.

nbIoT = nbs − 1 (7)

Due to the encryption and the proprietary protocol, we
cannot confirm but assume that one session (feedback) is
created per IoT device while we discard the one corresponding
to the global request itself. To solve equation (7), nbs is the
number of TLS sessions that are within 2.5 seconds to each
other. The cardinality of the combinations set C can thus
be reduced by removing the combinations Aj , with Aj =
{nb aj1, ..., nb ajn} with a different number of devices, i.e.∑n

i=1 nb aji 6= nbIoT). The reduced combinations set is
denoted as C ′.

D. Learning sizes

We applied our proposed solution (section IV-A) to deduce
the encrypted sizes of the actions (i.e., all |ai|). We thus exe-
cute all different actions using the WS, collect the generated
traffic between the web service and the gateway and learn
those sizes. They are reported in Table II. As introduced in
section IV-B, an additional content that is encrypted as well
can be derived (i.e., |ac| = 216 bytes).

E. Identifying actions

Using the four lamp holders and the 12 smart plugs, 307
different combinations of actions have been performed repre-
sented by Aj , 1 ≤ j ≤ 307 with Aj = {nb aj1, ..., nb aj7}.
Actually, the number of devices used varies between 1 and
16, and for each case, 20 random combinations have been
generated except with a single device as only seven distinct
actions can be achieved in that case. That is why we obtained
307 different combinations to be tested.

Fig. 2 shows the mean number of each device type. As
observed, our random generation of actions follows the dis-
tribution of usable devices: four lamp holders and 12 smart
plugs. Hence, with height devices, six actions are performed
on smart plugs and two on lamp holders on average.

Equation (6) is refined according to variables previously
learned in Section V-D:

|s| = ε+ 216 + 221× nb a1 + 238× nb a2
+240× nb a3 + 489× nb a4 + 490× nb a5

+491× nb a6 + 492× nb a7
(8)

IFIP/IEEE IM 2019 Workshop: 5th IEEE/IFIP Workshop on Security for Emerging Distributed Network Technologies (DISSECT)10

TABLE II: Actions Sizes And Device Types

Device type Action Size (bytes)

lamp holder P |a1| = 221

smart plug and lamp holder On |a2| = 238

smart plug and lamp holder Off |a3| = 240

smart plug and lamp holder On 1 min |a4| = 489

smart plug and lamp holder On {2,...,10} mins |a5| = 490

lamp holder P 1 min |a6| = 491

lamp holder P {2,...,10} mins |a7| = 492

To solve (8) and so determine the values nb ai, we eval-
uated the variation ε from the total encrypted size |s| using
kNN as explained in section IV-B. In our experiment, kNN is
configured with k = 2. Using our dataset, a four-fold cross
validation is applied to determine ε.

Assuming the real action and inferred combination sets A =
{nb a1, . . . , nb a7} and C = {A1, ..., Am} respectively, we
introduce several metrics to consider different perspectives of
the results assuming either when the reduction step is used,
A ∈ C ′, or not, A ∈ C:
• Pred nb is the ratio of tests whose the predicted num-

ber of devices nbIoT corresponds to the real one, i.e.,
nbIoT =

∑7
i=1 nb ai

• P (A ∈ C ′) or P (A ∈ C) assess if the real set of actions
that have been requested has been actually identified as
a candidate decomposition after equation solving with or
without the reduction step respectively.

• card(C) and card(C ′): the previous metric measures the
ability of our technique to find a set of decompositions,
C or C ′, that contains the real actions set but it has to
be compared to the total number of decompositions, |C|
or |C ′|, as the goal is to have those sets as smaller as
possible to keep as lower as possible the uncertainty about
the right decomposition.

• P (A ∈ C ′|Pred nb) measures the probability to identify
the right decomposition A (always among others) given
that the number of devices has been correctly determined.

Tab. III summarizes the obtained results, while using 4-fold
cross validation as previously mentioned. As observed, finding
the performed actions A in the reduced set C ′ (91.2%) is
more effective in case the right number of devices has been
identified (99.2%). At most, we can find A with a precision
of 98.4% which also means that ε has been correctly assign
to 98.4% of our 307 combinations. When using our reduction
technique, the precision decreases to 91.2%. This is a side
effect because the reduction limits the selected decompositions
in C ′, including possibly the real one. However the main
benefit is to have a lower cardinality, |C ′| < |C|.

More precisely, in Fig. 3a, the average cardinality of C and
C ′ are shown. C can contain up to 813 combinations whereas
C ′ has a maximum of only 107 combinations. The reduction
efficiency is measured at 79.15% and we observed, on average,
eight combinations in C ′ instead of 36 in C. For example, with
10 devices we obtain, on average, seven combinations in C ′

TABLE III: Overall evaluation results

Events Precision

P(A ∈ C) 98.4

P(A ∈ C′) 91.2

P(Pred nb) 91.8

P(A ∈ C′|Pred nb) 99.2

and 24 in C. Now, assuming these 10 devices were smart plugs
and without using the proposed technique, we would have to
learn the traffic signature of 1048576 combinations.

Although those metrics provide different view of obtained
results, they clearly show that identifying automatically a
unique and exact set of devices is rather difficult. Hence, a
last metric is introduced in equation (9) to assess the similarity
between an inferred combination and the real one.

dist(p, q) =
|
∑

pi∈p pi −
∑

qi∈q qi|+
∑n

i=1 |pi − qi|
2

(9)

dist(p, q) corresponds to the mean between the differences
in number of actions (real and predicted) in total and the
individual ones, i.e., for each nb ai.

For instance, considering the combinations p = {1, 0, 1},
the performed one, and q = {0, 1, 1}. We can notice that q
has one misplaced action leading to dist(p, q) = 1. Assuming
now p = {1, 1, 1} and q = {3, 2, 1}, there are three misplaced
actions in q, two for the first action and one for the second
so, dist(p, q) = 3.

In Fig. 3b, the combinations in C ′ are generally closer to
real ones compared to the ones in C. For instance, assuming
11 devices, the average distance is around five and seven with
C ′ and C respectively. In that case, the combinations in C ′

have six correctly identified actions against four with C. We
also observe that the larger the number of actions performed,
the larger the average distance. This problem is mainly due to
similar sizes between some ai as shown in Table II.

VI. CONCLUSION

In this paper, we introduced a method to automatically
infer the actions requested by a user by solely observing the
resulting traffic sent from the web service to the IoT gateway.
Our approach consists in finding a correlation between the
user inputs (actions performed) and the observed encrypted
application data sizes received by the IoT gateways. Our
evaluation highlights the ability of our technique to predict
a set of action lists that contain the real actions with a high
accuracy (up to 98.4%) with a limited incertitude compared
to all possible combinations of actions.

Hence, even though the network traffic is encrypted and the
IoT end-devices not directly observable, the presence of an
IoT gateway does not prevent an intermediate entity to retrieve
fine-grained information about the user activities.

In future work, such an information will be leveraged to
create normal activity profiles and detect deviations afterwards
in order to help in detecting anomalies and attacks.

IFIP/IEEE IM 2019 Workshop: 5th IEEE/IFIP Workshop on Security for Emerging Distributed Network Technologies (DISSECT) 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Combinations regroup per number of devices

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

e
a
ch

 d
e
v
ic

e
-t

y
p
e smart plug

smart lamp holder

Fig. 2: Device distribution in the dataset

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of actions performed

0

50

100

150

200

N
u
m

b
e
r

o
f

C
o
m

b
in

a
ti

o
n
s

Avg. card(C)
Avg. card(C')

(a) Avg. number of combinations found in C and
C′ per number of actions performed. Confidence
intervals set to 68%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of actions performed

0

1

2

3

4

5

6

7

8

9

10

D
is

ta
n
ce

Avg. distance on C
Avg. distance on C'

(b) Avg. distance metric computed in C and C′ per
number of actions performed. Confidence intervals
set to 68%

Fig. 3: Evaluation of the reduction step

Acknowledgments This work has been partially supported
by the project SecureIoT, funded from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement no. 779899.

REFERENCES

[1] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas,
“Ddos in the iot: Mirai and other botnets,” vol. 50, pp.
80–84, 01 2017.

[2] Radware, “Brickerbot results in pdos attack,” 2017,
available at https://security.radware.com/ddos-threats-
attacks/brickerbot-pdos-permanent-denial-of-service.

[3] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra,
“Uncovering privacy leakage in ble network traffic of
wearable fitness trackers,” in 17th International Work-
shop on Mobile Computing Systems and Applications
(HotMobile). ACM, 2016.

[4] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan,
and N. Feamster, “Spying on the smart home:
Privacy attacks and defenses on encrypted iot traffic,”
CoRR, vol. abs/1708.05044, 2017. [Online]. Available:
http://arxiv.org/abs/1708.05044

[5] V. Srinivasan, J. Stankovic, and K. Whitehouse, “Pro-
tecting your daily in-home activity information from a
wireless snooping attack,” in Proceedings of the 10th in-
ternational conference on Ubiquitous computing. ACM,
2008, pp. 202–211.

[6] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Mi-
ettinen, H. Aksu, M. Conti, A.-R. Sadeghi, and A. S.
Uluagac, “Peek-a-boo: I see your smart home activities,
even encrypted!” 2018.

[7] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan,
A. Sadeghi, and S. Tarkoma, “Iot sentinel: Automated
device-type identification for security enforcement in
iot,” in 37th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2017.

[8] T. D. Nguyen, S. Marchal, M. Miettinen, M. H. Dang,
N. Asokan, and A. Sadeghi, “Dı̈ot: A crowdsourced
self-learning approach for detecting compromised iot
devices,” CoRR, vol. abs/1804.07474, 2018. [Online].
Available: http://arxiv.org/abs/1804.07474

[9] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi,
I. Ray, and I. Ray, “Iotsense: Behavioral fingerprinting
of iot devices,” CoRR, vol. abs/1804.03852, 2018.
[Online]. Available: http://arxiv.org/abs/1804.03852

[10] L. Bernaille and R. Teixeira, “Early recognition of en-
crypted applications,” in Passive and Active Network
Measurement (PAM). Springer, 2007.

[11] M. Liberatore and B. N. Levine, “Inferring the source of
encrypted http connections,” in Conference on Computer
and Communications Security (CCS). ACM, 2006.

[12] W. M. Shbair, T. Cholez, J. François, and I. Chrisment,
“A Multi-Level Framework to Identify HTTPS Services,”
in Network Operations and Management Symposium.
Istanbul, Turkey: IEEE/IFIP, 2016.

[13] P.-O. Brissaud, J. Francois, I. Chrisment, T. Cholez, and
O. Bettan, “Passive Monitoring of HTTPS Service Use,”
in 14th International Conference on Network and Service
Management (CNSM), Rome, Italy, 2018.

[14] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram,
“Blockchain for iot security and privacy: The case
study of a smart home,” in International Conference on
Pervasive Computing and Communications Workshops
(PerCom Workshops). IEEE, 2017.

[15] C. Perera, C. McCormick, A. K. Bandara, B. A. Price,
and B. Nuseibeh, “Privacy-by-design framework for as-
sessing internet of things applications and platforms,” in
6th International Conference on the Internet of Things
(IoT). ACM, 2016.

[16] J. W. Wright, “The change-making problem,” J. ACM,
vol. 22, no. 1, pp. 125–128, Jan. 1975. [Online].
Available: http://doi.acm.org/10.1145/321864.321874

IFIP/IEEE IM 2019 Workshop: 5th IEEE/IFIP Workshop on Security for Emerging Distributed Network Technologies (DISSECT)12

