
Hashtray: Turning the tables on
Scalable Client Classification

Nik Sultana∗, Pardis Pashakhanloo∗, Zihao Jin†, Achala Rao∗, and Boon Thau Loo∗
∗University of Pennsylvania, †Tsinghua University

Abstract—Untrusted network clients can undergo a classifica-
tion process before they are allowed to use more of a service’s
resources, and services typically rely on a table to remember the
clients’ classification. But as the number of clients increases so
does the amount of state required to remember this classification
over time.

In this paper we explore the trade-off between data-structure
accuracy and network size when needing to remember client
state. We present Hashtray—a hash table library that consists of
a generic API and instantiations of various kinds of tables—and
a system to evaluate and compare different data structures.

We evaluate Hashtray in the context of Denial-of-Service
mitigation using both a modelled network of 106 machines, and
a testbed experiment with over 200 hosts connecting to a version
of Apache modified to use Hashtray. The system is open-sourced
to enable others to extend or build on this work.

Index Terms—denial-of-service, randomised data structures,
hashing

I. INTRODUCTION

Analytics applied to network traffic patterns or application-
specific metrics can scrutinise the behaviour of an online sys-
tem’s networked clients to decide what limits to place on their
access or resource use. If done adequately, this can improve
security and help tune the overall system’s performance and
service quality [1].

Classification techniques include signature matching and
machine learning [2]. Once a classification is made, it must
be remembered in order to change the system’s response to
clients already classified, and to avoid the expense of redoing
the classification in the near future. For example, a new client,
or one that is behaving suspiciously, might be quarantined for
a period of time during which traffic from its network address
is routed or inspected differently. Following the quarantine,
it might be subjected to deeper inspection or graduate into a
“trusted” classification, thus freeing up resources to inspect
other clients’ connections.

But as the number of clients increases so does the amount of
state required to remember the clients’ classification over time.
Forgetting clients’ classifications might harm the service’s
quality or security. For example, if a service is being targetted
by a Denial-of-Service [3] (DoS) campaign then classifying
and remembering DoS-participating clients would allow the
service to block those clients for a period of time, while
allowing bona fide clients to continue using the service. One
could use load balancing to diffuse the memory pressure
from storing large tables on a single host, by sharding the

table across several hosts, but that still leaves the question
of what kind of data structure is best suited to remember
the classification while using less resources. The contributions
of this paper are complementary to distributed approaches to
scaling systems.

In this paper we explore the trade-off between data-structure
accuracy and network size when needing to remember client
state.

We present Hashtray: a hash table library that consists of a
generic API and instantiations of various kinds of tables. These
include various concurrency-friendly instances of our Cuckoo
filter [4] implementation—a randomised and approximate data
structure—and an example wrapper for third-party hash table
implementations.

Hashtray is designed to fulfill two objectives: i) be straight-
forward to integrate with (both existing and new) applications
which can make application-specific calculations of client
features that indicate a client’s reputation, and offload this
for storage in Hashtray; ii) provide an evaluation testbench
for different kinds of data structures presented to applications
through a common interface, to understand which data struc-
tures scale best when tracking client state.

We evaluate Hashtray in the context of mitigating Denial-
of-Service attacks by measuring how well Hashtray can re-
member which hosts are likely to be participating in a DoS
attack against a service.

Our evaluation consists of two approaches. The first uses a
tool we implemented to model a large network; and the second
involves a testbed experiment with over 200 hosts connecting
to a version of Apache modified to use Hashtray to remember
clients’ classifications.

Contribution. This paper demonstrates the use of a common
library to provide applications with different choices of storage
for client state to evaluate which choice scales best. The two-
pronged evaluation using both the model and the Apache
extension demonstrates a methodology to use the same library
to obtain complementary measurements on how the data
structure deals with scale (when using the model) and in a
higher-fidelity evaluation (when using an actual application,
such as Apache). Hashtray, including our network modelling
tool, is released as open source software under a permissive
license.1

1http://www.seas.upenn.edu/∼nsultana/hashtray978-3-903176-15-7 © 2019 IFIP

67



Listing 1: Key functions in Hashtray’s API.
struct table* create_table(void);
void destroy_table(struct table* t);
enum outcome insert(struct table* t, data_t data, data_t metadata, int (*merge_fun)(data_t*

stored, const data_t* new), int (*expiry_fun)(const data_t* metadata));
enum outcome delete(struct table* t, data_t data);
enum outcome lookup(struct table* t, data_t data, data_t* metadata, int (*apply_fun)(data_t*

metadata));

II. BACKGROUND AND RELATED WORK

Probabilistic data structures such as Bloom filters [5] have
been evaluated for host information management [6] and secu-
rity [7] applications, including DoS mitigation for HTTP [8]
and SIP [9].

Various such data structures exist, and it is not easy to
evaluate them consistently from the same application. In this
paper we based our evaluation on Cuckoo filters [4] which tout
several benefits over Bloom filters, such as record deletion.

New variants of this filter are still being developed [10].
In the implementation evaluated in this paper, we settled on
using a form of Cuckoo filter that behaves more like a hash
table, based on Cuckoo hashing [11], to allow us to associate
information with a host’s hash (rather than only approximately
checking whether that host belongs to a set).

Cuckoo hashing. Cuckoo hashing provides a probabilistic
data structure that provides constant-time lookup and deletion,
and amortised constant-time insertion. It behaves like a hash
table where each key can be mapped to multiple addresses in
the table, of which one is chosen at random. An address in a
table references a block which contains a number of entries,
each of which can store a key-value pair. Perhaps the most
common configuration is a “2,4-table”: each item may map to
2 blocks, where blocks contain 4 entries. If a block’s entries
are all full, then an entry may be displaced to its alternative
block. An iterative “kicking out” process continues until some
limit is reached, displacing entries between blocks until a free
entry is found.

III. HASHTRAY

Hashtray consists of an API, shown in Listing 1, and library
that collects different hash table implementations. Currently
it includes a wrapper for a third-party hash table and the
hash-table variant of the Cuckoo filter [4] extended with the
following features: concurrent access (thread safety), fine-
grained locking (at the level of blocks), and eviction. We
implemented three variants offering the same API: single-
threaded (no locks), multithreaded, and multi-process. All fea-
tures of the implementation are parameterisable: such as which
hash function to use, the size of table, and the size (in bytes)
of keys and values. We wrote this in C99, relying only on
POSIX features—such as for inter-process communication—
to ease portability, and use the resulting header files and library
in the Apache integration described below. We wrote a test
rig that logs collisions and evictions, to ensure that the table

behaves as intended. This is all the more helpful since, as a
randomised structure, its behaviour could vary from one run to
the next. Even if the random seed is kept constant, the thread
interleaving may be varied by the OS’ scheduler.

How to use Hashtray. The evaluation of Hashtray in the
following sections also serves as a demonstration of how to
use it. Using Hashtray involves using its API (Listing 1) and
specifying, at compile time, what kind of table the API is
interfaced with. Demo code provided with Hashtray shows
how to do this, and how to use different kinds of tables in the
same application through the same API. By using the same
workload to run evaluations using different kinds of tables
(data structures) from the same application, one can obtain
an idea of which kinds of data structure is best suited for
that given workload. Note that Hashtray does not perform the
logic to understand if a host is malicious; it only serves to
remember that decision once it has been made. There is a rich
literature on deciding whether a host is malicious but this is
out of scope in this paper.

IV. NETWORK MODEL

To evaluate DoS effects in large-scale networks we wrote
a simulator to model the effects of using different tables
provided in Hashtray’s library. In our model, a multi-threaded
server services hosts that are either “good” or “bad”. Servicing
good hosts has no ill effect, but servicing bad hosts incurs stall.
Stall is what results in a denial-of-service to bona fide users.
When a system is stalled, it cannot serve clients; this is what
makes bad hosts “bad”. Stall accumulates when bad hosts are
serviced. We use a table in Hashtray to mitigate this stall,
by recognising bad hosts (from past accesses) and refusing to
service them. Without such a memory, we pay the cost of stall
each time a bad host returns to our server. If the table being
used is randomised then its behaviour can vary across runs.
Moreover, since the table is finite, it may lose information if
it is filled. Thus this simulation serves to model the utility of
a particular data structure (instantiated in Hashtray) to avoid
stall.

In our model, we simulate having 10 serving threads,
having shared access to a Cuckoo hash. Misclassification (i.e.,
confusing a “good” host with a “bad” one because of a hash
collision) incurs a penalty. Our model uses a 100-block 2,4-
table in a network of 1,000,000 hosts. Parameters of our model
can be easily changed.

We vary two parameters in our simulation, PGH and PGC.
PGH is the “percentage of good hosts”: how many hosts

IFIP/IEEE IM 2019 Workshop: 4th IEEE/IFIP International Workshop on Analytics for Network and Service Management - Short Papers68



in our network are “good”. PGC is the “probability of a
good connection”: how likely that each new connection arrives
from a “good” host. We vary these parameters to model the
changing ratio of “good” connections arriving at our system.
This matters since when a system is under attack PGC drops
sharply because we are more likely to receive connections
from a bad host. There might be many bad hosts on the
network, but they might not be attacking us; this is modelled
by a high PGH and high PGC. The model first rolls the die to
decide whether to attempt to have a good or bad host establish
a connection to the server. Then it rolls the die to pick a
host at random, and if the picked host has the sought quality
(good/bad) then the connection is made, otherwise we repeat
the decision whether to have a good or bad host connect.

V. APPLICATION MODEL

We also evaluate Hashtray by integrating it with an existing
application, the Apache HTTP server. We developed a simple
model for this integration, based on a structure to record client
information:

struct {
unsigned class : 2;
unsigned conns : 4;
unsigned throttling : 1;
unsigned last_classified : 16;

} data;

Here class encodes the connection’s classification (e.g.,
whether we consider the host to be “bad” based on past
behaviour); conns the number of simultaneous connections
the host has with us; throttling whether connection
throttling is enabled (i.e., we can drop some connections from
a client); and last_classified is a timestamp that we
use to expire records. We take the lower 16-bits of the current
time (at second-level precision), which means we can expire
records after 18 hours at most.

Integration with Apache. Starting with the pipelined Apache
Worker MPM described in earlier work [12], we added logic
that uses Hashtray as follows. We first gather information
about the behaviour of clients, store it in a Hashtray instance,
then use this information to change how Apache reacts to
those clients in the future. We called our modified Worker
MPM “Union” since all the worker threads are now sharing
eventually-consistent state about how different clients are
classified.

Logic. When a connection arrives, we perform a lookup on
an thread-local cache table (and on a application-global table
if the cache misses). If a (non-expired) record is retrieved, then
the connection is treated according to its class. Otherwise, the
connection is classed as an “under-observation” connection, on
which data is gathered as the connection progresses through
the application. Once a connection has been classified, it
retains that class until the record expires. Our implementation
accepts various parameters that influence its performance and
tolerance to misbehaving clients, such as the sizing of queues
used to buffer connections, and the number of simultaneous
connections a client is allowed to make.

0%

25%

50%

75%

100%

0% 20% 40% 60% 80% 100%
'Good' Connections

St
al

l

type
Unwinnowed

Winnowed

Response stall at PGH=21

0%

25%

50%

75%

100%

0% 20% 40% 60% 80% 100%

type
Unwinnowed

Winnowed

'Good' Connections

St
al

l

Response stall at PGH=51

Type
Unfiltered
Cuckoo

Figure 1: Simulated “stall” in a 106-host network, using a 102-
size 2,4-table, when 21% and 51% of hosts on the network
are “good hosts” (PGH). For each of these, we simulate the
percentage of connections coming from “good hosts” (x-axis)
to calculate the time we would spend stalling on connections
from “bad hosts” (y-axis).

VI. EVALUATION

We evaluate the DoS-mitigating effectiveness of our Cuckoo
filter instance in Hashtray in two ways:

• Stall simulation we simulated a large network of hosts
accessing a server to compare how much “stall” it would
suffer from malicious hosts when compared to not using
that filter. This gives us an approximate understanding
of using that filter in a network that far exceeds our
experimental resources.

• Testbed experiment we use a physical testbed to eval-
uate the DoS-mitigating ability of a modified version of
Apache version 2.4.26.

A. Stall simulation

Our results are shown in Fig. 1. We run our simulator 5
times for each set of parameters. The randomness used by the
Cuckoo filter results in a region of behaviour rather than a line.
To understand the graphs, consider the case when connection
filtering is not used (i.e., the continuous line). When PGH=51,
then when 50% of connections are from good hosts (i.e.,
PGC=50), then the system stalls around 50% of the time (seen
on the y-axis). When PGH=21 and there is a 50% chance of
connections coming from good hosts (PGC=50) then because
of how the model picks connections we are more likely to
get more connections from bad hosts as a result: i.e., the
system is under attack more of the time. There we can see
that the paucity of good hosts making connections to our
server (relative to bad hosts making connections) leads to
greater stall (over 75%). This means that 75% of the time the
server is suffering the ill-effects of stall. In contrast, whenever
PGC=100, then a bad host can never be picked, thus the system
spends 0% of its time stalling.

IFIP/IEEE IM 2019 Workshop: 4th IEEE/IFIP International Workshop on Analytics for Network and Service Management - Short Papers 69



B. Testbed experiment
In this section we describe how we evaluate the performance

of Apache extended with the use of Hashtray for connection
monitoring and filtering, under normal and attack conditions.

Our physical setup consists of eight 8-core Intel Xeon E5-
2630L 1.80GHz CPU, 64GB RAM servers running Ubuntu
Linux 14.04 and interconnected via 10GbE links. We run
Apache on one of the servers. The other servers we use to
run the measurement programs (we use httping, configured
to make a single GET request each second, timing out after
one second), and attack scripts. We use DoSarray [13] to run
40 container instances on each machine, bridge their virtual
network interfaces and give them all unique IP addresses. Thus
we get a test network consisting of 240 nodes, any of which
we can use to run measurement or attack scripts.

Results. Our results measure the availability of Apache as
perceived by the measurement program run on each non-
attack node, and visualised by DoSarray. An example plot
is provided in Fig. 2a for a control experiment consisting
of the unmodified Apache when not under attack, and in
Fig. 2b showing the unmodifed Apache when attacked by
two instances of SlowLoris [14]. We run the experiment for
120s. We notice that, on average, latency increased by 100µs
even when not under attack. We ran experiments in which
Apache was attacked using SlowLoris, Tor’s Hammer, and
GoldenEye, popular HTTP-level DoS attacks for which scripts
can be found on the Internet.

The modified Apache was able to resist up to 4 simultaneous
attackers, for any type of attack we tried. In comparison,
unmodified Apache can be rendered unresponsive by a single
attacker. This suggests that Hashtray-backed in-application
classification can be a viable mitigation for DoS, but further
research is needed to establish general tools and techniques
that can work against more attackers, more types of attacks,
and for more kinds of applications.

ACKNOWLEDGMENT

We thank the anonymous reviewers, Henri Maxime De-
moulin and Markulf Kohlweiss for feedback and John
Frommeyer for systems support. This material is based on
work supported by the Defense Advanced Research Projects
Agency (DARPA) under Contracts No. HR0011-17-C-0047
and HR0011-16-C-0056.

REFERENCES

[1] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and M. Wolf,
“Monalytics: Online Monitoring and Analytics for Managing Large
Scale Data Centers,” in Proceedings of the 7th International Conference
on Autonomic Computing, ser. ICAC ’10. New York, NY, USA: ACM,
2010, pp. 141–150.

[2] S. Suthaharan, “Big Data Classification: Problems and Challenges in
Network Intrusion Prediction with Machine Learning,” SIGMETRICS
Perform. Eval. Rev., vol. 41, no. 4, pp. 70–73, Apr. 2014.

[3] M. Handley and E. Rescorla, “Internet Denial-of-Service Consider-
ations,” Internet Requests for Comments, RFC Editor, RFC 4732,
December 2006.

[4] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo Filter: Practically Better Than Bloom,” in Proceedings of
the 10th ACM International on Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’14, 2014, pp. 75–88.

0 5 10 15 20 25 30 35 400 1020
3040

5060
7080

90
0
10
20
30
40
50
60
70

time (s) latency(⨉10μs)

in
st

an
ce

s 
(%

)

(a) Normal activity in Apache (Worker MPM)

0 5 10 15 20 25 30 35 400 1020
3040

5060
7080

90

time (s) latency (⨉10μs)

0
10
20
30
40
50
60
70

in
st

an
ce

s 
(%

)

(b) SlowLoris on Apache (Worker MPM)

Figure 2: The gap in graph of (2b) indicates that the attack
succeeds, since Apache stops responding. “Instances” indi-
cates the concentration of hosts who responded to a specific
probe at a given latency. Latency is measured in tenths of a
millisecond. Probes occur at 1 second intervals.

[5] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[6] M. Lee, N. Duffield, and R. R. Kompella, “MAPLE: A Scalable Archi-
tecture for Maintaining Packet Latency Measurements,” in Proceedings
of the 2012 Internet Measurement Conference, ser. IMC ’12. ACM,
2012, pp. 101–114.

[7] S. Geravand and M. Ahmadi, “Bloom filter applications in network
security: A state-of-the-art survey,” Computer Networks, vol. 57, no. 18,
pp. 4047 – 4064, 2013.

[8] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-4-sale: Surviving
Organized DDoS Attacks That Mimic Flash Crowds,” in Proceedings
of the 2Nd Conference on Symposium on Networked Systems Design
& Implementation - Volume 2, ser. NSDI’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 287–300.

[9] D. Geneiatakis, N. Vrakas, and C. Lambrinoudakis, “Utilizing bloom fil-
ters for detecting flooding attacks against sip based services,” Computers
& Security, vol. 28, no. 7, pp. 578 – 591, 2009.

[10] N. L. Scouarnec, “Cuckoo++ Hash Tables: High-performance Hash
Tables for Networking Applications,” in Proceedings of the 2018 Sym-
posium on Architectures for Networking and Communications Systems,
ser. ANCS ’18. New York, NY, USA: ACM, 2018, pp. 41–54.

[11] R. Pagh and F. F. Rodler, “Cuckoo Hashing,” J. Algorithms, vol. 51,
no. 2, pp. 122–144, May 2004.

[12] N. Sultana, A. Rao, Z. Jin, P. Pashakhanloo, H. Zhu, K. Zhong, and
B. T. Loo, “Making Break-ups Less Painful: Source-level Support for
Transforming Legacy Software into a Network of Tasks,” in Proceedings
of the 2018 Workshop on Forming an Ecosystem Around Software
Transformation, ser. FEAST ’18. New York, NY, USA: ACM, 2018,
pp. 14–19.

[13] N. Sultana, S. Bose, and B. T. Loo, “An extensible evaluation system
for DoS research,” in 11th International Conference on Communication
Systems & Networks, Jan 2019, p. In press.

[14] “Secure your Apache server from DDoS, Slowloris, and DNS Injection
attacks,” https://www.techrepublic.com/blog/smb-technologist/secure-
your-apache-server-from-ddos-slowloris-and-dns-injection-attacks/.

IFIP/IEEE IM 2019 Workshop: 4th IEEE/IFIP International Workshop on Analytics for Network and Service Management - Short Papers70


