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Abstract—Forecasting fine-grained network traffic is crucial
for many network management and optimization tasks such
as traffic engineering, anomaly detection, network accounting,
network analytics, load balancing, and traffic matrix estimation.
However, building models that are able to predict a wide-variety
of network traffic types is not a trivial task due to a) the
diversity of network traffic, and b) the computational challenges
in processing large datasets to train the prediction models. In this
paper, we present a network traffic prediction framework that
uses real network traces from a Tier-1 ISP to train a Long Short-
Term Memory (LSTM) neural network and generate predictions
at short time scales (≤ 30 seconds). In order to reduce the number
of models needed to capture the very diverse dynamics of the
various traffic sources, we develop a feature-based clustering
framework that acts as a preprocessing step in order to group
similar time-series together and train a single model for each
group. Our extensive experimental evaluation study shows that
LSTMs can indeed be used to predict network traffic with low
prediction errors.

I. INTRODUCTION

Fine-grained network traffic predictions can enable a large
variety of network management tasks such as network mon-
itoring, traffic engineering, anomaly detection, network ac-
counting, network analytics, performance diagnostics, load
balancing, and Traffic Matrix (TM) estimation [14], [15],
[16], [17], [18], [19], [20]. However, traditionally, prediction
models for network traffic have only been developed for large
aggregation time-windows (> 15 minutes in most of the cases)
due to a) the very volatile nature of network traffic in smaller
time scales, b) the lack of computational resources to process
packet level training data at scale, and c) the lack of efficient
models that can predict network flow rates with high accuracy.
For this, fine-grained traffic predictions have been substituted
by network traffic measurement frameworks that fall into one
of the following three categories, depending on their objective
[19]: a) balance in overhead implications by using techniques
like sampling, aggregation, efficient heuristics, etc., b) resource
usage as a trade-off with measurement accuracy, and c) accu-
rate measurements in real-time for decision making. However,
none of the existing frameworks can provide a generic solution
for granular traffic measurement, since either the framework
will be application specific, or there is going to be some
tradeoff that we are trying to balance. More recently, the
development of Software-defined Networks (SDN) allowed
more fine-grained measurement to be performed by providing
statistics for each forwarding rule of an OpenFlow-enabled
switch. However, commodity hardware switches use TCAMs
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to collect statistics for every forwarding rule installed, which
have very limited size due to their high cost and power
consumption (4K rules in most of the switches). For this, only
a small fraction of the total number of flows that a switch
forwards can be monitored at any time. As it is evident from
the above, more efficient mechanisms are needed in order to
be able to a) collect network measurements, and b) use the
collected measurements in order to generate accurate traffic
predictions for the traffic that cannot be measured, as well
as traffic forecasts that characterize the future behavior of the
network. Motivated by this, we proposed DeepFlow in [11],
a framework that can increase the measurement capabilities
of SDN by efficiently multiplexing measurements and predic-
tions. In this paper, we extend our work from [11] and conduct
an in-depth modeling study of backbone network traffic using
a relatively recent dataset provided by CAIDA in [10] as
well as the state-of-the-art deep-learning model for time-series
predictions, namely Long Short-Term Memory (LSTM). The
contributions of our work are summarized below:

1) We provide a generic architecture for analyzing large
volumes of raw network traffic in order to model them
in various time scales and various aggregation levels
(megaflow level).

2) We provide an in-depth analysis of backbone network
traffic that was captured relatively recently (i.e. 2016)
and which contains new traffic dynamics that were
unavailable in relevant studies two decades ago, since
in the recent years the multimedia content, the social
networks, the mobile devices, the smart-TVs and more,
have completely changed the traffic landscape.

3) We provide an analysis of several variations of LSTMs for
network traffic modeling, including vanilla LSTM, delta-
based LSTMS (i.e. models that predict the consecutive
flow-size deltas), and cluster-based LSTMs. This way we
can shed more light on what type of model is good for
what type of traffic.

4) We propose a set of features that can be used to cluster
the traffic time-series and use a single model per cluster in
order to reduce the number of distinct models needed to
cover a large variety of traffic dynamics, and thus increase
the scalability of the framework.

II. BACKGROUND & MOTIVATION

Before we present our analysis, we provide the following
three definitions that will be used throughout this work:

Definition 1. A flow is defined as a set of IP packets passing
an observation point in the network during a certain time978-3-903176-15-7 c© 2019 IFIP
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interval which share a set of common properties such as the
source and the destination IP address (or prefix).

Definition 2. A flow-rate time-series, or simply a flow time-
series Fi = f

(1)
i , f

(2)
i , ..., f

(n)
i is an ordered set of n real-

valued variables that correspond to the total traffic volume of
flow fi over a measurement interval.

Definition 3. Given a time-series Fi of length n, a sub-
sequence F

(p)
i of Fi is a sampling of length w <

n of contiguous positions from Fi, that is, F
(p)
i =

f
(p−w+1)
i , f

(p−w+2)
i , ..., f

(p)
i for w ≤ p ≤ n.

In this paper, and without loss of generality, we will focus
on modeling the special case of Definition 1 where a flow
is defined as the traffic that shares the same source and
destination IP prefix (i.e. megaflow), for the whole duration
of our experiment. To do so, we develop a framework that
aggregates data both spatially and temporally using a big data
processing framework, as it will be described in Section IV.
The aggregation is done on source and destination IP prefix
pairs that are characterized by their subnet mask size. Our
goal is to use past measurements for the size of the traffic
from an IP prefix over a given measurement period (e.g. the
last 3 observations) and use that to predict the size for the
next epoch. To train our model, we use the subsequence F (p)

i
with p = n/2 and w = n/2 data points, and to test our model
we use the subsequence F (p)

i with p = n and w = n/2. In
this paper, n is defined as the length of the dataset, after the
packets have been grouped in time epochs.

One of the biggest challenges in modeling network traffic
is its diversity in terms of the dynamics of the underlying
traffic (e.g. multimedia, web content, file-sharing, etc.) that
makes it hard for a single model to generate good predictions
especially in small time-scales. For this, larger aggregation
windows (usually > 15 min) have been used where network
traffic exhibits hourly, daily, and weekly periodicities, and
thus makes it easier to predict. However, this coarse grain
predictions cannot always satisfy the requirements of many
network management tasks. So, in our study, we focus on a 1-
hour long trace containing large volumes of traffic from a Tier-
1 ISP from [10], which is shown in Fig. 1 when aggregated
across all prefixes. The trace contains 1.65 billion IPv4 packets
with total size of 0.98 TB.

In order to better understand the trace characteristics, we
show in Figs. 2(a), and 2(b) the histogram of packet size in
the trace, and the histogram of the total traffic sizes for a
measurement epoch of 1 second, respectively. As we can see
from the graphs, the packet sizes are either small (e.g. TCP
ACKS) or around 1500 bytes, which aligns with the fact that
TCP packets are 88.95% of the trace and UDP is 10.73%.
Another observation is that the aggregated traffic time-series
appears to follow a bimodal distribution with a long left tail
that corresponds to the frequent drops in the traffic which is not
clear if it was due to the measurement equipment of CAIDA
or it was inherent characteristic of the traffic. Finally, in Fig.
3 we show the autocorrelation coefficients of the aggregated
trace for various lags from where we can see that all the first
100 lags have significant ACF, which is a good indicator that a
model like LSTM that was designed specifically to effectively
handle long-range dependencies ([8]) could work well.

III. METHODOLOGY

A. Long Short-Term Memory Model

A Long-Short-Term-Memory (LSTM) model is a form of
a recurrent neural network that has gained popularity in the
recent years due to its effectiveness in modeling complex time-
series with time lags of unknown size that separate important
events [12], [8]. The main idea of LSTM is the use of self-
loops where the gradient can flow for long durations without
vanishing or exploding. This, in combination with the use of
a forget-gate, allows the LSTM to accumulate knowledge that
can be ”forgotten” later depending on the input data. To the
best of our knowledge, this is the first time that LSTM models
are used for modeling fine-grained network flow sizes in short
time scales.

LSTMs are characterized by the following recursive equa-
tions:

f(t) = σ
(
Wfx(t) + Ufh(t−1) + bf

)
(1)

i(t) = σ
(
Wix(t) + Uih(t−1) + bi

)
(2)

c̃(t) = tanh
(
Wcx(t) + Uch(t−1) + bc

)
(3)

c(t) = i(t) � c̃(t) + f(t) � c(t−1) (4)

o(t) = σ
(
Wox(t) + Uoh(t−1) + bo

)
(5)

h(t) = o(t) � tanh(c(t)) (6)

where f(t), i(t), c̃(t), c(t), o(t),h(t) are the forget gate, input
gate, candidate state, current state, output gate, and hidden
state, respectively, Wf ,Wi,Wc,Wo are the input weights for
the forget gate, input gate, candidate state gate, and output
gate, respectively, and Uf ,Ui,Uc,Uo are the recurrent weights
for the forget gate, input gate, current state, and output gate,
respectively. In addition, � is the (element-wise) Hadamard
product, and σ is the sigmoid function.

B. Time-Series Clustering For Model Selection

Network traffic is very heterogeneous in nature, depending
on the application that generates the data, the transport proto-
col used (e.g. TCP, UDP, etc.), the available bandwidth at the
edge, the congestion in the network, the time of the day, the
distance between source and destination, the end-user behavior
and more. These can create flow-rate time-series that can have
very different dynamics from prefix to prefix, and which would
be hard to capture with a single machine learning model. On
the other hand, using a different model for each flow prefix
would not scale due to the large number of possible source
- destination IP pairs. So, in order to be able to use a small
set of models to model a large variety of flow prefixes with
different dynamics, we use a time-series clustering framework
that assigns time-series into a set of disjoint clusters and train
a single machine learning model for each cluster.

Given the set of all the active flows F (p)
i for i ∈ {i, . . . ,K},

the goal of the time-series clustering framework is to find a
partition A1, A2, . . . Ak where k is the total number of clusters
and K the total number of flows. Let zi ∈ {1, 2, . . . , k}
be the cluster to which time-series F (p)

i is assigned. Then,
the clustering algorithm needs to find the optimal z∗i =
argmaxz p

(
zi = z|xi,D

)
where xi is the feature vector that

characterizes the time-series F (p)
i , and D is the rest of the input

data. In the analysis above, the number of clusters k can be set
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Fig. 1: Network traffic time-series from a Tier-1 ISP link (aggregated) over 1-sec measurement intervals.
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(a) Histogram of packet sizes for the CAIDA trace.
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(b) Histogram of network traffic size for epoch = 1 sec.

Fig. 2: Network trace histograms for packet size and aggregate
volume over 1 second periods.

manually (e.g. in case of k-Means) or derived automatically
by the clustering algorithm (e.g. in DBSCAN).

In general, time-series clustering can be done using three
kinds of approaches [13]: a) raw data based methods, b)
feature-based methods, and c) model-based methods. Here, we
use a feature based method to cluster the time-series F (p)

i since
a) this type of approach works well for heterogeneous time-
series, b) it requires a smaller set of dimensions compared to
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Fig. 3: ACFs for various lags for the trace in Fig. 1. The
shaded area corresponds to statistically non-significant ACF
values.

a raw-data approach, and c) it does not depend on a specific
model of the data. However, the challenge here is to find a set
of features that can work well. For this, we use the features
shown in Table I that were derived since they a) all capture
the dynamics of the time-series, b) can produce relatively good
clusters, as indicated by various cluster quality metrics such
as homogeneity, completeness, and silhouette coefficient.

The clustering algorithms used are k-Means and DBSCAN.
For k-Means, we specify the number of clusters k (20 was
used after experimenting with various values and deriving
clustering quality metrics, but depending on the data we
want to model this can be tweaked accordingly) that need
to be used to partition the time-series features such that
the within-cluster sum of squares is minimized as follows:
z∗i = argminz‖xi − µz‖22 where µz is the cluster’s center
and it is defined as µz = 1

Nk

∑
i:zi=z xi and Nz the total

number of points in cluster z. On the other hand, DBSCAN
only needs to be specified the maximum distance between two
samples for them to be considered as belonging to the same
neighborhood, and also the minimum number of samples (10
was used as a minimum) in a neighborhood for a point to be
considered as a core point (including the point itself).

C. Data Transformations
One very common approach when modeling data in practice

is to apply several transformations to the data depending on
their distribution, in order to achieve certain properties. In
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TABLE I: Features for network time-series clustering.

Feature Name Description
mean mean traffic size

variance variance of traffic size
median median of traffic size

min the smallest traffic size seen
max the largest traffic size seen
ptp the range of values (peak-to-peak)

skew skewness of the time-series
kurtosis fourth central moment divided by the

square of the variance
acf1 lag-1 autocorrelation coefficient
acf10 lag-10 autocorrelation coefficient

entropy sample entropy of the data
mask the mask size used to aggregate the traffic
epoch the epoch size used to aggregate the traffic

over time.

this work, we apply the following transformations in various
combinations in order to assess their effectiveness: a) normal-
ize the time-series, b) model the deltas (i.e. f (j)i − f

(j−1)
i ,

f
(j−1)
i − f

(j−2)
i , . . .) instead of the actual values (this also

changes the distribution of the data and may achieve better
performance), and c) model the logarithm of the time-series
values.

IV. EVALUATION

In order to evaluate the proposed approach, we analyzed
real network logs provided by CAIDA [10] that contain traces
collected from the high-speed ”equinix-chicago” monitor in
2016. The ”equinix-chicago” monitor is located at the Equinix
datacenter in Chicago, IL, and is connected to a backbone
10GigE link of a Tier1 ISP that connects Chicago, IL and Seat-
tle, WA. Each direction of the bidirectional link is monitored
and logged separately and labeled as ”direction A” (Seattle
to Chicago) and ”direction B” (Chicago to Seattle). However,
since CAIDA is aware that some data in this dataset contain
more than trivial amounts of packet loss (especially direction
B) due to the way the monitoring equipment is set up and the
high network speeds, in this work we are focusing only on
direction A.

The network traces are available in large pcap files
which were processed to extract the (timestamp,
ip_version, source_ip, destination_ip,
protocol, source_port, destination_port,
packet_size) of each packet. Since 99.68% of the packets
in the traces are TCP or UDP, we are explicitly focusing on
extracting only these two protocols form the trace. In addition,
due to the large size of the resulting files (since they contain
packet level information), traffic aggregation at various time
scales and mask sizes was performed using a modern big-data
processing framework, namely Google BigQuery [21]. To
leverage BigQuery’s fully managed backend, we first import
the packet-level processed logs to the database (in CSV
format), and then use a Python SQL query generator to create
and execute the SQL aggregation queries that will create the
final dataset. The overall process is shown in Fig. 4.

Fig. 4: Architecture of the data collection and processing
pipeline.

In order to evaluate the effectiveness of the model, we
calculate the Mean Absolute Percentage Error (MAPE) across
all the time-series, as defined below:

MAPE =
100

n

n∑
t=1

|f (t)i − u
(t)
i |

|f (t)i |
(7)

where f (t)i is the actual flow-rate value and u(t)i the estimated
flow-rate value for a given flow i. Since MAPE can produce
large errors when the actual time-series values are close to 0,
we remove from the analysis time-series that appear to be 0
for more than 50% of the trace. In a real system, we can use
a framework like DeepFlow from [11] to detect active flows
and model those only.

We implemented the following four variations of LSTM:
1) Vanilla LSTM (vlstm): This is a simple LSTM archi-

tecture with an LSTM layer with 50 units, followed by
a dense layer with 50 units, dropout of 20%, look back
window 3, 20 training epochs (not to be confused with
the aggregation epoch used during the dataset creation),
batch size 8, and standard scaler on the time-series data.
The model completed its training in less than a minute
in a regular PC, with a 50-50 train/test split.

2) Delta LSTM (dlstm): This is exactly the same architec-
ture as in 1) above, with the only difference that the input
data have been pre-processed to calculate the deltas.

3) Cluster LSTM (clstm): This is an LSTM architecture
that consists of 20 individual LSTM models (equal to
the number of clusters) that are trained using data from
a given cluster that the time-series are grouped into.
Each model has an LSTM layer with 50 units, followed
by a dense layer with 50 units, dropout of 30%, look
back window 3, 20 training epochs, batch size 128, and
standard scaler on the time-series data.

4) Cluster Delta LSTM (cdlstm): This is exactly the same
architecture as in 3) above, with the only difference that
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the input data have been pre-processed to calculate the
deltas.

In addition to the above models, some more variations were
also tested (e.g. using log-transform) but are not included here
since they did not provide any better results.

The data are aggregated using epochs of (5, 10, 15, 30)
seconds, as well as subnet mask sizes of (0, 1, ..., 7) in all
the possible combinations of the two. Due to the large number
of the resulting active flows, we randomly sample up to 100
active flows per combination, run the models, and then repeat
the process 10 times to calculate the final MAPE averages. The
results are shown in Figs. 5, and 6. As we can see from Fig.
5, smaller mask sizes and higher epoch sizes can be predicted
more easily, however, even at larger mask sizes, the average
MAPE can be less than 30%. In addition, it is important to
mention here that this does not mean that LSTM cannot predict
more fine grained flows, since our experimentation showed that
this increase in the MAPE is due to new traffic patterns being
observed during the testing phase, something that can be easily
resolved if we use more historical data. Another interesting
observation is that the delta transformation does not give a
big improvement over vanilla LSTM in most of the cases,
however when it gives, it gives by quite a lot, as it is evident
in Fig. 6. This shows that there is a certain pattern that is better
captured by the delta transformation. Fig. 6 also suggests that
each cluster can be further optimized by assigning a separate
model architecture instead of using the same architecture with
different training data across clusters. Finally, Fig. 6 shows
that when all the individual time-series have been grouped into
similarity groups, the model generalizes better since more data
with similar patterns are taken into account.

V. RELATED WORK

The problem of modeling network flow time-series is not
new in the relevant literature. Most of the previous works have
focused on modeling the aggregate size of a number of flows
over time windows of several minutes [1], [2], [3]. These
models are traditionally good for coarse grain traffic matrix
predictions, since they leverage long-range dependencies in
order to predict how the overall volume seen by an observation
point will behave in the future. On the other hand, there have
been some efforts on modeling aggregated flow-sizes in shorter
time scales, such as [4], [5], [6]. A in-depth discussion of
all the previous work on the topic is out of the scope of
this paper. Here, we emphasize on the main differences of
the existing approaches with our framework and motivate the
need of a new effort to accurately model fine grained flows in
short time scales. Specifically, most of the prior research was
done more than 2 decades ago, with the flow datasets being
significantly different compared to now due the significantly
lower network speeds, the limited amount of multimedia traffic
(e.g. video, VOIP, etc.), and the different traffic dynamics
overall. Second, in the case of more recent examples such as
[9], only aggregated traffic at the link (port) level was modeled
in large timescales (i.e. 15 minutes), which differs significantly
from what our framework aims to model. For this reason,
in this work we follow a different approach, and inspired
by the state-of-the-art deep learning models for time-series
predictions [8], [12], we proceed to validate their effectiveness
for predicting network traffic at small time-scales.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented several variations of LSTM that
can effectively model backbone network traffic. In addition,
we presented a big data architecture where analysis like this
can be conducted at scale by processing large PCAP files
containing packet level network logs. The results obtained
look very promising and validate the hypothesis that LSTM
is a good candidate for network traffic modeling. In the near
future, we are planning to further investigate this possibility
by optimizing more the models used by each cluster, as
well as trying different data transformations, neural network
architectures, and error metrics.
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Fig. 5: Average MAPE for various mask sizes and epoch durations.
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Fig. 6: Average MAPEs for each of the 20 clusters used for CLSTM and CDLSTM.
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