QoS-Aware Virtual SDN Network Planning

Junchao Wang
University of Amsterdam, NDSC
Email: j.wang2 @uva.nl

Abstract—Software Defined Networking (SDN) technologies
provide applications opportunities to manipulate underlying
network flows and topologies via network controllers during
runtime. In cloud environments, networked virtual machines can
be enhanced by SDN by providing applications with control-
lable infrastructures to meet system-level quality requirements;
however, customizing a suitable network topology with optimally
placed controller(s) for given quality requirements and workload
characteristics is often not an easy task. We call such problem
virtual SDN network planning problem. In this paper, a Topology-
Controller planner (TCPlanner) is proposed for customizing the
network topology and placing the controllers. Experiments with
different scales of network show that our approach can effectively
plan virtual SDN networks to meet the various QoS requirements
and reduce costs.

I. INTRODUCTION

By decoupling the control plane from the data plane,
Software-Defined Networking (SDN) technologies allow ad-
ministrators or applications to manipulate the underlying net-
work behavior via open interfaces [1][2]. SDN-based stan-
dards, e.g. Network Service Interface (NSI) [3] and Open-
flow [4], have shown great impact on dynamic provisioning
and reconfiguration in lightpaths and data center networks
in physical infrastructures [1]. In cloud environments, SDN-
based virtual switches [5] can be used together with networked
virtual machines (VMs) to allow applications to dynamically
adjust network flows via open interface and to maintain the
system-level performance [6].

At an abstract level, designing a topology of virtual net-
work devices, and placing suitable number of controllers are
two key issues of designing a SDN network in a Cloud
environment. When an application is distributed and with
a high quality requirement such as communication latency,
designing a suitable SDN network can be very difficult. Map-
ping application-level quality constraints onto network-level
properties, e.g., topology, is not straightforward, in particular
when the application has different requirements needing to
be considered. The design of the virtual network should also
take non-functional requirements, such as cost and reliability
into account. To make the virtual network software definable,
one or more controllers are needed, and they can reside
in the same VM with the virtual network devices or on a
separate VM. Unnecessarily high numbers of controllers can
not only make the resource cost high, but also increase the
control complexity. Moreover, the placement of the controllers
can also influence the control latency between controller and

978-3-901882-89-0 @2017 IFIP

Cees de Laat
University of Amsterdam
Email: delaat@uva.nl

Zhiming Zhao
University of Amsterdam
Email: z.zhao@uva.nl

devices; when the application has critical time requirements,
limiting such latency can also be crucial.

In this paper, we formulate this problem as the virfual SDN
network planning problem, and propose a Topology-Controller
planner (TCPlanner) to solve the problem. We will first review
the related work, and then give a formal problem description,
after which we present our proposed solution for network
topology customization and controller placement, and discuss
experimental results.

II. RELATED WORKS

In recent years, network topology optimization and SDN
controller placement have attracted lots of research attention.

The problem of network topology customization is often
studied using optimization approaches. In [7], Gédor et al.
proposed a heuristic algorithm which combines clustering and
local optimisation operators to optimise the cost of hierarchical
network planning. The costs of the network are aggregated
together from level to level with the degree constraints. In [8],
Eric tries to design a network topology with the minimum
number of links under the constraints of network diameter,
degree and survivability. Eric conducted theoretical analysis
on the problem and proposed a method with a mathematical
model. However, detailed information about the algorithm is
not given. In this paper we consider similar Quality-of-Service
(QoS) requirements as [8] and propose a meta-heuristic ap-
proach. In [9], Kamiyama et al. targets at designing a network
topology which can guarantee the connectivity and total link
length. As the search space enumerating all the possibilities
of links is too large, they applied binary partitioning and
introduce extra constraints to reduce the search space. In [10]
the maximum entropy method (MEM) is applied to solve the
problem of network design with the objective to minimise
the cost under the constraint of link capacity and latency.
In [11], to solve the problem of network topology design
with the objective of fault tolerance and capacity of traffic
and delays, a genetic algorithm is applied. In summary, only
Eric [8] considered the QoS of network reliability and network
diameter constraints and presented theoretical analysis when
customizing network topology. However, a detailed description
of the solution is not given.

The controller placement problem was first addressed
in [12]. The placement metrics average-case latency and
worst case latency are still widely used in current stud-
ies [13], [14], [15]. Pareto-based Optimal COntroller place-
ment(POCO) [13] [14] is a framework for Pareto optimal

644

controller placement in terms of different performance metrics.
The controller-to-switch and controller-to-controller latency
are considered to measure the network resilience. In [15],
Cheng et al. proposed three heuristic algorithms to solve
the problem of QoS-guaranteed controller placement. The
algorithms are more concerned with how to partition the
network from the controller viewpoint. However, these existing
works assume the number of controllers is assumed to be
given. In the SDN network planning problem, this number is
not known before. So we propose a solution that can determine
the placement of controllers and the number of controllers
needed.

From the existing work, we can see most of the topology
customization work study physical networks, without con-
sidering the SDN aspects; and the SDN placement studies
mainly focus on the pre-defined physical networks. In cloud
environments, combing these two perspectives are clearly
needed.

III. VIRTUAL SDN NETWORK PLANNING PROBLEM

The virtual SDN network planning problem is to customise
a network topology and place the controllers that can meet the
given QoS requirements.

As discussed above, the VMs provided by the cloud can act
as the switches. Network topology customisation determines
how these virtual switches are connected. We assume that the
users specify the number of virtual network devices (routers
or switches) as /N and QoS requirements (network diameter
and reliability). The network diameter d is the communication
cost of the longest path between all the pairs in the graph. It
can reflect the worst end-to-end latency in the network [8].
Therefore, we consider the network diameter specified by
the user as the one of the QoS requirements. Due to the
dynamics of cloud, the virtual links between VMs can fail
or degrade occassionally [16]. Therefore, the reliability in the
virtual network topology customisation is another important
issue which should be considered. In this paper we use single
arc survivability to represent the reliability of the network.
Single arc survivability means that when a single link in the
network topology fails, the network is still connected. There
are limited number of ports in network devices even though
it is virtual instead of physical. The cloud provider may also
limit the number of links that a VM is able to connect due to
the limitations of physical infrastructures. More specifically,
A is the maximum number of links from any given VM. The
network topology customisation problem is to define a network
topology that has single-arc survival with network diameter no
greater than d and node degree no larger than A. The overall
objective of the network topology customisation is to design a
network topology with the minimum number of network links
within the constraints described above.

The controller placement problem is to determine the
number of controllers and places where controllers should
be deployed. We assume that the controllers can manage
the same number of virtual switches and the controllers
can be placed in the same place as the virtual switch. The

controller-to-controller and controller-to-switch communica-
tion are also enabled through the virtual network links in
the network topology planning phase so that no extra links
need to be re-planned. The controller-to-controller latency
and controller-to-switch latency are two typical QoS require-
ments when placing controllers [17]. In this paper we use
marlatency and 73Ny o represent the maximum per-
mitted controller-to-controller latency and controller-to-switch
latency. We ﬁgvglatency to represent the average controller-
to-switch latency. nggl“te"cy is quite crucial to SDN be-
cause the controller needs to communicate frequently with
the switches [4]. Thus, in this paper we try to minimise the

lat e .
number of controllers and 7g"?"**“"*Y within the constraints

of Wgazlatency and ﬂ_gnamlatency‘

IV. PROPOSED APPROACH: TOPOLOGY-CONTROLLER
PLANNER

An approach called Topology-Controller planner (TCPlan-
ner) is proposed to solve the virtual SDN network planning
problem. The TCPlanner first customizes the network topology
to meet the high level requirements, which can be given by the
network developer or applications, and then places the optimal
number of controllers within the planned topology.

A. From application QoS to network topology

TCPlanner plans a topology to connect virtual network
devices based on network diameter and reliability. We use
d’' to represent the maximum end-to-end latency tolerable

lat
for users. Thus, to guarantee the d’ and 7/ **" ", we set

d= max{d’, ﬂ_enamlatency}'

Such a problem can be viewed as a transformation of the
Minimum-Cardinality-Bounded-Diameter(MCBD) Edge Ad-
dition Problem and has already been proved to be NP-
hard[18][19]. Theoretically, there exists a brute-force algo-
rithm that solves the problem by iterating through all fea-
sible solutions. In cloud, the virtual links can be planned
between any pair in the virtual network. Thus, there exists
N x (N —1)/2 links. Then the scale of searching space can
be 2((Nx(N=1))) This is possible for small-scale graphs, but it
becomes computationally very expensive or even impossible
when N is very large. A meta-heuristic approach based on
evolutionary algorithms is adopted in TCPlanner, because
evolutionary algorithms have been demonstrated as a feasible
solution for several similar problems[20].

We model the network connectivity using a communication
matrix and assume the links between nodes are not directed;
the communication matrix is thus symmetric. We encode a

solution to a chromosome with length of w Each
element in the chromosome is 1 or 0, which indicates whether
a link exists or not between vertices. Correspondingly we also
design a decoding algorithm to decode the chromosome as a
graph. The initial population can be seen as the “seed” of the
initial state which can have great effect on the performance
of the GA. Usually the initial population can be heuristically
crafted or randomly generated. It is difficult to follow certain

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Short Paper

645

646

heuristics to create the initial population, so all the individuals
in initial population are randomly generated. The assignment
of each position has equal possibilities.

Due to the complex various situations in which the con-
straints described above can be violated, we add a penalty
factor for each violation and aggregate them with the number
of links into the fitness function. As the objective is to
minimise the number of links, we use the reciprocal of the
sum of the link number and penalties as the fitness function
which is calculated as:

1.0/(LinkNum + Zle x; X penalty;)

0 The i-th constraint is not violated

€Xr; =

1 The i-th constraint is violated

LinkNum represents the number of links in the planned
network topology. penalty; represents the extent of the vio-
lation of the i-th constraint. The penalties above are to avoid
unfeasible solutions like unconnected graphs or graphs that
violate the specified constraints. In our scenario, there are
four possible situations where the constraints can be violated:
diameter violation, connectivity violation, degree violation and
survivability violation.

We use genetic operators crossover and mutation to produce
new generations of individuals and introduce diversity. We set
the probability of crossover between two parents as a static
value p; for each generation so that in each iteration new
chromosomes will be produced by intersecting the parent’s
chromosomes with a certain probability p.. After the off-
springs are generated, p3 X PopSize individuals are mutated
by switching certain places in their chromosomes from 1
to 0 or 0 to 1. PopSize refers to the population size. ps
represents the probability of mutation of individuals. Then the
next generation is selected with the individuals of the best
fitness value and the population remains the same size as last
generation.

B. SDN controller placement

After planning the topology, TCPlanner will determine
the number and placement location of the SDN controllers.
The objective is to minimise the number of controllers and
average controller-to-switch latency under the constraints of
the capacity of controllers and maximum latency of controller-
to-switch[17].

In TCPlanner, we sort the degree of the nodes in the planned
network topology in descending order and first choose the
vertex v with the maximum degree as the center of the first
cluster. The higher degree a vertice has, the more chances
the average latency can be reduced when looking at all its
neighbours one step further away. At each level neighbours of
the center node, we first choose the node with the minimum
degree so that it minimises the interference on other clusters.
The v tries to “absorb” its neighbours in this way until
the controller capacity or the maximum controller-to-switch
latency is violated. Such process will continue until all the
nodes are assigned to a cluster. In each cluster, its center node
is the place where controllers should be placed. The number
of controllers is equal to the number of clusters.

V. PERFORMANCE CHARACTERISTICS

To test the effectiveness of TCPlanner, we compared it
with a K-Medoids-based solution as the baseline [21]. The
K-Medoids algorithm is intended to classify a data set into
several clusters based on the node distance. The basic process
of K-Medoids is to randomly initialise K centers of clusters
and add nodes to the clusters based on the distance between
the center node and non-clustered node. Then the algorithm
will try to calculate some centers to reduce the inter-cluster
and intra-cluster distance. The algorithm will converge when
no better centers can be found.

As the K-Medoids algorithm need to specify the number
of clusters before the execution of the algorithm, we use the
square root of the number of nodes as the initial number
of clusters. When a cluster in the solution given by K-
Medoids algorithm exceeds the capacity of the controller or the
maximum controller-to-switch latency is violated, we increase
the number of clusters by 1.

In this paper we conduct simulated experiments on different
scales of networks to test the effectiveness of the proposed so-
lution. Our solution is implemented in Python and depends on
NetworkX and DEAP (Distributed Evolutionary Algorithms in
Python) [22].

A. Planning network topology

We set the number of network devices N ranging from
6 to 25. The diameter of the network is set as [v/N]. The
maximum degree of the network devices is d+ 1. d represents
the diameter of the network. We set the maximum generation
number of the genetic algorithm to be 250 to ensure that a
feasible solution can be found.

Number of links
s TCPlanner

- @ = Greedy solution

6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Number of network devices

Fig. 1: Number of links for a network topology with certain
QoS requirements

From Fig. 1 we can see that the number of links needed
to guarantee the QoS increases with the number of network
devices which is roughly linearly. In order to evaluate the
performance of TCPlanner, we design a greedy algorithm
which utilises all the degrees of each port. Therefore, the
number of links that can meet the QoS requirements reaches
N x A. From the result we can see that TCPlanner outperforms
the greedy solution.

B. Controller placement

We take the network topology generated from the data
plane planning phase and compare the results of K-Medoids
and TCPlanner from the number of controllers and average

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Short Paper

controller-to-switch latency. The results are shown in Fig. 2.
From the result we can see that the K-Medoids-based solution
needs more controllers than TCPlanner but can reduce the
average latency. The result is reasonable because K-Medoids-
based solution tries to cluster the graph into clusters to
minimise the intra-class distance and inter-class distance. With
the increase of the number of network devices, the number
of needed controllers can be reduced dramatically. When the
scale of the topology reaches 25, TCPlanner can have 3 less
controllers than the K-Medoids-based solution.

o -]

Number of

controllers = == k-medoids

@sTCPlanner

6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25
Number of network devices

(a) Number of controllers

08 [Ne

Average Latenc 4
& v 06 o= = k-medoids

@m=TCPlanner

04

0.2

0
6 7 8 9 1011121314 151617 18192021 22 23 24 25

Number of network devices

(b) Average controller-to-switch latency

Fig. 2: Results of K-Medoids and TCPlanner

VI. CONCLUSION AND FUTURE WORKS

In this paper we study the problem of virtual SDN network
planning and present a TCPlanner to solve the problem. We
first design the network topology given the QoS require-
ments on network performance and reliability. Then we place
the controllers that can meet the controller-to-controller and
controller-to-switch latency.

We only consider the latency constraints in the current
prototype; other QoS attributes such as bandwidth can also
have great impact on the performance of the network. One of
our future work is thus to include more network QoS con-
straints in the planning process. Moreover, the characteristics
of application traffic patterns and the dynamic QoS control
of SDN network will also be investigated in the planning
algorithm.

ACKNOWLEDGEMENTS

This research has received funding from the European
Union’s Horizon 2020 research and innovation program under
grant agreements 643963 (SWITCH project), 654182 (EN-
VRIPLUS project) and 676247 (VRE4EIC project). The re-
search is also partially funded by the COMMIT project.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Short Paper

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76,
2015.

F. Ongaro, E. Cerqueira, L. Foschini, A. Corradi, and M. Gerla,
“Enhancing the quality level support for real-time multimedia appli-
cations in software-defined networks,” in Computing, Networking and
Communications (ICNC), 2015 International Conference on, pp. 505—
509, IEEE, 2015.

G. Roberts, T. Kudoh, I. Monga, J. Sobieski, and J. Vollbrecht, “Network
services framework v1.0,” Tech. Rep. GFD 173, 2010.

0. S. Specification-Version, “1.4.0,” 2013.

“Openvswitch.” Accessed: 2016-3-30.

K. Jeong and R. Figueiredo, “Self-configuring software-defined over-
lay bypass for seamless inter-and intra-cloud virtual networking,” in
Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing, pp. 153-164, ACM,
2016.

I. Gédor and G. Magyar, “Cost-optimal topology planning of hierarchi-
cal access networks,” Computers & operations research, vol. 32, no. 1,
pp. 59-86, 2005.

E. Rosenberg, “Hierarchical topological network design,” IEEE/ACM
Transactions on Networking (TON), vol. 13, no. 6, pp. 1402-1409, 2005.
N. Kamiyama, “Efficiently constructing candidate set for network topol-
ogy design,” in Communications, 2009. ICC’09. IEEE International
Conference on, pp. 1-6, IEEE, 2009.

M. Tuba, “An algorithm for the network design problem based on the
maximum entropy method,” in Proceedings of the American Conference
on Applied Mathematics, Cambridge, USA, pp. 206-211, 2010.

T. Fencl, P. Burget, and J. Bilek, “Network topology design,” Control
Engineering Practice, vol. 19, no. 11, pp. 1287-1296, 2011.

B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proceedings of the first workshop on Hot topics in software
defined networks, pp. 7-12, ACM, 2012.

S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel,
and M. Hoffmann, “Heuristic approaches to the controller placement
problem in large scale sdn networks,” Network and Service Management,
IEEE Transactions on, vol. 12, no. 1, pp. 4-17, 2015.

D. Hock, S. Gebert, M. Hartmann, T. Zinner, and P. Tran-Gia, “Poco-
framework for pareto-optimal resilient controller placement in sdn-based
core networks,” in Network Operations and Management Symposium
(NOMS), 2014 IEEE, pp. 1-2, IEEE, 2014.

T. Y. Cheng, M. Wang, and X. Jia, “Qos-guaranteed controller placement
in sdn,” in 2015 IEEE Global Communications Conference (GLOBE-
COM), pp. 1-6, IEEE, 2015.

K. Hwang, X. Bai, Y. Shi, M. Li, W.-G. Chen, and Y. Wu, “Cloud
performance modeling with benchmark evaluation of elastic scaling
strategies,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 1, pp. 130-143, 2016.

S. A. Shah, J. Faiz, M. Farooq, A. Shafi, and S. A. Mehdi, “An
architectural evaluation of sdn controllers,” in Communications (ICC),
2013 IEEE International Conference on, pp. 3504-3508, IEEE, 2013.
C.-L. Li, S. T. Mccormick, and D. Simchi-Levi, “On the minimum-
cardinality-bounded-diameter and the bounded-cardinality-minimum-
diameter edge addition problems,” Operations Research Letters, vol. 11,
no. 5, pp. 303-308, 1992.

M. Abd-El-Barr, “Topological network design: A survey,” Journal of
Network and Computer Applications, vol. 32, no. 3, pp. 501-509, 2009.
C.-W. Tsai and J. J. Rodrigues, “Metaheuristic scheduling for cloud: A
survey,” Systems Journal, IEEE, vol. 8, no. 1, pp. 279-291, 2014.
H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids
clustering,” Expert Systems with Applications, vol. 36, no. 2, pp. 3336—
3341, 2009.

F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, pp. 2171-2175, jul 2012.

647

