
Augmenting Cloud Architectures to Support
Decentralized Applications

Michael Coughlin, Kelly Kaoudis, Eric Keller
University of Colorado, Boulder

Abstract—Despite the benefits of decentralized applications in
terms of resilience and privacy, the overwhelming majority
of applications with mainstream adoption are provided in a
centralized manner. We argue that this is due to the direct
benefits to the developer that centralization provides in terms
of performance, monetization, and deployability. In this paper
we introduce a new model, untrusted delegation, which joins the
simplified deployment model of centralization with the benefits
of decentralization. In this model, we decouple administrative
ownership from administrative management, and leverage the
existence of either a private cloud infrastructure, or a public
cloud provider that acts as a neutral third party, that is
augmented to support decentralization. Our initial prototype
integrates with the Digital Ocean API and as a proof-of-concept,
we can deploy Tor relay nodes with users only needing to sign
up for a Digital Ocean account.

I. INTRODUCTION

Decentralized applications consist of a distributed set of nodes
and administrative domains that together cooperate to provide
a service. As there is more than one administrative domain (ap-
plication software and infrastructure is controlled by different
parties), user privacy can be enhanced, since there is no single
entity that has complete control and visibility over users’ data
and actions. The distribution of nodes allows for application
performance and reliability to be enhanced, as there is an in-
herent diversity in execution environments and administrative
control (e.g., a single user cannot shut down the service with
a router misconfiguration, and network communication can be
optimized as there is no central bottleneck).

Because of these benefits, a number of these types of systems
have already been implemented, including secure communi-
cation and idea-sharing (such as Tor [1], Freenet [2]), crypto-
currencies (Bitcoin [3]), distributed hash table based stor-
age [4], [5], [6], web application platforms [7], web search [8],
email [9], web services [10], [11], social networks [12], and
a general call to re-decentralize the web [13].

Yet, the centralized (client-server) model has largely prevailed,
especially for mainstream applications – few decentralized
applications have gained mainstream adoption. The reasons
for this, we believe, is due to the properties of centralization,
which typically have a clear benefit to the application devel-
oper. In particular:

• Simple to deploy. The administrator/developer of a cen-
tralized application can acquire the computing resources
needed, and deploy their software as they see fit. There is

no need for coordination among many parties or reliance
on users running software on their own device.

• Able to be monetized. The administrator/developer of
a centralized application can put up gateways to its
application in order to charge for the service, or leverage
private user data to serve personalized ads. This ability
to monetize is important as it provides the incentive to
develop applications that people want to use.

• Provide better performance. With control over both the
software and the infrastructure, the administrator/devel-
oper of a centralized application can optimize perfor-
mance, such as by reducing latency through leveraging
advances in data center networks.

We ask whether we can obtain similar benefits for decentral-
ized applications. That is, can a developer create an application
that can be run in a decentralized manner (that is not in their
control), and where the application can have similar perfor-
mance to running it in a centralized manner, be monetizable
by the application developer, and still be easy to deploy?

The key lies in leveraging the cloud, which we argue can be
augmented to support decentralized applications.

In this paper we describe a new cloud-supported approach we
call untrusted delegation, which enables decentralized appli-
cations to be easier to deploy. In this model, a central entity is
given credentials to deploy an application to a cloud service
on a user’s behalf, but is not trusted with these credentials,
as all of its actions are logged and the credentials are both
time-limited and only scoped to allows for the deployment
of the application, and are enforced by the cloud service.
The high-level idea for our untrusted delegation model is for
users to sign up for an account from some cloud provider
(increasing the number of administrative domains, thus in-
creasing the effectiveness of decentralization), and delegate
temporary management to an untrusted developer (centralizing
management, simplifying deployment). The cloud provider
facilitates this by enforcing access and enabling the users to
check whether the application software is indeed out of the
developers control and visibility.

In the remainder of the paper, we discuss properties and
shortcomings of existing application models and introduce the
untrusted delegation model (Section II), discuss the associated
challenges and how we can address them in our architecture
(Section III), and conclude (Section IV).

978-3-901882-89-0 @2017 IFIP 544

C. CentralizedB. DecoupledA. Peer-to-Peer

Manager

Use

Node

User

Manage

Use

Node

User

Manage

Communication

User

Manager

Manage

Node

Node

Communication
Manage

User Use

Manager

Manage

Use

NodeCommunication

Use

Fig. 1: Existing Models Red boxes indicate the party that owns the application node.

II. APPLICATION MODELS

Broadly speaking, applications are built atop a collection of
distributed nodes which provide functionality and communi-
cate with one another. In this section, we overview existing
models and describe our untrusted delegation model.

A. Existing Models

In peer-to-peer (P2P) applications (Figure 1(A)), such as
Freenet [2], users must administer their own nodes, which,
networked together, comprise the application. With this, there
is potential for increased resistance to faults, since there is
no central bottleneck to limit individual connections or act
as a single point of failure. These benefits can scale as the
number of users (and thus nodes) increases. The collaborative
ownership and management of these applications also provides
some possible privacy benefits to the users, as there is no single
entity which has complete visibility over the users’ actions or
control over their data. This distributed ownership, however,
can also be a problem, as the application relies on users to
provide hardware. Without an incentive from the application
to keep these nodes online (such as a monetary award, as is
done by Bitcoin), these applications will experience a great
deal of churn in availability of nodes, as users will deactivate
their nodes when they are not using the application.

As illustrated in Figure 1(B), the decoupled model, as used
by Tor [1], separates the ordinary user from the node ad-
ministrator. This introduces a new entity, the manager, who
provisions and maintains nodes (managers will likely still be
users, but the function is decoupled). This distributed nature
allows for decoupled applications to inherit the benefits of P2P
applications, but with more reliability. The downside is that
entrusting all administrative responsibility to a select group of
volunteers limits network growth and reduces user privacy, as
user data is now controlled by this group (users still have
some options in this model though, as they could choose
to volunteer their own resources which may provide some
control over their data). Just as in P2P applications, decoupled
applications see increased returns with larger number of nodes,
but in the decoupled case, resource contribution is limited to
the managers, thus restricting the set of possible administrative
domains.

The centralized model (Figure 1(C)), as is used by many
cloud services like Google or Dropbox, takes the decoupled
model to an extreme. A single manager, and therefore single
administrative domain, provisions and maintains application
nodes. This model is simpler to deploy and control compared
to decentralized models (P2P and decoupled), as this responsi-
bility is consolidated into the domain of a single manager, and
performance is easier to optimize as the manager has direct
control over all of the components (this model can still be
implemented as a distributed system; we refer to centralization
as a single controlling administrative domain). This model is
also easier to monetize, as there is only a single point of access
to the application, meaning that paid gateways, advertising or
other monetization systems are easier to deploy and enforce.
However, user privacy is decreased further, as now all of the
user’s data is controlled by a single domain, with no path
for the user to control it other than what is provided by the
application.

Because of these benefits, the centralized model has become
the most popular application model for internet applications
today. However, the drawbacks of this architecture are a direct
result of its centralization. Any centrally controlled application
has a single point of failure. A single malicious adversary
or a power outage, hardware fault, or bug can bring down a
centralized application. Second, as the application is controlled
by a single entity, users must trust this entity, as it has complete
application visibility and control over user data.

Current decentralized applications (both P2P and decoupled)
have some advantages, such as increased fault resistance and
potential for privacy, compared to centralized applications,
but are impaired by issues with deployability, monetization,
and performance (where centralized applications excel). We
present a new model, untrusted delegation, which combines
the benefits of distribution found in decentralized systems
with the ease of deployment of centralized systems. Untrusted
delegation allows for nodes to be owned by users, as in the
P2P model, but hosted remotely, as is possible in the decoupled
model. Nodes in a system following this model are centrally
managed, but this management is temporary and not trusted,
which is enforced by the underlying hosting platform that is
used to provide the node resources.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Short Paper 545

Node

User User

Node

UseUse

Communication

Manage

Manager

Fig. 2: Untrusted Delegation. Red boxes indicate ownership of
application nodes and orange boxes indicate hosting of nodes for
the owner.

B. Untrusted Delegation

Ownership: The distinguishing characteristic of our new
model is its decoupling of resource ownership from resource
management. In both the decoupled model and P2P model,
the ownership was coupled to the managers (in the case of
P2P, the users were the managers). In the untrusted delegation
model, the ownership remains with the users, who are not the
managers, with a separate entity performing the management
(likely the developer). Finally, we allow (in fact rely on)
application nodes to be hosted remotely, with ownership
referring to control of a virtual resource.

Example Usage: Figure 2 illustrates our model, which can be
compared to the existing models in Figure 1. A user with a
funded cloud hosting account visits the central manager and
delegates temporary account access. The manager uses this
temporary access to deploy and configure an application node.
These freshly provisioned nodes then can join the application
and communicate with other nodes. As is shown by the red
and orange boxes, the node resources are still owned by the
user, but are hosted remotely.

Trust Model: We assume the same trust model as in other
decentralized applications. This model trusts a collection of
nodes as a whole while distrusting individual nodes and node
resources. However, we deviate from this model slightly by
introducing the central manager. The manager is untrusted,
despite having temporary access to account credentials, as is
discussed further in Section III. We also introduce the use of
cloud providers, but we assume a diverse selection and use
of cloud providers that can be trusted as a whole. Similarly,
decentralized applications do not trust individual nodes, but
require a wide assortment of hosting domains and underlying
hardware to trust the collection of nodes as a whole. In
addition, users must also trust the entity hosting their data,
which can manifest in a number of different ways.

III. UNTRUSTED DELEGATION ARCHITECTURE

Shown in Figures 3 and 4 are the main components required
for realizing the untrusted delegation model. Here, we discuss
the challenges to implementing the untrusted delegation model
and how these components address these challenges.

2. Delegate
access

1. Get acct. 4. Deploy
app

Users Manager/
Developer

App. Node

Provider API

App. NodeApp. Node

3. Get
temp
access

Fig. 3: Delegation. Users with funded cloud service accounts del-
egate access to the centralized manager (or application developer)
using OAuth, which is enforced by the cloud provider’s API. The
manager/developer uses the resulting temporary access to deploy an
application instance to the user’s account.

A. Temporary Delegation

Challenge 1 – Central Management, Decentralized Own-
ership

The goal is for users to contribute resources (to achieve
node growth proportional to user growth), retain administrative
control (to increase the effectiveness of decentralization with a
large number of administrative domains), but at the same time
make use of a central manager (to increase deployability), and
in some cases, also retain control over data access (to increase
privacy). The key challenge is achieving central management
with decentralized ownership. Restated, a central manager
must access the user-owned resources without being consid-
ered a centralized administrative domain. This is especially
important for data privacy, as users need to be able to control
access to their data while still providing the central manager
with the necessary access to deploy the application.

Cloud Providers Enforce Temporary Delegation

We use a delegation mechanism to enable a central manager
to access user-owned resources without ownership, built using
the OAuth protocol [14]. The cloud provider, a neutral third-
party, can then enforce the restricted capabilities, and time-
limits on access – without that third party, we would not have
the ability to rescind access once it was granted. As illustrated
in Figure 3, the user will instruct the cloud provider to give
the central manager temporary control over the system using
an OAuth authorization (the cloud provider prompts the user
to allow the central manager access to their account before
distributing credentials, similar to other OAuth applications).
The central manager uses the delegated access to deploy an
application node to a user’s cloud account using the cloud
provider’s API (most likely as a virtual machine (VM)). As
users retain administrative control over the deployed nodes,
they can control the operation of the node by disabling it or
removing network access.

B. Community Verification

Challenge 2 – Ensuring Application Correctness

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Short Paper546

1. Req.
read-only
access

Users

App. Node

Provider API

App. NodeApp. Node

2. Download logs /
image hashes

Fig. 4: Verification. Verifying identities, such as other users or a
community entity, can be delegated read-only access to an account
that is running an application instance. The cloud provider’s API
will then provide the needed information to verify that any running
instances are running the correct software, such as hashes of the
deployed VM images or logs of the instance’s deployment.

By introducing a delegation system, we bridge the gap be-
tween ownership and administration. By leveraging the cloud
provider to restrict access (both in capabilities and in time), we
retain the principles of decentralization. What is not ensured is
the correctness of the central manager’s actions. We must be
able to confirm correctness of nodes deployed by the manager,
and guarantee that the manager only does exactly what is
requested by the user with their account credentials, thus
enabling the manager to be untrusted (e.g., ensure that the
manager does not install additional software that can access
the user’s data).

Cloud Providers Support Community Verification

The trust model of decentralized applications requires trust in
the community as a whole. Individual nodes are untrusted, but
the application as a whole is trusted. At least a certain number
of nodes are assumed trustworthy. We utilize community veri-
fication to ensure that a deployed node is running the published
software from the developer (we do not attempt to audit
software for implementation correctness). The cloud provider
acts as a neutral party to facilitate verification of deployed
nodes. Otherwise, the central manager could utilize hiding
techniques as it would completely control what software is
installed and configured. As shown in Figure 4, the cloud
provider allows for read-only access to verification information
(e.g., hashes of running VM images or hypervisor logs) using
another OAuth exchange (similar to the central manager).

C. Proof of Concept: Deploying Tor Relays

To demonstrate our untrusted delegation system, we have built
a proof-of-concept system to deploy Tor relays to user’s cloud
account (using Digital Ocean as the cloud provider). Tor is a
representative decentralized application that, as highlighted by
its developers, increases its security with more relay nodes [?].
Using Ruby API bindings, our prototype deploys a VM using
an existing Ubuntu 14.04 image provided by Digital Ocean.
CloudInit and Puppet are then used to install the Tor software
and start the application. The Sinatra web application provides
the web interface to users and manages the OAuth authoriza-
tion and exchange. We also performed a survey of existing

cloud service providers and found that most services have the
capability to support our model, but very few exposed these
capabilities in their APIs, and none of them supported all of
our requirements (Digital Ocean supports enough functionality
for us to create a prototype).

IV. CONCLUSION AND FUTURE WORK

We have presented a new model for internet applications
combining the advantages of decentralized models with the
management and control advantages of centralized models.
Our model of untrusted delegation allows for decentralized
applications to receive contribution from all potential users,
making the deployment of these applications much more
feasible. With this architecture we provide a method for decen-
tralized applications to achieve widespread adoption,allowing
for the internet to progress towards a decentralized model.
Going forward, we intend to improve our initial prototype to
support community verification and to create a system that can
support general applications. We also would like to explore
more capabilities of hypervisors and cloud services to make
the system more secure and easier to use.

Acknowledgments: This work was supported in part by NSF
SaTC grant number 1406192.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” DTIC Document, Tech. Rep., 2004.

[2] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wiley,
“Protecting free expression online with freenet,” Internet Computing,
IEEE, vol. 6, no. 1, pp. 40–49, 2002.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Con-
sulted, vol. 1, no. 2012, p. 28, 2008.

[4] C. T. Lesniewski-Laas, “Design and applications of a secure and
decentralized distributed hash table,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2010.

[5] A. Haeberlen, A. Mislove, and P. Druschel, “Glacier: Highly durable,
decentralized storage despite massive correlated failures,” in Proc.
Symposium on Networked Systems Design and Implementation (NSDI),
Berkeley, CA, USA, 2005.

[6] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells, and B. Zhao,
“OceanStore: An Architecture for Global-scale Persistent Storage,” in
Proc. Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2000.

[7] “ZeroNet: Decentralized websites using Bitcoin crypto and the BitTor-
rent network,” http://zeronet.io/.

[8] “YaCy: Decentralized web search,” http://yacy.net.
[9] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of

a type iii anonymous remailer protocol,” in Security and Privacy, 2003.
Proceedings. 2003 Symposium on. IEEE, 2003.

[10] F. Glaser and L. Bezzenberger, “Beyond cryptocurrencies-a taxonomy of
decentralized consensus systems,” in Twenty-Third European Conference
on Information Systems (ECIS), Münster, Germany, 2015.

[11] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust man-
agement,” in Security and Privacy, 1996. Proceedings., 1996 IEEE
Symposium on. IEEE, 1996.

[12] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin,
“Persona: An online social network with user-defined privacy,” in Proc.
ACM SIGCOMM, 2009.

[13] L. CLARK, “Tim berners-lee: we need to re-decentralise the
web,” http://www.wired.co.uk/news/archive/2014-02/06/tim-berners-lee-
reclaim-the-web, Feb. 2014.

[14] D. Hardt, “(The OAuth 2.0 authorization framework (IETF RFC 6749),”
2012.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Short Paper 547

