
GoLCoNDa: Geo-IP Lookup for Campus Network
NetFlow Data

Swatesh Pakhare and Deep Medhi
University of Missouri–Kansas City, USA

(an experience paper)

Abstract—It is a challenging task for network administrators
to properly monitor and manage an institution’s incoming and
outgoing network traffic patterns. While NetFlow is useful to
gather flow-level data, its feature is limited to traditional flow-
level information such as the source IP address, destination IP
address, source port number, destination port number, and the
protocol type. Thus, if we are to understand geographic dynamics
of any flow connected to hosts at an institution from the outside
world, it is not currently possible with NetFlow. To address
the geo-location information of such flows, we developed the
tool, GoLCoNDa, for use by campus network administrators.
This tool allows the correlation of IP addresses with the geo-
location information to visualize the geo-location of incoming
and outgoing flows. Our tool handles millions of records quickly.

Index Terms—NetFlow, Campus Network, Geo-IP

I. INTRODUCTION

Institutional networks, such as a campus network, provide
a number of services to their different customers [1]. A
major challenge for campus network administrators is the
ability to categorize incoming and outgoing traffic in an
efficient way. In this paper, we present our experience on
how to geolocate incoming and outgoing traffic efficiently.
This grew out of a conversation with our campus network
administrators. It should be noted that besides the campus
network administrators, various entities within an academic
institution benefit from such information; for example, the
Admissions Office would like to know specifically from where
around the world users are accessing the university’s website.
While such knowledge can be obtained by co-relating the
web server log with the geo-location data, it serves just this
entity on campus. Instead, campus network administrators are
interested in all incoming and outgoing traffic. For this reason,
they collect NetFlow data at a crucial campus network router.

NetFlow data also allows network administrators to under-
stand the flow-level behavior of the campus network includ-
ing application and network use, network productivity and
utilization of network resources, the impact of changes to
the network, network anomaly and security vulnerabilities,
and long term compliance. Thus, NetFlow gives network
administrators the luxury of knowing who, what, when and
where, and how network traffic flows. Understanding network
behavior gives an insight about network utilization, and re-
duces the vulnerability of the network as related to failure

while allowing efficient operations of the network. Although
network monitoring using NetFlow data enables network
administrators to troubleshoot network related problems, it
does not readily provide network administrators with crucial
geographical information about the host IP.

In this work, we present GoLCoNDa, Geo-IP Lookup for
Campus Network NetFlow Data. Our goal in this work is to
find geographical information for all IP addresses in an optimal
amount of time from campus NetFlow data. The geographical
information includes fields like the name of the institution
holding that IP, its country, region, street address, city, latitude,
longitude, ZIP code, time zone, connection speed, Internet
Service Provider (ISP) and domain name, IDD country code,
area code, and weather station code, etc. GoLCoNDa is a
mining tool that serves two purposes: it processes NetFlow
data by co-relating with geolocation information in an efficient
manner; secondly, it has a visualization component to display
geolocation data on Google maps. We used the concept of
scraping websites to obtain geographical data for each IP
address in a NetFlow log. For this, we used xidel [2], a tool
for scraping HTML pages. xidel takes URL and HTML
tags as its argument and extracts the content between the
HTML tags that are passed to it. Therefore, we can automate
the process of checking the website that has geolocation
information for IP addresses using xidel. We observed that
GoLCoNDa is efficient in processing millions of IP addresses,
which we will report on later.

There are a few related works worth mentioning. In [3], the
target IP’s geolocation is found using MaxMind GeoLite and
adding it to NetFlow data before sending it to the NetFlow
collector. This allows the network administrators to filter,
aggregate and generate statistics based on the geolocated
data. Our work is somewhat related to [4] as we also have
a web application using Google maps API using NetFlow
data. However, there is one significant difference as we focus
on obtaining geographical information for a huge set of IP
addresses in a short amount of time and then displaying it on
Google maps in the form of markers.

II. GOLCONDA: APPROACH AND METHODS

We first briefly review NetFlow data. A NetFlow-enabled
router, on processing packets that traverse through it, identifies
and records flow level information. Such a record for each

978-3-901882-89-0 @2017 IFIP 809



flow contains critical information like the source IP address,
destination IP address, source port, destination port, layer 3
protocol type, class of service, and router or switch interface.
Our institution’s core routers collect over 40 GB of NetFlow
data per day that contain millions of flow records—this volume
is challenging to handle for the network administrators.

For an IP address, we are interested in obtaining geographic
information such as 1) continent, country, capital, state and
city’s name, 2) organization and ISP’s name 3) AS number,
host name and name-servers, and 4) latitude and longitude of
country, continent, and city. Based on our initial investigation,
we found the website, www.ip-tracker.org, that can return
such geographic information for an IP address, to be the best
suited for GoLCoNDa. We used the concept of scraping this
website to obtain geographical data for each IP address; for
this, we found xidel to be an ideal tool for scraping HTML
pages. xidel takes URL and HTML tags as its argument
and extracts the content between the HTML tags that are
passed to it. Another important tool used in our work is GNU’s
parallel command. Using t heparallel command, xidel can
send multiple HTTP requests to website that is to be scraped.
We then developed a controller, which is a wrapper function, to
process millions of IP addresses. The controller, after receiving
geographical data, further processes it to produce comma
separated geographical data. These comma separated values
are first stored in intermediate csv file and then copied into
the database using Postgres COPY command for later use.

In addition to IP address processing, GoLCoNDa includes
a web application that visually displays the geographical data
of IP addresses on Google maps in the form of markers. We
also incorporated a date picker, time slider, and drop down
menus in this application for near real time experience. These
components act as filters and help to curb cluttering of markers
on Google maps.

The basic functionality diagram of our overall approach in
GoLCoNDa is shown in Fig. 1. Before presenting the primitive
operation, we highlight an important point. In our approach,
we considered a semantic approach where geographical infor-
mation belonging to each IP address was retrieved based on
DNS queries or a WHOIS lookup. For this reason, we found
www.ip-tracker.org to be best suited for our purpose.

Fig. 1. Basic Block Diagram.

We briefly discuss four methods that we developed for
GoLCoNDa. In all the methods, the geographical information
belonging to each IP address is obtained by web scraping web-
sites using xidel. Note that besides www.ip-tracker.org, we
also accessed www.arin.net; the latter was used to obtain the
IP prefixes. Henceforth, to avoid confusion between different
IP lookups, we define two terms:

• ARIN lookup: IP lookup performed to get IP prefixes
from www.arin.net

• Main lookup: IP lookup performed to download geo-
graphical data from www.ip-tracker.org

Method 1

In the first method, we started by extracting the IP addresses
from the NetFlow data. Note that, these IP addresses were
external to University of Missouri-Kansas City. Once the
IP addresses are extracted from the NetFlow data, xidel
was used to download the required data by web scraping
www.ip-tracker.org. The downloaded data was further pro-
cessed by the controller to obtain comma separated values
(csv) and stored in an intermediate csv file. The content of this
csv file was then copied into the database by using Postgres
COPY command.

The advantage of this method is that it was easy to im-
plement. The disadvantage is that it is a naive method; all IP
addresses belonging to same IP prefix are looked up repeatedly
resulting in downloading redundant information, and thereby,
increase the processing time.

Method 2

The framework of Method 2 is similar to Method 1 except
that the main lookup is performed based on an IP prefix instead
of a host’s IP address. This method is also easy to implement.
Compared to Method 1, this method has no redundant look ups
sinc for IP addressing belonging to the same IP prefix is looked
up once. The disadvantage is that all HTTP requests to www.
arin.net and www.ip-tracker.org are performed sequentially.

Method 3

Method 3 is different from the first two methods. We
started first by extracting the IP addresses and latest timestamp
associated with them. The timestamp field in the NetFlow
data recorded the time and date when the request was made
destined to the UMKC network from outside and vice-versa.
When the controller received all IP addresses, it performed
ARIN lookups first to get all IP prefixes and then the main
lookups were performed to gather all geographical data.
Meanwhile, the timestamps were preserved during both ARIN
and main lookups. The timestamps preserved during main
lookups were then appended to the geographical information
downloaded for each IP prefix.

We introduced a ‘type’ parameter in this method. Initially,
when the controller received all IP addresses, it tagged each
IP address as either a source or destination depending upon
the field from which it is picked. An IP address may also
appear either as a source or as a destination for different

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Short Paper810



NetFlow records. In this case, the IP address was tagged as
‘both’. Once the tagging was completed, an ARIN lookup
was performed to obtain an IP prefix. Note that, the previous
tags associated with IP addresses are now associated with
IP prefixex. The controller then finds and replaces the ‘type’
parameter to ‘both’ for IP prefixes that were tagged as source
and destination. Once this complex process is completed, a
main lookup is performed to obtain all geographical data. The
timestamps were preserved during the entire process and then
finally appended to the geographical data.

In the first two methods, the bottleneck was sending http
requests to www.ip-tracker.org and www.arin.net in sequence.
We overcame this problem by sending multiple requests at
once using GNU’s parallel command. The parallel command
works based on the number of threads in the computer
hardware. The higher the number of threads, a higher degree of
parallelism is achieved. Detailed information about the parallel
command can be found at [5].

For storing data in the database, the data is first stored in
an intermediate csv file and then by using Postgres COPY
command, the contents of the intermediate csv file were
recorded in the database.

The advantages of this method are: 1) No redundancy as
main lookup is performed based on IP prefixes, and 2) HTTP
requests are sent in parallel. The disadvantage is an increase
in complexity as timestamps and tags that belong to each IP
address/IP prefix are preserved throughout the ARIN lookup
and main lookup.

Method 4

Method 4 is similar to Method 3 except that it was devel-
oped keeping in mind that the database is already filled with
geographical data of the IP prefixes ahead of time for records
already processed. That is, method 4 is an incremental method.

Comparison of the Methods

In Table I, we present a high level comparison of the
four methods. As the main lookup in Methods 3 and 4 is
performed based on IP prefixes, we overcome the problem
of downloading redundant information multiple times for IP
addresses belonging to same IP prefixes. This improved the
efficiency of Methods 3 and 4. In addition, Methods 3 and
4 are more optimized than Methods 1 and 2 because HTTP
requests are sent in parallel and not sequentially. Since, we
introduced tagging of IP addresses and IP prefixes in Methods
3 and 4, they are more complex as compared to Methods 1
and 2. Moreover, the complexity of Methods 3 and 4 increases
when the tags and timestamps are preserved during the ARIN
lookup and main lookup.

Visualization of GeoLocation Information

Besides the Geo-IP lookup function, GoLCoNDa also has
a visualization front end to display processed data. Once the
database is filled with geographical information, we display
this information on Google maps in the form of markers.
The markers, representing geographical data belonging to each

TABLE I
SIMILARITIES AND DIFFERENCES BETWEEN METHODS

Properties Method 1 Method 2 Method 3 Method 4
ARIN Lookup No Yes Yes Yes
Parallelism No No Yes Yes
Preserving
timestamps
and tags

No No Yes Yes

Redundant Ge-
ographical in-
formation

Yes No No No

Efficient No No Yes Yes. Better
than Method
3

Complex No No Yes Yes. More
complex
than Method
3

IP, have associated latitude and longitude information. We
incorporated four filters in this application; they are: date
picker, time slider, drop down menus based on continent’s
name, and ‘type’ field.

1) The date picker and time slider are used to filter markers
based on date and time. With these filters, we can see
IP addresses that were accessed on specific dates in a
particular time range.

2) The drop down menu with continents allows us to filter
markers based on the continent’s name. The drop down
menu with ‘type’ field enables us to filter markers
depending upon whether the IP address is either the
source, destination, or both.

The use of filters allows us to curb the cluttering of markers
on Google maps. Also, it helps to visualize data with a near
real time experience. In Fig. 2, a screenshot is shown (just
for Europe) where the information window consists of the IP
prefix, city location, ISP’s name, and type field.

Fig. 2. Google map:Europe

III. RESULTS

Table III represents different sizes of NetFlow data in terms
of time duration and number of NetFlow records. Two different

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Short Paper 811



TABLE II
HARDWARE SPECIFICATIONS

Specifications 1 core VM 4 core machine
Processor Intel(R) Core(TM

i5-2410M CPU 2.30
GHz)

8x Intel(R) Core(TM i7-
4700HQ CPU 2.40 GHz

Memory 12 GB 8 GB
OS Ubuntu 14.04.3 LTS Ubuntu MATE 16.04 LTS

TABLE III
NETFLOW DATA IN TERMS OF HOURS AND RECORDS

DataSet NetFlow Data Duration Number of records ×106

(GB) (hours)
1 0.22 0.25 1.51
2 6.00 3.00 44.48
3 15.00 6.00 104.23
4 27.00 12.00 182.83
5 42.00 24.00 288.00

compute machines were used for this work; the specifications
of the 1 core virtual machine (VM) and the quad core machine
that we used to capture the results are shown in Table II. We
conducted three categories of studies as follows:

1) Category 1: Processing of 222 MB of NetFlow data and
retrieving geographical information using Methods 1, 2,
and 3.

2) Category 2: Processing of 6 GB, 15 GB, 27 GB and 42
GB of NetFlow data using Method 3.

3) Category 3: Processing of 42 GB of NetFlow data with
Method 4, given that 27 GB of NetFlow data were
already processed.

For Category 1’s processing 222 MB of NetFlow data, we
found that Method 1, Method 2, and Method 3 using 1 core
VM took 690.60 min, 272.20 min, and 33.05 min, respectively.
This shows the efficiency of Method 3 compared to the first
two methods. Then, we applied Method 3 to larger data sets
in Category 2 that showed further gain, as expected, with a 4
core machine; see Table IV. Using the incremental approach
of Method 4, we can further reduce time as shown in Table V.

TABLE IV
PROCESSING TIME OF METHOD 3 FOR DIFFERENT NETFLOW DATA SIZES

(CATEGORY 2)

Data Set Time (min): 1 core VM Time (min): 4 core Machine
2 47.16 7.60
3 74.00 12.00
4 175.01 27.42
5 291.10 42.63

TABLE V
METHOD 3 VS METHOD 4 ON DATA SET-5 (CATEGORY 3)

Method Time (min): 1 core VM Time (min): 4 core machine
3 291.10 42.63
4 235.80 31.56

GoLCoNDa also has additional features such as obtaining
the top ten ISPs and AS from where the flows to and from are
observed. Furthermore, we can plot the geographic distribution
on the basis of different continents; see Fig. 3. We plan to add
a feature to display based on each country.

Fig. 3. Pie chart representation for continents

IV. CONCLUSION

In this paper, we report on our experience processing Net-
Flow data for a campus network for geo-location information.
While our approach is fairly straight forward, it is surprisingly
efficient in handling millions of NetFlow records. Furthermore,
a visualization tool was developed to give near real time
experience by displaying geographical data on Google Maps
in the form of markers. This tool was found to be useful by
the campus network administrators.

ACKNOWLEDGEMENT

We thank Frank Magrone and Andy Goodenow of UMKC
Campus Information Services for their input. We also thank
Shuai Zhao for extracting the raw NetFlow data used in this
paper. This work is partially supported by National Science
Foundation Grant # 1541455.

REFERENCES

[1] S. Zhao, K. Leftwich, M. Owens, F. Magrone, J. Schonemann, B. Ander-
son, and D. Medhi, “I-CaN-MaMa: Integrated campus network monitor-
ing and management,” in Proc. of 2014 IEEE Network Operations and
Management Symposium (NOMS), Krakow, Poland, May 2014.

[2] B. Zander, “Xidel - html/xml/json data extraction tool.” [Online].
Available: http://www.videlibri.de/xidel.html

[3] P. Celeda, P. Velan, M. Rabek, R. Hofstede, and A. Pras, “Large-scale
geolocation for netflow,” in 2013 IFIP/IEEE International Symposium on
Integrated Network Management (IM 2013), 2013, pp. 1015–1020.

[4] R. Hofstede and T. Fioreze, “Surfmap: A network monitoring tool based
on the google maps api,” in 2009 IFIP/IEEE International Symposium on
Integrated Network Management, 2009, pp. 676–690.

[5] O. Tange, “Gnu parallel - the command-line power tool,” ;login: The
USENIX Magazine, vol. 36, no. 1, pp. 42–47, Feb 2011.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Short Paper812




