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Abstract—The delivery of services typically requires packets 
to be steered through a sequence of middleboxes to improve 
network security and performance. One constraint on the 
deployment of services is that middleboxes are tightly coupled to 
the physical network topology. As a result, ensuring successful 
deployment requires error-prone and complex low-level 
configurations. Software-Defined Networking (SDN) can 
eliminate the need to configure network devices manually to 
deploy services. However, in terms of steering middlebox-specific 
traffic in data plane, applying the existing capabilities supported 
by OpenFlow protocol may lead to incorrect forwarding 
decisions when there is a loop in the route used to steer traffic. In 
this paper, we present an implementation using tagging to 
discriminate different instances of the same packet arriving at 
the same ingress port on the same switch (i.e. the existence of the 
loop). Moreover, we propose an algorithm to judge the existence 
of the loop in a physical sequence of switches and decide which 
switches are responsible for adding tags. The experimental result 
demonstrates that our implementation can properly steer traffic 
through a specific sequence of middleboxes even when there are 
loops in forwarding path. 

Keywords—Middlebox; Network Management; Software-
Defined Networking; Traffic steering 

I. INTRODUCTION 

The delivery of end-to-end services provided by operators 
often demands various service functions including traditional 
network appliances. Common examples of network appliances 
are firewalls, content filters, intrusion detection systems, deep 
packet inspection, web proxies, load balancers, network 
address translation (NAT) and wide area network (WAN) 
accelerators. All these network appliances are generally 
referred to as middleboxes or inline services because end users 
are often unaware of their existence in their traffic’s path [1]. 
Dedicated middlebox hardware is widely deployed in 
enterprise networks to improve network security and 
performance. However, the composition of middleboxes 
specified by services remains a challenging task. The challenge 
stems from topological dependencies, configuration 
complexity and other aspects. The deployment of services is 
often coupled to network topology. For example, assuming that 
a service needs to route traffic through a firewall, it means the 
firewall is required to be placed on the network path (often via 
configuration of VLANs) or some modifications of the 
network topology have to be made to enable the steering. Such 
constraints introduced by topological dependencies are very 
likely to limit the network operator to a low utilization of 

service resources and reduce the flexibility of service 
deployment. This also restricts the size and the capacity of 
network resources. Typically, a middlebox required by a 
service is physically inserted on these topologies to ensure that 
traffic traverses the middlebox. However, this is not an optimal 
approach from the perspective of packet delivery. In addition, 
as more middleboxes with strict ordering are required by 
services, more complex configuration is needed to adjust to 
those alterations. Another effect of topological dependency is 
that traffic may be routed through some middleboxes no matter 
whether they need to be applied or not due to the complexity of 
network changes and device configuration [2].  

Software-Defined Networking (SDN) offers a promising 
alternative for middlebox policy enforcement by using 
logically centralized management, decoupling the data and 
control planes, and providing the ability to programmatically 
configure forwarding rules [3]. The delivery of services 
typically requires packets to be steered through a sequence of 
middleboxes. SDN can eliminate the need to statically deploy 
service delivery using error-prone and complex low-level 
configurations. Nevertheless, in terms of steering middlebox-
specific traffic in data plane, applying the existing capabilities 
supported by OpenFlow protocol [4] can lead to incorrect 
forwarding decisions when there is a loop in the route used to 
steer traffic, since flow-based forwarding rules cannot 
discriminate different instances of the same packet arriving at 
the same ingress port on the same switch. Switches may 
demand information that indicates the processing state of a 
packet to make accurate decisions.  

In this paper, we present an implementation to address the 
issue of ambiguous forwarding in data plane. To tackle this 
problem, we utilize the VLAN ID in the VLAN tag to encode 
processing state. Furthermore, we propose an algorithm to 
judge the existence of the loop in a physical sequence of 
switches and decide which switches are responsible for adding 
tags. In order to specify the characteristics of traffic to be 
served and the sequence of middleboxes to be applied, we also 
define an XML-based data format along with a REST-based 
NBI for OpenFlow controllers. 

The rest of this paper is organized as follows. Firstly, we 
review the related work in Section II. In Section III, we 
describe the issue relating to steering middlebox-specific traffic 
in data plane. After that, we present our implementation in 
Section IV. Experimental results are presented in Section V 
and this paper is concluded in Section VI.  

978-3-901882-89-0 @2017 IFIP 754



II. RELATED WORK 

 Given the need of evolution of current deployment model, 
the Internet Engineering Task Force (IETF) has formed a new 
working group to define and publish standards related to 
service function chaining. The Service Function Chaining 
(SFC) Architecture document [5] provides architectural 
concepts about service function chaining. A Service Function 
Chain (SFC) defines a list of abstract service functions and the 
order in which they are to be applied required by a service. A 
Service Function Path (SFP) is instantiated for an SFC by 
selecting specific service function instances that the packet will 
visit when it traverses the network. Middlebox policy chain is 
an instance of the concept of “service function chain”. 

The middlebox placement problem is conceptually similar 
to the VNF placement problem. In [6], the authors present a 
model for placing virtual network function in a scenario where 
physical hardware and instances of virtual network function 
provide services cooperatively. The execution time of the 
proposed algorithm remains less than 16 seconds, ensuring it 
can react to demand rapidly. Authors in [7] formulate the 
problem of network function placement as an integer linear 
programming problem. The formulation aims to determine the 
locations for placing virtual network function instances while 
at the same time minimize the resource utilization. Since a 
significant number of researches have been done in this topic, 
we do not focus on middlebox placement in this paper. 
However, the middlebox placement scheme is the input needed 
by our implementation, hence we define an XML-based data 
format and a REST-based NBI to specify the middlebox 
placement scheme. 

 As for traffic steering among service functions, Paul Quinn 
and Jim Guichard [8] propose a single service-level data plane 
encapsulation format called Network Service Header (NSH), 
which acts as the SFC encapsulation component required by 
SFC Architecture. The NSH header has two fields for 
constructing a service path: the service path identifier (SPI) and 
the service index (SI). The SPI identifies a service path that 
interconnects the service functions. It provides a level of 
indirection between the service topology and the network 
transport. The SI identifies a packet's location within a service 
path, and it must be decremented by service functions after 
performing required services. However, NSH requires a control 
plane that conveys NSH related information, for example to 
instruct service function forwarders to map SPI/SI to network 
transport protocol. Besides, this header only works in NSH-
aware network.  

The approaches in [1], [3] do not use a special header to 
steer traffic. Aiming at reducing the memory footprint of flow 
table on each switch, StEERING[1] utilizes the pipeline with 
multiple tables introduced in OpenFlow 1.1 to implement a 
scalable and flexible architecture. This design, combined with 
metadata encoding service chaining, handles the integration of 
different types of traffic steering policies easily and efficiently. 
Nevertheless, it does not mention how to deal with the case 
when there is a loop in the route used to steer traffic. An 
approach for resolving the loop issue is proposed in [3]. 
SIMPLE[3] presents a SDN-based policy enforcement layer 
for middlebox-specific traffic steering. It utilizes the existing 

capabilities of OpenFlow protocol to push tags onto packets in 
order that the downstream switches can use these tags to know 
the processing state of each packet before deciding their 
forwarding actions. As a result, traffic can be steered through 
the desired sequence of middleboxes without mistake.  

  However, SIMPLE[3] does not go into the details of the 
implementation and neither does it propose an approach for 
judging the existence of the loop. As a supplement to this paper, 
our work provides an algorithm to detect the existence of the 
loop and decide which switches are responsible for adding tags 
when the loop exists. Besides, our work also presents an 
implementation utilizing the VLAN tag to annotate the 
processing state of each packet for traffic steering.  

III. PROBLEM STATEMENT FOR ENFORCING MIDDLEBOX 

POLICY CHAIN IN DATA PLANE 

This section describes a problem associated with utilizing 
SDN for middlebox policy chain. In order to make the 
statement concrete, we give an example in Fig. 1. As shown in 
the figure, the administrator wants the policy chain Firewall-
IDS-Proxy to be applied when HTTP traffic traverses the 
network. 

 
Fig. 1. Example to illustrate the requirement specified by a middlebox policy 

chain. For the middlebox policy chain: Firewall-IDS-Proxy, different 
physical sequences of switches and middleboxes that can implement the 
policy are shown in the table. 

We illustrate the issue through the physical sequence of 
switches and middleboxes: S1 → S2 → FW → S2 → S3 →S5 → S6 → IDS → S6 → S5 → S3 → Proxy → S3 → S5 →S6 → S7 , which can be used to implement the middlebox 
policy chain for HTTP traffic. Another physical sequence also 
has similar issue. Obviously, a packet would visit the switch S6 
three times. Each time S6 needs to decide which action to take: 
if the packet has already visited the FW, then forward it to IDS; 
if the packet has already visited the FW and IDS, then forward 
it back to S3 for Proxy; if the packet has already visited all 
three middleboxes, then send it to the destination. However, it 
is difficult for S6 to make a choice between the action of 
forwarding packet to IDS and the action of sending packet to 
the destination just based on the header fields and the ingress 
port property of the packet. The problem here is that even 
though the flow entries in S6 contain the valid forwarding 
actions, this may not be realizable because matching packet 
header fields against the match fields of corresponding flow 
entries in S6 cannot differentiate the processing state in the 
context. That is to say, only using source/destination IP address, 
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source/destination MAC address, and ingress port in match 
fields of flow entry is not sufficient for this situation. 

IV. DATA PLANE DESIGN AND IMPLEMENTATION 

According to section III, if a switch performs packet 
lookups and forwarding just based on the packet header fields, 
it may cause ambiguous forwarding when there is a loop in the 
physical sequence. Therefore, a method using tags is presented 
in this section to solve the problem. 

The presented implementation is based on the following 
prerequisites: The first thing is that middleboxes do not modify 
packet headers. The second thing is that another application 
performs a middlebox placement algorithm on the basis of 
processing load or even switch constraints (i.e., the number of 
forwarding rules a switch can support) to get the physical 
sequence of middleboxes used to implement the specified 
policy chain. Our module takes the information as input and 
translates it into forwarding rules to avoid ambiguous 
forwarding. Consequently, an XML-based data format and a 
REST-based NBI are defined for the input needed by our 
module. The introduction of the data format is presented in part 
B. 

A. Unambiguous Forwarding 
Looking at Fig. 1 again, when the same packet sent by both 

FW and Proxy is received on the same ingress port, S6 is 
unable to determine whether this packet is from FW or Proxy, 
which may result in incorrect forwarding decision. In other 
words, when a switch receives the same packet multiple times 
at the same ingress port, it needs to know which middleboxes 
this packet has traversed in the middlebox processing chain. 
Therefore, we can add tags to packet headers according to 
physical topology and the physical sequence of middleboxes to 
annotate a packet with its processing state. 

When a controller is required to configure forwarding rules 
for steering traffic through the specified sequence of 
middleboxes, it first needs to check whether there is a loop. If 
the sequence needed for routing is loop free, it means each 
directional link appears at most once in the sequence, the use 
of packet header fields and ingress port in forwarding rules can 
identify the processing state correctly in this situation. If the 
controller checks out the existence of a loop in the physical 
sequence, the use of packet header fields and ingress port may 
not be enough to help related switches to know which 
middleboxes a packet has traversed. Therefore, a tag can be 
pushed onto a packet to address this problem. The added tag is 
called ProcState tag. ProcState tags can use VLAN ID, MPLS 
labels, or other unused fields in the IP header depending on the 
fields supported in the SDN switches. Here we choose VLAN 
ID as ProcState tags since VLAN tags are well supported by 
OpenvSwitch and most open source controllers such as 
Floodlight. 

As is shown in Fig. 2, the switch S3 is responsible for 
adding the ProcState tags to packets from middlebox FW and 
the directly connected middlebox Proxy, so the corresponding 
rules in S3 are:  {HTTP, from	FW} → {add	ProcState = FW, forward	to	S5}; 
 {HTTP, from	Proxy} → {add	ProcStat = Proxy, forward	to	 S5}.  

We use push-VLAN action defined by OpenFlow protocol to 
achieve the addition of tags. The switch S6 can use the 
ProcState tags added by S3 to differentiate different instances 
of the same packet arriving at the same ingress port. Since 
middleboxes in the policy chain do not need to maintain or be 
aware of the context of the policy chain, S6 will remove the 
ProcState tag from a packet before forwarding it to middlebox 
IDS. The related forwarding rules inserted in S6 are as follows: 
 {HTTP, from	S5, ProcState = FW} → {remove	ProcState,	 forward	to	IDS}; {HTTP, from	S5, ProcState = Proxy} → {remove	ProcState,	 forward	to	destination}.  
 In our implementation, we propose an algorithm to judge 
the existence of the loop in a physical sequence of switches and 
decide which switches are responsible for adding tags. 

 
Fig. 2. Example of flow entries in S3 and S6 to illustrate the approach. 

B. XML-Based Data Format for Defining Input 
We have mentioned that our module is only responsible for 

installing forwarding rules to steer traffic through a physical 
sequence of middleboxes, it does not have the function of 
selecting middleboxes used to implement a specified policy 
chain. Therefore, an XML-based data format is defined for the 
input needed by our module. This part presents the semantics 
of the elements in this format. 

Fig. 3 shows the detail of the XML-based data format. The 
root element policies can have one or more child elements 
named policy. Each policy element denotes a middlebox policy 
chain. A policy element contains an identification element and 
a forwarders element. The identification element stands for the 
traffic to be steered through this policy chain. The content of 
element identification is made up of four child elements. These 
four child elements are sourceMAC, destinationMAC, sourceIP 
and destinationIP, and the name of each child element implies 
its semantic meaning. Floodlight uses the contents of these four 
child elements to identify the source host and destination host 
in the network. If Floodlight identifies the source host and 
destination host successfully, then the locations of these two 
hosts in the network can be easily obtained, which are 
necessary in the calculation of the path used for steering. 
Moreover, the contents of these four child elements are also 
used in match fields of flow entry for matching. The 
forwarders element consists of one or more forwarder element. 
Each forwarder element represents a location for a middlebox. 
The order in which these forwarder elements appear implies 
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the physical sequence of middleboxes. A forwarder element 
contains a datapathid element and a port element. These two 
child elements together identify the location of a middlebox in 
the network. The datapathid element must have a valid value 
of datapath ID defined by OpenFlow protocol. The port 
element must have a valid port number representing an 
OpenFlow port, a middlebox connects to the network via this 
port. 

 
Fig. 3. The data format for defining input needed by our module. 

C. Loop Judgment 
A controller determines the sequence of switches used for 

steering according to the input in the format defined in Section 
B. As for the example in Fig. 4, the traffic sent from h1 to h2 is 
required to be steered through the physical sequence of 
middleboxes FW1-IDS1-Proxy1. Obviously, the route 
computed by controller is h1 → S3 → FW1 → S3 → S4 →S5 → IDS1 → S5 → S4 → S3 → Proxy1 → S3 → S4 → S5 →h2.  

 
Fig. 4. Experimental physical topology 

The numbers in the Fig. 4 are port numbers of switches. 
Here we use the notation switch-port pair to denote a port on a 
switch. For example, S3-3 represents the port 3 on switch S3. 
The port information is necessary because OpenFlow packets 
are received on an ingress port and processed by the OpenFlow 
pipeline which may forward them to an output port. We also 
define the concept of Segment as a path between two adjacent 
middlebox or host along the physical sequence. Based on this 
definition, the sequence of switches used for steering this 
traffic can be divided into four segments.  

The segment 1 from h1 to FW1 can be expressed as S3-
1→S3-3. 

The segment 2 from FW1 to IDS1 can be expressed as S3-
3→S3-2→S4-1→S4-2→S5-1→S5-3. 

The segment 3 from IDS1 to Proxy1 can be expressed as 
S5-3→S5-1→S4-2→S4-1→S3-2→S3-4. 

The segment 4 from Proxy1 to h2 can be expressed as S3-
4→S3-2→S4-1→S4-2→S5-1→S5-2. 

The number of notation switch-port in each segment must 
be an even number because each switch in each segment firstly 
appears with an ingress port to receive packets and secondly 
appears with an output port to forward packets. Our module 
needs to check whether there is a loop among these four 
segments before installing forwarding rules in switches. The 
key idea of judging the existence of the loop is that there are 
some directional links appearing more than once in these four 
segments. Each endpoint of a directional link is a port on a 
switch (i.e., a directional link is between two switches) so we 
can use a switch-port pair such as S3-2→S4-1 to identify a 
directional link.  

Apparently, the path in segment 3 does not need tags 
because there is no directional link appearing in other 
segments repeatedly. Both segment 2 and segment 4 have the 
same part S3-2→S4-1→S4-2→S5-1, but their next switch-port 
notations after S5-1 are not the same. It means packets received 
on port 1 of switch S5 need to be forwarded to different ports. 
And S3-2 is the first one in this same part so upstream switch 
S3 is responsible for adding tags.   

If two segments have the same switch-port notation 
indicating an output port, the next switch-port notations after it 
in the two segments must be the same because an output port 
on a switch connects to a unique ingress port on another switch. 
In the example above, S3-2 appears in segment two and 
segment four, so S4-1 would appear after it in both of them. 
Since both S4-1 and S5-1 indicate ingress ports on switches, 
we can just compare those ingress ports on switches in 
segments to reduce the number of comparisons. If two 
segments have some identical switch-port notations indicating 
ingress ports, we need to find the first one and the last one. The 
switch-port notation before the first one decides which switch 
is responsible for adding tags. The last one decides which 
switch is responsible for removing tags before sending to 
middleboxes.  

Here we explain the purpose of finding the first identical 
switch-port notation indicating an ingress port and the last one. 
Assuming the same packet needs to be steered through three 
segments in Fig. 5. As illustrated in Fig. 5, the direction of the 
three segments is from left to right. The numbers in the Fig. 5 
are port numbers of switches. These three segments all have 
some identical switch-port notations. We can obtain that the 
first identical switch-port notation indicating an ingress port is 
the port 4 on switch S3 based on the comparison of the first 
segment and the second segment, so S2 is responsible for 
adding tags to packets from middlebox A and middlebox C. 
Similarly, we also know S1 is responsible for adding tags to 
packets from middlebox A and middlebox E after comparing 
the first segment and the third segment. As a result, both S1 
and S2 need to add tags to packets from middlebox A, it is not 
reasonable. Since S1 is before S2, we choose S1 to execute the 
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action of adding tags to packets from middlebox A. S2 is still 
responsible for adding tags to packets from middlebox C. S2 
uses the packet ingress port to distinguish a packet coming 
from middlebox A or middlebox C. So a segment needs to 
compare with all the other segments to choose the earliest one 
of those first identical switch-port notations indicating ingress 
ports. On the contrary, a segment needs to find out the latest 
one to decide a switch, which performs the action of removing 
tags from packets. 

 
Fig. 5. Example to illustrate the purpose of finding the first identical switch-

port notation indicating an ingress port and the last one. 

 The NodePortTuple class represents a port on a switch (i.e. 
switch-port). An instance of List<NodePortTuple> class stands 
for a sequence of switch-port pairs in a segment. The method 
size() of List<NodePortTuple> class returns the number of 
switch-port in a segment represented by an instance. The 
notation list1[i] denotes an element with index value of i in a 
sequence. The method contains() of List<NodePortTuple> 
class returns true if this sequence contains a specified element. 
And the method indexOf() returns the index of the first 
occurrence of a specified element in this sequence.  

Algorithm Calculate the first and last identical switch-port 
indicating ingress ports between two segments 
Input: List<NodePortTuple>  list1, List<NodePortTuple> 
list2, list1.size() < list2.size() 
Output: indexes of the first and last identical switch-port 
indicating ingress ports in each list 
Procedure: 
01: first1, last1, first2, last2 = 0 
02: M = list1.size() 
03: for (i=0; i < M; i=i+2) 
04:     if list2.contains(list1[i]) && list2.indexOf(list1[i]) is 

odd 
05:         first2 = list2.indexOf(list1[i]) 
06:         first1 = i 
07:         for (j = 1; j < M - i; j++) 
08:             if list1[i + j] != list2[first2 + j] 
09:                 last1 = i + j - 1 
10:                 last2 = first2 + j - 1 
11:                 return 
12:         end for 
13:     end if 
14: end for 

V. EXPERIMENTAL RESULT 

 In this section, we conduct an experiment to show the result 
of our implementation. We use the topology in Fig. 4 as our 
experimental physical topology. The controller used in this 
experiment is Floodlight [9]. Our module is built and runs on 
top of it. Mininet [10] is used to create an SDN network. The 
version of OpenFlow protocol is 1.3.  

 Assuming the administrator wants to route the traffic sent 
from h1 to h2 through the policy chain Firewall-IDS-Proxy. An 
application performs a middlebox placement algorithm, obtains 
the physical sequence of middleboxes FW1-IDS1-Proxy1 used 
to implement this policy chain and transmits the result to the 
controller via a REST-based NBI, using the data format 
designed in part B. The content of this file is displayed in Fig. 
3. As illustrated in Fig. 3, the h1’s IP address and MAC 
address are 10.0.0.1 and 00:00:00:00:00:01. The h2’s IP 
address and MAC address are 10.0.0.2 and 00:00:00:00:00:02. 
The datapath IDs of switches S3, S4, S5 are 
00:00:00:00:00:00:00:03, 00:00:00:00:00:00:00:04, 
00:00:00:00:00:00:00:05. The numbers in the Fig. 4 are port 
numbers of switches. All this information is required to 
generate flow entries used for steering traffic. 

 Our module takes the information as input, and computes a 
route to steer the traffic through FW1, IDS1 and Proxy1 
specified by the middlebox placement module. The computed 
route has been illustrated in Section IV-C, it is h1 → S3 →FW1 → S3 → S4 → S5 → IDS1 → S5 → S4 → S3 → Proxy1 → S3 → S4 → S5 → h2 . Then the module performs the 
function of judging loop based on the route and installs the 
corresponding flow entries in these switches. 

 To evaluate the effectiveness of our proposed approach, we 
observe the experimental results from two aspects. Firstly, we 
examine the flow entries in related switches to confirm that 
whether our module generates and installs flow entries in 
proper switches automatically according to the middlebox 
policy chain. Secondly, we observe whether the relevant flow 
entries installed by our module play a role in steering the 
corresponding traffic. The OpenFlow protocol defines that 
each flow entry has its counters (e.g. packet counter), and 
updates them when packets are matched. In addition, the 
command ping has an option -c, this option provides the ability 
to set the number of packets that are sent by a host. Therefore, 
we can set the option -c to an exact value when execute the 
command ping, then check the packet counter of each flow 
entry to see whether the value of each counter equals to the 
specified value. Now that we have elaborated on our 
verification method, then we need to verify whether it can 
solve the problem in the data plane.   

 Fig. 6 shows all the flow entries of S3. The flow entries 
installed by our module are marked in rectangles of different 
colors. The flow entry in red rectangle forwards packets from 
h1 to FW1. The flow entry in yellow rectangle pushes a new 
VLAN tag with VLAN ID 2 onto the packet from FW1, and 
forwards it to S4. The decimal number after the word set_field 
contains the OFPVID_PRESENT bit (0x1000) defined by 
OpenFlow, we need to remove the bit to get the value of 
VLAN ID. The flow entry in blue rectangle forwards packets 
from S4 to Proxy1. The flow entry in green rectangle pushes a 
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new VLAN tag with VLAN ID 3 onto the packet from Proxy1, 
and forwards it to S4. 

 The flow entries in S5 installed by our module are 
displayed in Fig. 7. The flow entry in red rectangle removes 
VLAN tag from the packet coming from S4 with VLAN ID 2 
(dl_vlan=2 in Fig. 7), and forwards it to IDS1. The flow entry 
in yellow rectangle removes VLAN tag from the packet 
coming from S4 with VLAN ID 3 (dl_vlan=3 in Fig. 7), and 
forwards it to h2. The flow entry in blue rectangle forwards 
packets from IDS1 to S4. 

 
Fig. 6. Flow entries in S3 before matching traffic. 

 
Fig. 7. Flow entries in S5 before matching traffic. 

 Before executing the command ping, the decimal number 
after the word n_packets in each flow entry is 0, shown in Fig. 
6 and Fig. 7. Then we execute command h1 ping -c 25 h2 for a 
test. The result after executing the command is shown in Fig. 8 
and Fig. 9, the decimal number after the word n_packets in 
each flow entry is 25. It means each flow entry installed by our 
module matches 25 packets, and S5 can make correct decision 
between the action forwarding to IDS1 and the action sending 
to h2. It also demonstrates that our implementation can 
properly steer traffic through a specific sequence of 
middleboxes even when there are loops in forwarding path. 

VI. CONCLUSION 

In this paper, we present an implementation for solving an 
issue related to steering middlebox-specific traffic in data plane. 
To this end, the VLAN ID in the VLAN tag is utilized to 
encode processing state, and an XML-based data format is 
defined to specify the middlebox policy chain as the input of 
our method. Furthermore, we propose an algorithm to judge the 
existence of the loop in a physical sequence of switches and 
decide which switches are responsible for adding tags. The 

experimental result demonstrates that our implementation can 
properly steer traffic through a specific sequence of 
middleboxes even when there are loops in forwarding path. 

 
Fig. 8. Flow entries in S3 after matching traffic. 

 
Fig. 9. Flow entries in S5 after matching traffic. 
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