
Traffic Steering of Middlebox Policy Chain Based on
SDN

Qichao He, Ying Wang, Wenjing Li, Xuesong Qiu
State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications
Beijing, China

Email: {heqc, wangy, wjli, xsqiu}@bupt.edu.cn

Abstract—The delivery of services typically requires packets
to be steered through a sequence of middleboxes to improve
network security and performance. One constraint on the
deployment of services is that middleboxes are tightly coupled to
the physical network topology. As a result, ensuring successful
deployment requires error-prone and complex low-level
configurations. Software-Defined Networking (SDN) can
eliminate the need to configure network devices manually to
deploy services. However, in terms of steering middlebox-specific
traffic in data plane, applying the existing capabilities supported
by OpenFlow protocol may lead to incorrect forwarding
decisions when there is a loop in the route used to steer traffic. In
this paper, we present an implementation using tagging to
discriminate different instances of the same packet arriving at
the same ingress port on the same switch (i.e. the existence of the
loop). Moreover, we propose an algorithm to judge the existence
of the loop in a physical sequence of switches and decide which
switches are responsible for adding tags. The experimental result
demonstrates that our implementation can properly steer traffic
through a specific sequence of middleboxes even when there are
loops in forwarding path.

Keywords—Middlebox; Network Management; Software-
Defined Networking; Traffic steering

I. INTRODUCTION

The delivery of end-to-end services provided by operators
often demands various service functions including traditional
network appliances. Common examples of network appliances
are firewalls, content filters, intrusion detection systems, deep
packet inspection, web proxies, load balancers, network
address translation (NAT) and wide area network (WAN)
accelerators. All these network appliances are generally
referred to as middleboxes or inline services because end users
are often unaware of their existence in their traffic’s path [1].
Dedicated middlebox hardware is widely deployed in
enterprise networks to improve network security and
performance. However, the composition of middleboxes
specified by services remains a challenging task. The challenge
stems from topological dependencies, configuration
complexity and other aspects. The deployment of services is
often coupled to network topology. For example, assuming that
a service needs to route traffic through a firewall, it means the
firewall is required to be placed on the network path (often via
configuration of VLANs) or some modifications of the
network topology have to be made to enable the steering. Such
constraints introduced by topological dependencies are very
likely to limit the network operator to a low utilization of

service resources and reduce the flexibility of service
deployment. This also restricts the size and the capacity of
network resources. Typically, a middlebox required by a
service is physically inserted on these topologies to ensure that
traffic traverses the middlebox. However, this is not an optimal
approach from the perspective of packet delivery. In addition,
as more middleboxes with strict ordering are required by
services, more complex configuration is needed to adjust to
those alterations. Another effect of topological dependency is
that traffic may be routed through some middleboxes no matter
whether they need to be applied or not due to the complexity of
network changes and device configuration [2].

Software-Defined Networking (SDN) offers a promising
alternative for middlebox policy enforcement by using
logically centralized management, decoupling the data and
control planes, and providing the ability to programmatically
configure forwarding rules [3]. The delivery of services
typically requires packets to be steered through a sequence of
middleboxes. SDN can eliminate the need to statically deploy
service delivery using error-prone and complex low-level
configurations. Nevertheless, in terms of steering middlebox-
specific traffic in data plane, applying the existing capabilities
supported by OpenFlow protocol [4] can lead to incorrect
forwarding decisions when there is a loop in the route used to
steer traffic, since flow-based forwarding rules cannot
discriminate different instances of the same packet arriving at
the same ingress port on the same switch. Switches may
demand information that indicates the processing state of a
packet to make accurate decisions.

In this paper, we present an implementation to address the
issue of ambiguous forwarding in data plane. To tackle this
problem, we utilize the VLAN ID in the VLAN tag to encode
processing state. Furthermore, we propose an algorithm to
judge the existence of the loop in a physical sequence of
switches and decide which switches are responsible for adding
tags. In order to specify the characteristics of traffic to be
served and the sequence of middleboxes to be applied, we also
define an XML-based data format along with a REST-based
NBI for OpenFlow controllers.

The rest of this paper is organized as follows. Firstly, we
review the related work in Section II. In Section III, we
describe the issue relating to steering middlebox-specific traffic
in data plane. After that, we present our implementation in
Section IV. Experimental results are presented in Section V
and this paper is concluded in Section VI.

978-3-901882-89-0 @2017 IFIP 754

II. RELATED WORK

 Given the need of evolution of current deployment model,
the Internet Engineering Task Force (IETF) has formed a new
working group to define and publish standards related to
service function chaining. The Service Function Chaining
(SFC) Architecture document [5] provides architectural
concepts about service function chaining. A Service Function
Chain (SFC) defines a list of abstract service functions and the
order in which they are to be applied required by a service. A
Service Function Path (SFP) is instantiated for an SFC by
selecting specific service function instances that the packet will
visit when it traverses the network. Middlebox policy chain is
an instance of the concept of “service function chain”.

The middlebox placement problem is conceptually similar
to the VNF placement problem. In [6], the authors present a
model for placing virtual network function in a scenario where
physical hardware and instances of virtual network function
provide services cooperatively. The execution time of the
proposed algorithm remains less than 16 seconds, ensuring it
can react to demand rapidly. Authors in [7] formulate the
problem of network function placement as an integer linear
programming problem. The formulation aims to determine the
locations for placing virtual network function instances while
at the same time minimize the resource utilization. Since a
significant number of researches have been done in this topic,
we do not focus on middlebox placement in this paper.
However, the middlebox placement scheme is the input needed
by our implementation, hence we define an XML-based data
format and a REST-based NBI to specify the middlebox
placement scheme.

 As for traffic steering among service functions, Paul Quinn
and Jim Guichard [8] propose a single service-level data plane
encapsulation format called Network Service Header (NSH),
which acts as the SFC encapsulation component required by
SFC Architecture. The NSH header has two fields for
constructing a service path: the service path identifier (SPI) and
the service index (SI). The SPI identifies a service path that
interconnects the service functions. It provides a level of
indirection between the service topology and the network
transport. The SI identifies a packet's location within a service
path, and it must be decremented by service functions after
performing required services. However, NSH requires a control
plane that conveys NSH related information, for example to
instruct service function forwarders to map SPI/SI to network
transport protocol. Besides, this header only works in NSH-
aware network.

The approaches in [1], [3] do not use a special header to
steer traffic. Aiming at reducing the memory footprint of flow
table on each switch, StEERING[1] utilizes the pipeline with
multiple tables introduced in OpenFlow 1.1 to implement a
scalable and flexible architecture. This design, combined with
metadata encoding service chaining, handles the integration of
different types of traffic steering policies easily and efficiently.
Nevertheless, it does not mention how to deal with the case
when there is a loop in the route used to steer traffic. An
approach for resolving the loop issue is proposed in [3].
SIMPLE[3] presents a SDN-based policy enforcement layer
for middlebox-specific traffic steering. It utilizes the existing

capabilities of OpenFlow protocol to push tags onto packets in
order that the downstream switches can use these tags to know
the processing state of each packet before deciding their
forwarding actions. As a result, traffic can be steered through
the desired sequence of middleboxes without mistake.

 However, SIMPLE[3] does not go into the details of the
implementation and neither does it propose an approach for
judging the existence of the loop. As a supplement to this paper,
our work provides an algorithm to detect the existence of the
loop and decide which switches are responsible for adding tags
when the loop exists. Besides, our work also presents an
implementation utilizing the VLAN tag to annotate the
processing state of each packet for traffic steering.

III. PROBLEM STATEMENT FOR ENFORCING MIDDLEBOX

POLICY CHAIN IN DATA PLANE

This section describes a problem associated with utilizing
SDN for middlebox policy chain. In order to make the
statement concrete, we give an example in Fig. 1. As shown in
the figure, the administrator wants the policy chain Firewall-
IDS-Proxy to be applied when HTTP traffic traverses the
network.

Fig. 1. Example to illustrate the requirement specified by a middlebox policy

chain. For the middlebox policy chain: Firewall-IDS-Proxy, different
physical sequences of switches and middleboxes that can implement the
policy are shown in the table.

We illustrate the issue through the physical sequence of
switches and middleboxes: S1 → S2 → FW → S2 → S3 →S5 → S6 → IDS → S6 → S5 → S3 → Proxy → S3 → S5 →S6 → S7 , which can be used to implement the middlebox
policy chain for HTTP traffic. Another physical sequence also
has similar issue. Obviously, a packet would visit the switch S6
three times. Each time S6 needs to decide which action to take:
if the packet has already visited the FW, then forward it to IDS;
if the packet has already visited the FW and IDS, then forward
it back to S3 for Proxy; if the packet has already visited all
three middleboxes, then send it to the destination. However, it
is difficult for S6 to make a choice between the action of
forwarding packet to IDS and the action of sending packet to
the destination just based on the header fields and the ingress
port property of the packet. The problem here is that even
though the flow entries in S6 contain the valid forwarding
actions, this may not be realizable because matching packet
header fields against the match fields of corresponding flow
entries in S6 cannot differentiate the processing state in the
context. That is to say, only using source/destination IP address,

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper 755

source/destination MAC address, and ingress port in match
fields of flow entry is not sufficient for this situation.

IV. DATA PLANE DESIGN AND IMPLEMENTATION

According to section III, if a switch performs packet
lookups and forwarding just based on the packet header fields,
it may cause ambiguous forwarding when there is a loop in the
physical sequence. Therefore, a method using tags is presented
in this section to solve the problem.

The presented implementation is based on the following
prerequisites: The first thing is that middleboxes do not modify
packet headers. The second thing is that another application
performs a middlebox placement algorithm on the basis of
processing load or even switch constraints (i.e., the number of
forwarding rules a switch can support) to get the physical
sequence of middleboxes used to implement the specified
policy chain. Our module takes the information as input and
translates it into forwarding rules to avoid ambiguous
forwarding. Consequently, an XML-based data format and a
REST-based NBI are defined for the input needed by our
module. The introduction of the data format is presented in part
B.

A. Unambiguous Forwarding
Looking at Fig. 1 again, when the same packet sent by both

FW and Proxy is received on the same ingress port, S6 is
unable to determine whether this packet is from FW or Proxy,
which may result in incorrect forwarding decision. In other
words, when a switch receives the same packet multiple times
at the same ingress port, it needs to know which middleboxes
this packet has traversed in the middlebox processing chain.
Therefore, we can add tags to packet headers according to
physical topology and the physical sequence of middleboxes to
annotate a packet with its processing state.

When a controller is required to configure forwarding rules
for steering traffic through the specified sequence of
middleboxes, it first needs to check whether there is a loop. If
the sequence needed for routing is loop free, it means each
directional link appears at most once in the sequence, the use
of packet header fields and ingress port in forwarding rules can
identify the processing state correctly in this situation. If the
controller checks out the existence of a loop in the physical
sequence, the use of packet header fields and ingress port may
not be enough to help related switches to know which
middleboxes a packet has traversed. Therefore, a tag can be
pushed onto a packet to address this problem. The added tag is
called ProcState tag. ProcState tags can use VLAN ID, MPLS
labels, or other unused fields in the IP header depending on the
fields supported in the SDN switches. Here we choose VLAN
ID as ProcState tags since VLAN tags are well supported by
OpenvSwitch and most open source controllers such as
Floodlight.

As is shown in Fig. 2, the switch S3 is responsible for
adding the ProcState tags to packets from middlebox FW and
the directly connected middlebox Proxy, so the corresponding
rules in S3 are: {HTTP, from	FW} → {add	ProcState = FW, forward	to	S5};
 {HTTP, from	Proxy} → {add	ProcStat = Proxy, forward	to	 S5}.

We use push-VLAN action defined by OpenFlow protocol to
achieve the addition of tags. The switch S6 can use the
ProcState tags added by S3 to differentiate different instances
of the same packet arriving at the same ingress port. Since
middleboxes in the policy chain do not need to maintain or be
aware of the context of the policy chain, S6 will remove the
ProcState tag from a packet before forwarding it to middlebox
IDS. The related forwarding rules inserted in S6 are as follows:
 {HTTP, from	S5, ProcState = FW} → {remove	ProcState,	 forward	to	IDS}; {HTTP, from	S5, ProcState = Proxy} → {remove	ProcState,	 forward	to	destination}.
 In our implementation, we propose an algorithm to judge
the existence of the loop in a physical sequence of switches and
decide which switches are responsible for adding tags.

Fig. 2. Example of flow entries in S3 and S6 to illustrate the approach.

B. XML-Based Data Format for Defining Input
We have mentioned that our module is only responsible for

installing forwarding rules to steer traffic through a physical
sequence of middleboxes, it does not have the function of
selecting middleboxes used to implement a specified policy
chain. Therefore, an XML-based data format is defined for the
input needed by our module. This part presents the semantics
of the elements in this format.

Fig. 3 shows the detail of the XML-based data format. The
root element policies can have one or more child elements
named policy. Each policy element denotes a middlebox policy
chain. A policy element contains an identification element and
a forwarders element. The identification element stands for the
traffic to be steered through this policy chain. The content of
element identification is made up of four child elements. These
four child elements are sourceMAC, destinationMAC, sourceIP
and destinationIP, and the name of each child element implies
its semantic meaning. Floodlight uses the contents of these four
child elements to identify the source host and destination host
in the network. If Floodlight identifies the source host and
destination host successfully, then the locations of these two
hosts in the network can be easily obtained, which are
necessary in the calculation of the path used for steering.
Moreover, the contents of these four child elements are also
used in match fields of flow entry for matching. The
forwarders element consists of one or more forwarder element.
Each forwarder element represents a location for a middlebox.
The order in which these forwarder elements appear implies

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper756

the physical sequence of middleboxes. A forwarder element
contains a datapathid element and a port element. These two
child elements together identify the location of a middlebox in
the network. The datapathid element must have a valid value
of datapath ID defined by OpenFlow protocol. The port
element must have a valid port number representing an
OpenFlow port, a middlebox connects to the network via this
port.

Fig. 3. The data format for defining input needed by our module.

C. Loop Judgment
A controller determines the sequence of switches used for

steering according to the input in the format defined in Section
B. As for the example in Fig. 4, the traffic sent from h1 to h2 is
required to be steered through the physical sequence of
middleboxes FW1-IDS1-Proxy1. Obviously, the route
computed by controller is h1 → S3 → FW1 → S3 → S4 →S5 → IDS1 → S5 → S4 → S3 → Proxy1 → S3 → S4 → S5 →h2.

Fig. 4. Experimental physical topology

The numbers in the Fig. 4 are port numbers of switches.
Here we use the notation switch-port pair to denote a port on a
switch. For example, S3-3 represents the port 3 on switch S3.
The port information is necessary because OpenFlow packets
are received on an ingress port and processed by the OpenFlow
pipeline which may forward them to an output port. We also
define the concept of Segment as a path between two adjacent
middlebox or host along the physical sequence. Based on this
definition, the sequence of switches used for steering this
traffic can be divided into four segments.

The segment 1 from h1 to FW1 can be expressed as S3-
1→S3-3.

The segment 2 from FW1 to IDS1 can be expressed as S3-
3→S3-2→S4-1→S4-2→S5-1→S5-3.

The segment 3 from IDS1 to Proxy1 can be expressed as
S5-3→S5-1→S4-2→S4-1→S3-2→S3-4.

The segment 4 from Proxy1 to h2 can be expressed as S3-
4→S3-2→S4-1→S4-2→S5-1→S5-2.

The number of notation switch-port in each segment must
be an even number because each switch in each segment firstly
appears with an ingress port to receive packets and secondly
appears with an output port to forward packets. Our module
needs to check whether there is a loop among these four
segments before installing forwarding rules in switches. The
key idea of judging the existence of the loop is that there are
some directional links appearing more than once in these four
segments. Each endpoint of a directional link is a port on a
switch (i.e., a directional link is between two switches) so we
can use a switch-port pair such as S3-2→S4-1 to identify a
directional link.

Apparently, the path in segment 3 does not need tags
because there is no directional link appearing in other
segments repeatedly. Both segment 2 and segment 4 have the
same part S3-2→S4-1→S4-2→S5-1, but their next switch-port
notations after S5-1 are not the same. It means packets received
on port 1 of switch S5 need to be forwarded to different ports.
And S3-2 is the first one in this same part so upstream switch
S3 is responsible for adding tags.

If two segments have the same switch-port notation
indicating an output port, the next switch-port notations after it
in the two segments must be the same because an output port
on a switch connects to a unique ingress port on another switch.
In the example above, S3-2 appears in segment two and
segment four, so S4-1 would appear after it in both of them.
Since both S4-1 and S5-1 indicate ingress ports on switches,
we can just compare those ingress ports on switches in
segments to reduce the number of comparisons. If two
segments have some identical switch-port notations indicating
ingress ports, we need to find the first one and the last one. The
switch-port notation before the first one decides which switch
is responsible for adding tags. The last one decides which
switch is responsible for removing tags before sending to
middleboxes.

Here we explain the purpose of finding the first identical
switch-port notation indicating an ingress port and the last one.
Assuming the same packet needs to be steered through three
segments in Fig. 5. As illustrated in Fig. 5, the direction of the
three segments is from left to right. The numbers in the Fig. 5
are port numbers of switches. These three segments all have
some identical switch-port notations. We can obtain that the
first identical switch-port notation indicating an ingress port is
the port 4 on switch S3 based on the comparison of the first
segment and the second segment, so S2 is responsible for
adding tags to packets from middlebox A and middlebox C.
Similarly, we also know S1 is responsible for adding tags to
packets from middlebox A and middlebox E after comparing
the first segment and the third segment. As a result, both S1
and S2 need to add tags to packets from middlebox A, it is not
reasonable. Since S1 is before S2, we choose S1 to execute the

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper 757

action of adding tags to packets from middlebox A. S2 is still
responsible for adding tags to packets from middlebox C. S2
uses the packet ingress port to distinguish a packet coming
from middlebox A or middlebox C. So a segment needs to
compare with all the other segments to choose the earliest one
of those first identical switch-port notations indicating ingress
ports. On the contrary, a segment needs to find out the latest
one to decide a switch, which performs the action of removing
tags from packets.

Fig. 5. Example to illustrate the purpose of finding the first identical switch-

port notation indicating an ingress port and the last one.

 The NodePortTuple class represents a port on a switch (i.e.
switch-port). An instance of List<NodePortTuple> class stands
for a sequence of switch-port pairs in a segment. The method
size() of List<NodePortTuple> class returns the number of
switch-port in a segment represented by an instance. The
notation list1[i] denotes an element with index value of i in a
sequence. The method contains() of List<NodePortTuple>
class returns true if this sequence contains a specified element.
And the method indexOf() returns the index of the first
occurrence of a specified element in this sequence.

Algorithm Calculate the first and last identical switch-port
indicating ingress ports between two segments
Input: List<NodePortTuple> list1, List<NodePortTuple>
list2, list1.size() < list2.size()
Output: indexes of the first and last identical switch-port
indicating ingress ports in each list
Procedure:
01: first1, last1, first2, last2 = 0
02: M = list1.size()
03: for (i=0; i < M; i=i+2)
04: if list2.contains(list1[i]) && list2.indexOf(list1[i]) is

odd
05: first2 = list2.indexOf(list1[i])
06: first1 = i
07: for (j = 1; j < M - i; j++)
08: if list1[i + j] != list2[first2 + j]
09: last1 = i + j - 1
10: last2 = first2 + j - 1
11: return
12: end for
13: end if
14: end for

V. EXPERIMENTAL RESULT

 In this section, we conduct an experiment to show the result
of our implementation. We use the topology in Fig. 4 as our
experimental physical topology. The controller used in this
experiment is Floodlight [9]. Our module is built and runs on
top of it. Mininet [10] is used to create an SDN network. The
version of OpenFlow protocol is 1.3.

 Assuming the administrator wants to route the traffic sent
from h1 to h2 through the policy chain Firewall-IDS-Proxy. An
application performs a middlebox placement algorithm, obtains
the physical sequence of middleboxes FW1-IDS1-Proxy1 used
to implement this policy chain and transmits the result to the
controller via a REST-based NBI, using the data format
designed in part B. The content of this file is displayed in Fig.
3. As illustrated in Fig. 3, the h1’s IP address and MAC
address are 10.0.0.1 and 00:00:00:00:00:01. The h2’s IP
address and MAC address are 10.0.0.2 and 00:00:00:00:00:02.
The datapath IDs of switches S3, S4, S5 are
00:00:00:00:00:00:00:03, 00:00:00:00:00:00:00:04,
00:00:00:00:00:00:00:05. The numbers in the Fig. 4 are port
numbers of switches. All this information is required to
generate flow entries used for steering traffic.

 Our module takes the information as input, and computes a
route to steer the traffic through FW1, IDS1 and Proxy1
specified by the middlebox placement module. The computed
route has been illustrated in Section IV-C, it is h1 → S3 →FW1 → S3 → S4 → S5 → IDS1 → S5 → S4 → S3 → Proxy1 → S3 → S4 → S5 → h2 . Then the module performs the
function of judging loop based on the route and installs the
corresponding flow entries in these switches.

 To evaluate the effectiveness of our proposed approach, we
observe the experimental results from two aspects. Firstly, we
examine the flow entries in related switches to confirm that
whether our module generates and installs flow entries in
proper switches automatically according to the middlebox
policy chain. Secondly, we observe whether the relevant flow
entries installed by our module play a role in steering the
corresponding traffic. The OpenFlow protocol defines that
each flow entry has its counters (e.g. packet counter), and
updates them when packets are matched. In addition, the
command ping has an option -c, this option provides the ability
to set the number of packets that are sent by a host. Therefore,
we can set the option -c to an exact value when execute the
command ping, then check the packet counter of each flow
entry to see whether the value of each counter equals to the
specified value. Now that we have elaborated on our
verification method, then we need to verify whether it can
solve the problem in the data plane.

 Fig. 6 shows all the flow entries of S3. The flow entries
installed by our module are marked in rectangles of different
colors. The flow entry in red rectangle forwards packets from
h1 to FW1. The flow entry in yellow rectangle pushes a new
VLAN tag with VLAN ID 2 onto the packet from FW1, and
forwards it to S4. The decimal number after the word set_field
contains the OFPVID_PRESENT bit (0x1000) defined by
OpenFlow, we need to remove the bit to get the value of
VLAN ID. The flow entry in blue rectangle forwards packets
from S4 to Proxy1. The flow entry in green rectangle pushes a

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper758

new VLAN tag with VLAN ID 3 onto the packet from Proxy1,
and forwards it to S4.

 The flow entries in S5 installed by our module are
displayed in Fig. 7. The flow entry in red rectangle removes
VLAN tag from the packet coming from S4 with VLAN ID 2
(dl_vlan=2 in Fig. 7), and forwards it to IDS1. The flow entry
in yellow rectangle removes VLAN tag from the packet
coming from S4 with VLAN ID 3 (dl_vlan=3 in Fig. 7), and
forwards it to h2. The flow entry in blue rectangle forwards
packets from IDS1 to S4.

Fig. 6. Flow entries in S3 before matching traffic.

Fig. 7. Flow entries in S5 before matching traffic.

 Before executing the command ping, the decimal number
after the word n_packets in each flow entry is 0, shown in Fig.
6 and Fig. 7. Then we execute command h1 ping -c 25 h2 for a
test. The result after executing the command is shown in Fig. 8
and Fig. 9, the decimal number after the word n_packets in
each flow entry is 25. It means each flow entry installed by our
module matches 25 packets, and S5 can make correct decision
between the action forwarding to IDS1 and the action sending
to h2. It also demonstrates that our implementation can
properly steer traffic through a specific sequence of
middleboxes even when there are loops in forwarding path.

VI. CONCLUSION

In this paper, we present an implementation for solving an
issue related to steering middlebox-specific traffic in data plane.
To this end, the VLAN ID in the VLAN tag is utilized to
encode processing state, and an XML-based data format is
defined to specify the middlebox policy chain as the input of
our method. Furthermore, we propose an algorithm to judge the
existence of the loop in a physical sequence of switches and
decide which switches are responsible for adding tags. The

experimental result demonstrates that our implementation can
properly steer traffic through a specific sequence of
middleboxes even when there are loops in forwarding path.

Fig. 8. Flow entries in S3 after matching traffic.

Fig. 9. Flow entries in S5 after matching traffic.

VII. ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (61501044).

REFERENCES
[1] Ying Zhang et al., "StEERING: A software-defined networking for

inline service chaining," 2013 21st IEEE International Conference on
Network Protocols (ICNP), Goettingen, 2013, pp. 1-10.

[2] P. Quinn and T. Nadeau. "Problem Statement for Service Function
Chaining", IETF Request for Comment:7498, April 2015.

[3] Z. A. Qazi, C.-C. Tu, L. Chiang et al., Simple-fying middlebox policy
enforcement using sdn. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, pages 27-38, 2013.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[5] J. Halpern and C. Pignataro. "Service Function Chaining (SFC)
Architecture", IETF Request for Comment: 7665, October 2015.

[6] H. Moens and F. D. Turck, "VNF-P: A model for efficient placement of
virtualized network functions," 10th International Conference on
Network and Service Management (CNSM) and Workshop, Rio de
Janeiro, 2014, pp. 418-423.

[7] A. Mohammadkhan, et al., "Virtual function placement and traffic
steering in flexible and dynamic software defined networks," The 21st
IEEE International Workshop on Local and Metropolitan Area
Networks, Beijing, 2015, pp. 1-6.

[8] P. Quinn and J. Guichard, "Service Function Chaining: Creating a
Service Plane via Network Service Headers," in IEEE Computer Journal,
vol. 47, no. 11, pp. 38-44, Nov. 2014.

[9] Floodlight. [Online]. Available: http://www.projectfloodlight.org

[10] B. Lantz, B. Heller, and N. McKeown, “A network in a Laptop: Rapid
Prototyping for Software-Defined Networks,” in HotNets, 2010.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper 759

