Prototyping a High Availability PaaS: Performance
Analysis and Lessons Learned

Marcos Machado, Daniel Rosendo,
Demis Gomes, André Moreira,
Moisés Bezerra, Djamel Sadok
Federal University of Pernambuco

Recife, Brazil
Email: {marcos.machado, daniel.rosendo,
demis.gomes, andre.moreira, moises,
jamel} @ gprt.ufpe.br

Abstract—With cloud computing consolidation, Platform-as-
a-Service (PaaS) has been used as a solution for developing
applications with low cost and maximum flexibility. However, an
open challenge related to PaaS is the proper handling of multi-tier
and stateful applications with support for high availability (HA);
and scalability can be considered an essential feature for HA.
However, dealing with several instances of the same application
that access its state in a common area is not a simple task. This
paper presents a novel PaaS framework, named NoPaaS, that
supports the deployment of multi-tier and stateful applications
assuring their availability according to the Service Availability
Forum (SAF) redundancy model. The primary goal of this work
is to present NoPaaS framework and prototype, and highlight
challenges and open issues when providing multi-tier and stateful
applications in high availability clouds.

I. INTRODUCTION

Cloud services have been used for many purposes by diverse
types of commercial enterprises and governmental entities
around the world. Looking from a client perspective, cloud
computing is very attractive because it minimizes infrastruc-
ture investments, resource management costs, and at the same
time, presents a flexible business plan (pay-as-you-go pricing)
with an elastic service provisioning, in which services can be
scaled up or down on demand. On the other hand, from a cloud
provider point of view, managing the cloud infrastructure
remains a great challenge since all clients requirements should
be attended with next to zero outages ([1], [2]).

A report [3] from the International Working Group on Cloud
Computing Resiliency IWGCR) presents a brief summary
of availability of major cloud providers. Across different
businesses, the downtime cost has a great economic impact
for providers. For instance, an airline reservation operation
incurs a loss of around $2,600,000 per hour; and a brokerage
operation has a cost of $6,450,000 per hour. In order to
mitigate the outages, Cloud providers have been focusing
on ways to improve their infrastructures and management
strategies to achieve high availability (HA) services.

In [4], availability is defined for a given interval of time
in terms of the percentage of time the application is up and
its services are provided; high availability is achieved when

978-3-901882-89-0 @2017 IFIP

Patricia Takako Endo
University of Pernambuco
Caruaru, Brazil
Email: patricia.endo@upe.br

805

Calin Curescu
Ericsson Research
Kista, Sweden
Email: calin.curescu@ericsson.com

the outage is less than 5.25 minutes per year [4], meaning
at least 99.999% availability (five nines). According to [4],
HA systems are fault tolerant systems with no single point
of failure; in other words, when a system component fails, it
should not imply the outage of the service provided by that
component.

However, achieving and maintaining high availability is
not a trivial task; this is because we are dealing with cloud
applications, which usually are composed of several and
dependent tiers (multi-tier and stateful applications). Each tier
is responsible for a part of the whole system, and they work
together to provide a complete service. Although grouped
as a whole, in practice each tier is an independent resource
for the cloud provider (a virtual machine or a container, for
instance) and may be treated as such. This scenario brings
many challenges and questions like “how should we handle
the scaling of multi-tier applications?” and "how should we
deal with load balancing among tiers?” These are still open
issues.

The main contributions of this work are: a) propose and
describe an architecture for high availability clouds with
support for multi-tier and stateful applications deployment,
named NoPaaS (Novel PaaS); and b) describe the prototype
development and evaluation, highlighting some lessons learned
during the process.

II. NOPAAS FRAMEWORK

In order to define our framework for high availability clouds,
we grouped requirements into two categories: a) application
requirements, and b) framework requirements. Application
requirements represent mandatory characteristics for all appli-
cations to work properly within the NoPaaS framework (Table
I). On the other hand, framework requirements are a set of
services and characteristics that the NoPaaS framework itself
must provide to applications and/or developers (Table II).

Considering all these requirements, we propose our frame-
work for high availability clouds, named NoPaaS (Novel
PaaS), as shown in Figure 1. The NoPaaS was designed to
support multi-tier and stateful application deployment, and for

TABLE I
APPLICATION REQUIREMENTS

REQ A.1 Must implement the API as described by the framework
REQ A2 Must alwe}ys include the session ID in messages exchanged
between tiers
REQ A.3 RESTful communications between tiers
TABLE II
FRAMEWORK REQUIREMENTS
REQ F.1 MusF deﬁne a REST API for communication with
applications
REQ F.2 Must support different profiles configurations
REQ F.3 Must planv resource allocation based on different profiles
configuration
REQ. F4 Must support multi-tier applications
REQ. F.5 Must support stateful applications
REQ. F.6 Must deal with sticky sessions
REQ. F.7 Must assure HA
REQ. F.8 Must provide scaling
REQ. F.9 Must provide resource management
REQ. F.10 Must rely on Cloud infrastructure compatible with

current standards

that, provides services for high availability, such as checkpoint,
session migration, and failure recovery.

APP DEPLOYMENT PROFILES Services

Economy HA scaling

App
Configuration

c--» | Redundancy Load Balance

Business Checkpoint scaling

Custom

App + Services

Configurations Translation

OPERATION

Message Bus

PLANNING
Resource

EEEET: Service Discovery

Checkpoint Monitoring

Planner
Allocation

{—J

CLOUD INFRASTRUCTURE SERVICES

Load Balance

Computing Communication Data

Fig. 1. NoPaaS Framework

1) App Deployment module: it is responsible for the in-
terface between our framework and the developer (an actor
willing to deploy a service in our framework). To avoid
the need to “reinvent the wheel”, NoPaaS proposes a set of
modules that should work alongside a PaaS service, extending
it. Such modules must act as a gateway between the PaaS
service and NoPaaS internal services. Services which will
be deployed within our framework must accomplish REQs

A.1, A2, and A.3 regarding the application, and REQ F.1
regarding framework requirements.

2) Profiles module: Profiles are a way to represent the
available budget and requirements into response time and
availability levels. The NoPaaS has, but it is not limited
to, three different profiles: a) economy; b) business; and c)
custom. For each profile, we define a specific configuration
regarding load balancing, scaling, checkpoint mechanism, and
redundancy model based on the Service Availability Forum
(SAForum or just SAF) model. REQs F.2 and F.3 are obeyed
by this module.

3) Planning module: The set of information provided by
the developer regarding application’s configurations, and pro-
file are sent to the App + Services Configurations Translation
in the Planning module, which is responsible for translating
these information to be used by the Planner. The Planner
evaluates requirements, available resources, and plans the ideal
deployment of the application (according to the SAF redun-
dancy models) to satisfy REQs F.4, F.5, and F.6. The Planner
also maintains direct contact with the Resource Management
entity (in the Operation module) for an updated view of
resource availability. The Planner is responsible for executing
two main activities: estimating the availability based on SAF
redundancy models for a given application configuration, and
defining the allocation of an application to minimize costs
and reach a minimum availability requested by a client. We
are considering that each tier of an application is abstracted as
a Service Instance (SI), and each SI is assigned into a Service
Unit (SU). The Planner uses the analytic worst-case models
to estimate availability of each protection configuration. For a
detailed explanation about how our analytic models estimate
availability and simulation results, please see [5].

4) Operation module: provides services to deal with the
cloud infrastructure and application resources. The Resource
Management is responsible for supervising the infrastruc-
ture, alerting upon application failures and generating scaling
in/out triggers. The Checkpoint stores backups of deployed
applications, recovering their states in case of failure, and
also deals with session migrations. The Allocation enforces
the reservation of resources designed by the Planner. The
Monitoring keeps track of applications and physical resources,
maintaining a map of resource usage. The Load Balance
is used to distribute the load among multiple tiers of an
application, dealing with session stickiness, server failure,
and session migration. We define the Message Bus entity for
communication purposes, and it is responsible for receiving
and delivering messages for all entities. REQs F.7, E.8, and
F.9 should be attended by services of this module.

5) Cloud Infrastructure module: The Cloud Infrastructure
services comprise the IaaS services that NoPaaS will use to
deploy and manage developers’ applications. The main idea
is to use Cloud facilities in order to avoid unnecessary work.
For that, we need to hire an IaaS provider or configure our
private TaaS. With this, we comply with REQ F.10.

806 2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Short Paper

III. PROTOTYPE DESCRIPTION

Figure 2 shows how our prototype implementation reflects
the NoPaaS architecture proposed in Section II. In the pro-
totype, some modules and services were renamed in order to
explain their respective functions.

JAVA-BASED

APPLICATION
JAVA-BASED

APPLICATION
Planner

Message Bus

|
[[| |

PYTHON-BASED
APPLICATION

Allocator

ZABBIX + PYTHON PYTHON-BASED

APPLICATION

JAVA-BASED
APPLICATION

Load Balance
Manager

Resource
Manager

I I | |

PYTHON-BASED ZABBIX + PYTHON JAVA-BASED PYTHON-BASED
APPLICATION APPLICATION APPLICATION

Monitor
Manager

Checkpoint
Manager

Load Balance
Agents

Monitor
Agents

Resource
Agents

Checkpoint
Agents

Fig. 2. NoPaaS Prototype

A. Software infrastructure

Our software platform is based on Juju and Openstack. Juju
uses Openstack to manage and deploy VM instances, creating
VMs in which the framework can deploy its applications in a
simple drag-and-drop fashion. The Operating System used was
Ubuntu 15.04, the version of Juju was 1.25.0-vivid-amd64, and
the version of the Openstack was 1.0.3.

1) Planner: handles the interactions with Juju to create the
VMs needed to deploy applications, managers, and agents,
allocating all the resources required. We chose to use the 2N
redundancy model statically configured to deploy applications
for the sake of our evaluations and tests. Furthermore, the
Planner also is responsible for the new entities allocation
when we need to scale up or down. Lastly, it handles the
reassignment of failed instances.

2) Allocator: 1is the entity that enforces the allocation plan
given by the Planner. When the developer deploys a new
application, the Planner request the Allocator to create the
necessary Sls inside the available SUs. The Allocator has a
central unit that runs alongside the Planner and receives the
information to perform the allocation of new instances; it also
has a remote unit that runs inside of each SU. The remote unit
is responsible for the instances’ deployment.

3) Resource Manager: uses its agents to supervise all SUs
and their SIs individually. It receives monitoring alerts from
the Monitor Manager and validates them, confirming the status
with the applications and the used resources with its agents.
The incoming alerts may cause the Resource manager to
reallocate resources due to a scaling down or scaling up
requests. Moreover, reassignments may be done because of

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Short Paper

applications or SI failures. To operate that, it communicates
with the Allocator.

4) Load Balance: manager and agents work together to
deal with sticky sessions, server failure, and session migration.
The manager is a centralized entity with a complete view of all
agents spread in different tiers. It is responsible for distributing
stats, session information, and message routing information to
all agents. The Load Balance agents were divided into border
and internal agents. Border agents are openly accessible and
are responsible for forwarding users’ requests from the front
tier. Internal agents are located in each SI and only receive
requests from the application, so it is not directly accessed by
external clients.

5) Monitor: was implemented using Zabbix version 2.4
and its Python API to automate the control of the Monitor
manager over the Zabbix Server. Zabbix uses an agent-proxy-
server architecture and can oversee a variety of metrics. The
manager keeps track of the metrics status, updating the Load
Balance manager and the Resource manager, sending alerts
upon failure detection, or an underused or overused resource.

6) Checkpoint: manager stores application’s state, recovers
state in a standby replica and deals with session migration.
The Checkpoint agents are executed in the same SU of an
application; they collect information via REST and send them
to the Checkpoint manager.

B. Hardware infrastructure

We deployed our prototype into an Intel Xeon CPU E5410,
with 40 Gb of RAM, and two hard drives; one is a Western
Digital WD5003ABYX-1 with 500 Gb and one is a Seagate
ST2000DMOO01-1ER1 with 2 Tb.

IV. EVALUATION AND EXPERIMENTAL RESULTS

As a proof of concept, we developed a chat application
composed of three tiers: front-end, back-end, and database.

A. Deployment Time

The deployment time is the total time needed to deploy
the multi-tier application from a developer request until the
application is formally accessible for clients, i.e., all tiers
and services are ready. For this metric, we have two differ-
ent measurements, named environment deployment (the time
elapsed from the beginning of the deployment until the end
of the NoPaaS environment setup. This metric is related to
NoPaaS mechanisms to deploy an application) and application
deployment (the time interval from the end of the environment
setup until the end of the application deployment. This metric
is related to the application configuration process). We made
this separation because both periods are independent from each
other.

Figure 4 shows the boxplot of deployment duration mea-
sured in our NoPaaS prototype. As one can note, the envi-
ronment deployment is faster and presents fewer oscillations
than the application deployment. Table III shows that our
environment deployment average time is less than half of
the application deployment average, presenting around 20
seconds, in the worst case.

807

40

Time (in seconds)

20 3 g
E % ﬂ.

Environment
Deploy Phase

Application

Fig. 3. Deployment Time

TABLE III
DEPLOYMENT TIME

Deployment time (seconds)

Metrics
Environment Application Total
Average 14.77252 31.39755 46.17008
Median 14.95152 34.94713 49.04846
Confidence Interval (95%) 0.99349 4.30932 3.82115
Maximum Value 20.03021 62.55691 65.56328
Minimum Value 3.00637 16.80035 31.46902

These results show that the NoPaaS prototype has a small
impact on the total time needed to deploy a multi-tier appli-
cation, highlighting that the developers need to be concerned
about and are free to decide how their applications will be
implemented regarding the services of each tier. Furthermore,
the application deployment time had some oscillations that we
assign to the multi-tier application deployment, in which each
part of the application in each tier must be online, with the
communication established between each tier, and the back-
end tier’s application must connect to the database in the
database tier. Only after all these steps does the application
report to the monitor, which reports to the NoPaaS framework.

B. Failure Recovery Time

Each SI can be assigned as active or standby. When a SI
fails, the framework a) activates the standby SI and migrates
sessions; and b)tries to recover the failed SI and changes it
states to standby. Figure 4 shows the required time (in seconds)
to fulfill these two tasks, respectively.

The first task (modify the SI instance state from standby
to active and migrate sessions) requires an average of 2.33
seconds, while the second task requires about 8.3 seconds (see
Table IV). The second task requires more time than the first
one, because this time refers to the whole recovery process
(from the receiving of the failure alert until the allocation of
the failed machine).

Time (in seconds)

==

Standby Activation
Fail Phase

[N
© —

Recovery

Fig. 4. Failure Recovery Time

TABLE IV
FAILURE RECOVERY TIME

Failure Recovery Time (seconds)

Metrics
Standby to Active Recovery
Average 2.33777 8.30916
Median 2.32032 8.06126
Confidence Interval (95%) 0.14 0.48
Maximun Value 3.23023 12.86280
Minimum Value 1.57473 6.38666

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented the NoPaaS, a framework
focused on providing high available services with support to
multi-tier and stateful applications. Our experimental results
showed good performance regarding deployment and failure
recovery times. As future works, we plan to evaluate other high
availability services, such as checkpoint and load balance, and
compare NoPaaS with other existing frameworks.

VI. ACKNOWLEDGMENTS

This work was supported by the RLAM Innovation Center,
Ericsson Telecomunicagdes S.A., Brazil.

REFERENCES

[1] D. Puthal, B. Sahoo, S. Mishra, and S. Swain, “Cloud computing features,
issues, and challenges: a big picture,” in Computational Intelligence and
Networks (CINE), 2015 International Conference on, pp. 116-123, IEEE,
2015.

[2] N. L. da Fonseca and R. Boutaba, “Cloud architectures, networks,
services, and management,” 2015.

[3] C. Cérin, C. Coti, P. Delort, F. Diaz, M. Gagnaire, Q. Gaumer, N. Guil-
laume, J. Lous, S. Lubiarz, J. Raffaelli, et al., “Downtime statistics
of current cloud solutions,” International Working Group on Cloud
Computing Resiliency, Tech. Rep, 2013.

[4] M. Toeroe and F. Tam, Service availability: principles and practice. John
Wiley & Sons, 2012.

[5] G. Gongalves, P. Endo, M. Rodrigues, D. Sadok, and C. Curescu, “Risk-
based model for availability estimation of saf redundancy models,”

808 2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Short Paper

