
COACH: COgnitive Analytics for CHange 

Sinem Güven1, Pawel Jasionowski2, Karin Murthy1, Krishna Tunga3
, George Stark4

 

1IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 
2IBM Global Services Delivery Center, Wroclaw, Poland 

3IBM Systems Group, Hopewell Junction, NY, USA 
4IBM Global Technology Services, Austin, TX, USA 

{sguven, kmurthy, ktunga, gstark}@us.ibm.com, pawel.jasionowski@pl.ibm.com 

Abstract — This paper presents our initial efforts towards 
building a cognitive analytics framework for change 
management. We propose a novel predictive algorithm for 
change risk calculation based on historical change failures, 
server failures, change triggered incidents as well as expert user 
input. Our predictive algorithm provides significant 
improvement over traditional risk assessments in proactively 
capturing problematic changes when tested with real client 
account data.  
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I. INTRODUCTION 

Researchers have long investigated different risk 
prediction methodologies to reduce change failures [1, 2], and 
thereby eliminate service disruptions caused by changes [3, 4]. 
Assessing change risk accurately at change creation time is 
critical for the change approval process, as the risk level 
determines the level of scrutiny or automation the change 
would be subject to within the Change Management (CM) 
process. Change risk is typically represented as a numeric 
value within a range; for example, 1 representing the highest 
possible risk (Critical), and 5 representing the lowest possible 
risk (BAU). Although systematic change risk assessment (as 
opposed to assessing the risk through intuition) has taken its 
rightful place as a must in the CM process, the level of 
sophistication of practical assessments remains low, and most 
such assessments are still in the form of risk surveys. The 
reason for this is two-fold; first, Change Analysts may resists 
using a sophisticated risk assessment if it takes up more time 
than the traditional surveys, and second, they may feel the 
sophisticated risk assessment may have no added value. After 
all, both methods produce a risk number and risk mitigation 
actions, and it may take a while until time-consuming 
sophisticated risk assessment methods significantly reduce 
already small change failure rates to justify their usage. 

In the IT service management community, there is often 
consensus around the importance of reducing failed changes to 
prevent client outages, however, as the number of failed 
changes are typically fairly small (~1%), it is often difficult to 
numerically justify focusing research efforts on change failure 
reduction [5]. Our recent work on exploring change incident 
relationships [6] revealed that it is often the seemingly 
successful changes that lead to incidents. Further, our analysis 

showed that up to 35% of client outages are caused by change 
(based on our analysis of 160 client account data over a period 
of 1 year). This explains the discrepancy between the numbers 
we see around failed changes, and change induced outages. 

In our previous work [6, 7], we have established that, 
despite the unbalanced nature of the change data (~1% failed 
and 99% successful changes), it is possible to enable predictive 
model building for pro-active detection of failed and incident 
causing changes by merging them under the umbrella of 
problematic changes. In this paper, we build on top of and 
extend that work to propose a framework for cognitive 
analytics for change. We present the COACH framework, 
which is designed to provide capabilities to assess and 
accurately predict change risk (Figure 1). Our COACH Risk 
Calculator is designed with the Change Analysts’ concerns in 
mind. It automates the change risk assessment to the extent 
possible to save time, provides a multi-faceted risk to provide 
insights into the calculated risk and also focuses on not only 
failed change prevention, but also change induced incident 
reduction.  

The two main analytics components of COACH are 
Change Incident Link Discovery (right side of Figure 1) and 
Change Risk Prediction (left side of Figure 1). Continuous 
Learning and Improvement (bottom of Figure 1) ensures that 
the analytics learns from observations and improves over time. 
The next Section provides more details on COACH. 

Figure 1. COACH Framework 
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II. COGNITIVE ANALYTICS FOR CHANGE

COACH’s Change Incident Link Discovery module 
focuses on discovering relationships between changes and 
incidents based on a comprehensive analysis of historical 
change and incident data. Knowing which changes caused 
incidents in the past is crucial in establishing a data set that 
accurately reflects the historical risk of various types of 
changes. In our earlier work [7], we showed that such data is 
not readily available and that establishing accurate linkage 
between changes and the incidents that caused them requires 
sophisticated analytics. We demonstrated how natural 
language processing and machine learning can be used to 
extract clues from incident description and resolution text as 
well as categorical data to statistically link incidents to culprit 
changes. COACH uses the outcome of this analytics as an 
important input for change risk prediction (Figure 1). 

The Change Risk Prediction module forms the basis of our 
cognitive change risk calculator that can be used at change 
preparation time to assess the risk of a change. The novelty of 
COACH lies in its ability to provide an all-encompassing risk 
context for change not only in terms of its likelihood of 
failure, but also its prospect of causing an incident. Change 
Risk Prediction leverages several cognitive analytics 
techniques to understand the change, reason about its risk, as 
well as employ Continuous Learning and Improvement to 
learn from past similar change outcomes over time. The rest 
of this paper will focus on the Change Risk Prediction aspect 
of COACH. 

A. Cognitive Change Risk Calculator 
This section illustrates how COACH provides the 

fundamental analytics to implement a cognitive change risk 
calculator that can accurately predict the risk of a change at 
change creation time.  

Whenever a change to the IT infrastructure is required, a 
Change Analyst needs to assess the potential impact of the 
proposed change. Information available for assessment 
consists of, but is not limited to, the change description, 
details about the affected configuration items (such as a list of 
servers and their configuration), the team that will perform the 
change, and answers gathered to risk survey questions about 
the probability of change failure (e.g. how often was this 
change performed before) and the potential impact of change 
(e.g. how many business-critical processes and applications 
may be affected). COACH leverages all this information from 
the change record being created as input to its Change Risk 
Prediction module.  

COACH also leverages additional information about the 
health of the involved configuration items, and the outcome of 
past changes performed on those specific configuration items. 
Moreover, the risk assessment may include how change 
scheduling affected the outcome of past changes and take into 
account various other traits. 

In addition, COACH uses the Natural Language Classifier 
(NLC) [8] available on our BlueMix platform to automatically 
derive the broad category of the change (such as Hardware: 
Server or Software: Application Server). It then enhances this 

category further through information extraction from the text 
to arrive at a more fine-grained category (such as Hardware: 
Server: Reboot, or Software: Application Sever: Upgrade). 
Using this fine-grained change classification for the incoming 
change, COACH can determine similar historical changes and 
leverage their outcome to arrive at its risk prediction. 

An important differentiator of COACH is its ability to 
provide an all-encompassing risk context in addition to the 
predicted risk score. This is depicted in the form of a spider 
chart (Figure 1 right bottom corner) that shows different risk 
dimensions, as well as a comparison of the proposed change’s 
risk to similar changes across all client accounts in our data 
warehouse. This gives the Change Analyst additional insights 
regarding what the risk is related to (failure vs. incident, etc.), 
how the changes belonging to the same change category 
typically perform within the Change Analyst’s account, as 
well as how the account’s performance compares to other 
accounts for this type of change. The predicted risks are stored 
and periodically compared against the observed outcomes. 
While the predictive algorithm itself will adapt over time 
based on newly observed change outcomes, it is critical to 
learn additional more fine-grained context from recent 
inaccurate risk assessments. In order to do so, the predictive 
algorithm is complemented by looking at the predicted and 
observed outcome for similar changes in the same change 
category. If the algorithm predicts a low risk for a change, but 
a very similar change with a low predicted risk ended up 
having a problematic outcome, the assessed risk for the 
change is increased. More details of COACH’s predictive 
algorithm are covered in Sections III and IV. 

B. Cognitive Underpinnings 
We now describe in more detail how COACH builds on 

the cognitive capabilities of understand, learn, and reason. 

UNDERSTAND. In order to understand and judge the 
similarity of changes, COACH relies on a comprehensive 
change taxonomy that we derived based on 2.5 million 
historical change records for 160 clients.  

We initially looked into simply reusing existing categories 
assigned by Change Analysts as part of the change record 
creation process. However, the granularity and type of 
categories varied considerably for different clients and 
different ticketing systems. While some clients assign detailed 
categories, such as “Application Shared Services (Database, 
BI, web and mobile development)”, others only use generic 
categories such as “Application”. Initial experiments also 
revealed that clustering historical changes by their description 
would not yield meaningful enough clusters. Due to the 
variety of ways the same change activity can be expressed by 
different people, historical changes considered to be similar by 
a subject matter expert did not necessarily end up in the same 
cluster. For example, changes related to patching the OS of a 
server can be expressed in many different ways: patch host, 
apply patch, install KBs, deploy hotfix, etc. 

As a consequence, we had to build our own change 
taxonomy to arrive at meaningful groupings that were neither 
too broad nor too specific. Figure 2 depicts an excerpt from 
the three-level taxonomy COACH employs. Note that while 
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we do not represent configuration-related information (such as 
the operating system of a server) in our taxonomy, this 
information is used by the predictive algorithm and inferred 
from the specific configuration items affected by the change.   

Figure 2. Change Taxonomy 

 We built rules to map historical changes to the second 
level of our taxonomy. The rules rely on (1) mapping existing 
categories where possible (2) exploiting change owner group 
information to narrow down to likely categories, and (3) 
extracting information from the change’s short description that 
is specific to a change category. This allowed us to assign 
approximately 80% of all historical changes to a specific 
second-level group. We used natural language processing to 
extract activities from change descriptions in order to, 
wherever possible, further break-down the change category to 
the third taxonomy level.  

LEARN. Using the second-level taxonomy labels assigned 
to each change using the rules described above, we trained a 
state-of-the-art natural language classifier [8] to predict the 
change category given a change short description. Using this 
classifier, COACH is able to assign the correct change 
category with a 96% accuracy. We did not include the third-
level change activities into the classification process as many 
activities are similar across categories. For example, installing 
a driver is an activity that is common across all hardware sub-
categories. As such, including activities in the classification 
effort makes it unnecessarily hard for the classifier to 
distinguish between categories. Instead, we separately extract 
activities from the abstract reusing the techniques built for 
historical data and use this information to assign a third-level 
category to each change.  

We note here that the accuracy of the initial rule-based 
labeling was only spot checked and not all labels may be 
correctly assigned. Thus, despite a 96% accuracy on test data, 
the real accuracy may be less. Fortunately, the change risk 
calculator gives users the ability to overwrite the automatically 
predicted change class. Over time, this provides COACH with 
additional training data that allows it to retrain and improve 
the NLC classification accuracy.  

COACH also continuously learns new change failure rates, 
change incident rates, server failure rates by refreshing these 
statistics through automated analysis of new incoming data to 
our data warehouse. Change incident rate refresh requires 
continuously discovering new pairs of changes that led to 
incidents, from incoming change and incident data. Similarly, 
server failure rate refresh requires that the underlying 
problematic server classifier [9] runs continuously as new 
hardware problems are identified.  

COACH initially presents the users with all risk 
assessment questions, but learns over time which risk 
assessment questions to eliminate due to low correlation to 

outcome, or if a question always tends to yield the same 
answer. 

Finally, the predictive algorithm, described in Sections III 
and IV, continuously learns as new changes are performed and 
new data becomes available.  

REASON. Section III and IV describe in detail how 
COACH reasons about the risk of a change building on the 
understanding and learning described in this section. 

III. RISK PREDICTION ALGORITHM

This Section provides a description of how we determined 
the various inputs to the COACH Risk Calculator, and also 
presents details of its underlying risk prediction algorithm. 
Unlike traditional change risk calculators, our risk prediction 
is cognitive (see Section II): it understands the change, learns 
from a dynamic data set and outcomes, and reasons with a 
data-driven statistical approach. 

A. Predictive Algorithm Design Considerations. 
During the predictive algorithm design process, we tried 

various machine learning models, however, we decided to go 
with a statistical algorithm instead due to the following 
restrictions:  

a) Unbalanced Data: The number of problematic changes
(even with the addition of changes that cause incidents) 
remain fairly low compared to the successful change volume 
(exact numbers cannot be disclosed due to confidentiality). 
The heavily unbalanced nature of the data makes it unideal for 
machine learning models. Although there is a lot of research 
on building predictive models on unbalanced data [10, 11], 
proposed techniques mainly work on static models built out of 
training data sets and updated manually. Because COACH 
needs an underlying predictive algorithm that learns over time 
as new change, incident and server data become available, we 
were not able to leverage these techniques. 

b) Access Restrictions: We had certain data access
restrictions across different geographies, which meant that we 
may not have access to historical change descriptions at risk 
calculation time to compare them to our incoming change 
description. As COACH needs to be available to any client 
account, the data access restriction further limited the 
selection of machine learning algorithms to a small set. With 
the change features available to us at change creation time, it 
was not possible to create a meaningful predictive model 
through machine learning algorithms. 

B. Determining Potential Predictors 
Next, we defined a set of potential predictors, based on the 

different pieces of information available to us at change 
creation time. We used IBM SPSS Statistics software to 
perform Chi-square tests on the potential predictors to see if 
the perceived relationship between the predictors and the 
change closure code (successful or problematic) is due to 
chance, or if there is a true association between the predictors 
and the outcomes. For example, when we tested the effect of 
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survey risk on change outcome, the p-value = .000 indicated 
that there's a 0% chance to find the observed (or a larger) 
degree of association between the variables if they're perfectly 
independent in the population. In other words, survey risk 
significantly impacts the change outcome, and thus, is an 
important predictor for change risk. Similarly, we tested 
several other predictors using the same method. In the next 
few sub-sections, we only report on those predictors which 
were observed to have a strong association (p = .000.) to the 
outcome (change closure code).  

C. Predictor: Risk Assessment Survey 
A risk assessment survey typically comprises Probability 

and Impact questions. For example: How many times have you 
implemented this type of change? How complex is the 
implementation? What is the potential business impact in case 
of failure? Each question is rated, for example, from 1 (the 
highest) to 5 (the lowest) by the Change Analyst, and the 
probability and impact values are aggregated through a 
formula to calculate the final risk through a look-up of a risk 
matrix, such as the one in Table 1. 

Table 1. Change Risk Matrix 

Let us assume that the risk is initially calculated with the 
traditional survey method and is denoted as survey_risk. 
Before designing a predictive algorithm, we first wanted to 
test the effectiveness of the traditional survey method by 
comparing the survey_risk with the change outcome. To 
perform this test, we built a dataset based on one client’s data 
(26,600 change records) from our data warehouse that 
comprised successful changes (with no incident), and 
problematic changes {changes that failed, were backed out, 
had issues, or caused an incident). We decided to focus on one 
client with the most number of problematic changes to have 
enough representation of problem cases. Also, because the 
definition of risk is not consistent across all client accounts 
(risk level 1 can mean the lowest for one account and highest 
for another), we did not want to impair the analysis by 
comparing mapped risk ratings.   

Once the dataset is built, we inspected the changes and 
compared their survey_risk ratings to their observed outcomes 
to calculate: 

a) successful recall (i.e., how many of the successful
test changes were correctly classified as ‘low risk or medium 
risk’ by the survey_risk)  

b) problematic recall (i.e., how many of the problematic
test changes were correctly classified as ‘high risk’ by the 
survey_risk)  

Table 2 provides a summary of survey_risk effectiveness. 
When we look at the recall rates, we see the survey does a 
decent job of calculating the risk of successful changes (48% 
low risk, 52% medium risk and no high risk). However, the 
survey falls short when capturing problematic changes (88% 
of problematic changes have medium risk, and none has high 
risk). In general, the survey seems to assign medium risk 
irrespective of whether the change is actually problematic or 
successful. The high number of successful changes classified 
correctly (100%) by survey_risk confirms the association Chi-
square test indicated. However, since our focus is to identify 
problematic changes (while not over-predicting risk), we 
confirmed the need for a more sophisticated risk calculation 
approach.  

Table 2. Survey Risk Effectiveness 

D. Predictor: Change Failure Rate 
In order to calculate change failure rates, we rely on at 

least one-years’ worth of historical data from our data 
warehouse, which comprises 160 client accounts’ operational 
IT data.  By considering a fine-grained change category (see 
Section II B) and change closure code (successful, failed, 
issues, backed-out), we can compute the percentage of failed 
changes in each category. Our definition of a “failed change” 
comprises any change with {failed, issues, and backed-out} 
closure codes.  

E. Predictor: Change Incident Rate 
If change closure codes readily indicated whether a change 

led to an incident, we could have used the same logic as in 
Section III D to calculate the percentage of changes that cause 
incidents. Unfortunately, this is usually not the case as it may 
not be apparent at change closure time whether the change 
caused an incident, and if it becomes apparent a while later 
through root cause analysis, it is not practical for Change 
Implementers to go back and update closed change records 
due to time constraints. Instead, we rely on COACH’s 
Change–Incident Link Discovery analytics [7] to mine such 
change – incident relationships. Once we have the change – 
incident pairs, we compute what percentage of changes cause 
incidents in each change category. Our definition of “changes 
that cause incidents” comprises any change that led to 
incident(s) and has one of {successful, failed, issues, backed-
out} closure codes.  

F. Predictor: Server Failure Rate and Server Properties 
Server failure rates are important to consider when 

predicting change risk as they indicate how likely it is that the 
change running on a server may fail due to the server’s current 
health issues. Server failure rates are determined by statistical 
modeling and simulation techniques used to study server 
incidents, utilization, and configurations to classify them into 
two groups: problematic and non-problematic. Moreover, the 
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simulation component of these capabilities propose 
improvement actions for problematic servers along with 
quantifiable benefits for each (what-if scenarios) [9]. 

Server properties, such as operating system, manufacturer, 
environment (production vs. development) are also available 
to us through our client account data warehouse, and will be 
used to model similar server behavior when we do not have 
explicit knowledge about the server on which a change would 
be implemented. 

With our predictors identified and confirmed, we can now 
design a predictive algorithm to calculate change risk based on 
survey risk, change failure rate, change incident rate and 
predicted server failure rate.  

G. Formalizing Change Risk Prediction Algorithm 

Our risk prediction approach takes survey_risk as its basis, 
and provides an adjustment function to increase or lower the 
risk as determined by COACH. The reason behind this design 
decision was to leverage the effectiveness of the survey_risk 
on successful changes to avoid over predicting the actual risk. 
The rest of this Section formally expresses our algorithm. 

i) Change Failure Rate: Based on historical change data,
we can define all possible change categories (Section II B).  

Let cj, j = 1, 2,..., n be all available change categories. 

We define the number Pfc(cj) as a probability of failed 
change inside the category cj, i.e. the number of all failed 
changes in the category divided by the number of all changes 
in the category. 

Let mc = 1/n Σ Pfc (cj) be an average of Pfc(cj).  

Moreover, we define sc 2= 1/n Σ (Pfc(cj) − m)2 where sc is 
the standard deviation of Pfc(cj).  

Now we define the function cfr(xc). The value xc represents 
how problematic the change is. The number xc ∈ [0, 1] is 
defined based on the category of the performed change. We 
compute xc as a probability of change failure in at least one 
category of cj if and only if the user defines that the change 
belongs to category cj. Then:  

cfr(xc) = 0, xc ∈ [0, mc]  

cfr(xc) = 1 − exp[-(xc-mc)2/(2sc
2)], xc∈(mc,1]  

This means that cfr(xc) will only increase risk if the 
probability of failure for the selected change category is 
higher than the average failure rate across all change 
categories. The advantage of using a function of change 
failure probability instead of simply using the change 
probability is that we do not unnecessarily increase change 
risk when the probability of failure is low (less than average).  

ii) Change Incident Rate: The Change incident rate
function is defined in exactly the same way as the change 
failure rate function (see above).  

Let cir(xi) be the change incident function. 

Again, the value xi represents how problematic the change 
is based on the category of the performed change. We 
compute xi as a probability of change causing incident in at 
least one category of cj if and only if the user defines that the 
change belongs to category cj. 

iii) Server Failure Parameter: Next, we define the
problematic and non-problematic server parameter. Let h be 
the name of the server specified by the Change Analyst (if 
more than one server is specified, we perform the described 
action for all servers and choose the maximum result 
parameter). Let xh denote the problematic score for the server 
h. ms and ss

 denote the mean and standard deviation of the
problematic score for all the servers in our data warehouse 
combined. We define the function hfr(h, xh) as follows:  

a) when the server h is identified as non-problematic in our
data warehouse, then hfr(h, xh) = 0;  

b) when the server h is identified as problematic in our
data warehouse, then: 

hfr(h, xh) = 0, xh ∈ [0, ms + ss]  

hfr(h, xh) = 0.5 + p, xh ∈ (ms + ss, 1]  

where p = 1-cfr(mc + 3sc).  

If the server’s information is not available in our data 
warehouse, then we compute the hfr(h, xh) value based on the 
percent of problematic servers with the same attributes, such 
as OS {provider, name, version}, purpose and environment.   

Now, we can define the risk adjustment function: 

ra(h, xc, xi, xh) = cfr(xc) + cir(xi) + hfr(h, xh)  

Based on the change category distribution, we observe less 
changes in higher risk categories. This is intuitively correct 
from the change management process point of view as most 
changes are of medium (risk = 3) difficulty. To accommodate 
this observation, we use the 3-sigma concept to adjust the risk:  

Let m and s represent the mean and standard deviation of 
the adjusted risk score, ra(h, xc, xi, xh) computed above for all 
the changes in our data warehouse and let ts be defined as: 

if survey_risk > 3 then ts = 1  

if survey_risk = 3 then ts = (m + s)  
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if survey_risk = 2 then ts = (m + 2s)  

if survey_risk = 1 then ts = 0 

Finally, the change risk can be defined as follows: 

risk = survey_risk + ts · ra(h, xc, xi, xh)  

The resulting risk rating is determined by taking the risk to 
be the nearest positive integer of the risk parameter. Finally, as 
our algorithm is made up of distinct risk functions, COACH 
can provide specific insights about the change risk to Change 
Analysts by indicating if they should expect change failure vs. 
incident vs. potential server failure as part of the change they 
are implementing. 

IV. PREDICTION ALGORITHM VALIDATION

In order to calculate recall precision for our predictive 
algorithm, we used the same dataset we built for testing 
survey risk effectiveness, and compared the changes’ 
predicted outcomes to their observed outcomes. As seen in 
Table 3, using our predictive algorithm, there is significant 
improvement in our ability to proactively detect problematic 
changes (0%  78%), at the expense of slightly increased 
false positives (0%  38% high risk for successful changes). 
We argue that successful changes end up being successful due 
to correct actions having been taken at change preparation 
time. This means that 38% of the successful changes can be 
inherently risky, but ended up being successful due to the risk 
being mitigated, and thus our prediction has the potential of 
being even more accurate than results depicted in Table 3.  

Table 3. Comparison of Survey Risk (top) and Predicted 
Risk (bottom) Performance 

As our change categories improve over time through 
cognitive learning, we will have more granularity around how 
change risk is calculated. At the same time, as more changes 
with known outcomes accumulate in our data warehouse, our 
change failure rates, change incident rates, and server failure 
rates are automatically re-learned, keeping the underlying 
predictive algorithm data up to date. Finally, comparison of 
the predicted risk with recently observed outcomes of similar 
changes will ensure that change risk is consistent with the 
expected outcome. Such features of the COACH framework 
will, in turn, enable more accurate risk prediction.  

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented the COACH framework and 
focused on its change risk prediction capability. We described 
our predictive algorithm design considerations and 
restrictions, as well as the data that was available to us at 
predictive algorithm design phase. We also explained how our 
predictors were selected and demonstrated that our predictive 
algorithm is significantly more accurate than traditional 
survey based risk assessments in proactively identifying 
problematic changes. 

Our work only scratched the surface of the effort required 
to build a cognitive framework for change management. There 
are several areas where we need to improve our system. First, 
we have access to root cause analysis (RCA) and service level 
agreement (SLA) data in our warehouse. As the next step, we 
will integrate SLA miss and Major Incident (MI) likelihood 
parameters to our predictive algorithm. As SLA and MI data 
points are rare (just like failed changes), our current predictive 
algorithm design provides the right base for integration of 
such predictors. Further, we would like to explore our RCA 
data to be able to provide “reasons” for problematic changes 
in addition to highlighting their risk. This would enable 
Change Analysts to take appropriate actions to mitigate the 
indicated risk. Our journey in improved change risk 
classification will certainly continue as more data and more 
client accounts become available in our data warehouse. Our 
goal is to get to the right level of granularity for change 
categories to be able to easily compare changes across all 
accounts without losing the categories’ inherent risk. Finally, 
we will test the effectiveness of our Continuous Learning and 
Improvement loop as the COACH Risk Calculator continues 
to accumulate more and more assessed changes.  
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