
COACH: COgnitive Analytics for CHange

Sinem Güven1, Pawel Jasionowski2, Karin Murthy1, Krishna Tunga3
, George Stark4

1IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
2IBM Global Services Delivery Center, Wroclaw, Poland

3IBM Systems Group, Hopewell Junction, NY, USA
4IBM Global Technology Services, Austin, TX, USA

{sguven, kmurthy, ktunga, gstark}@us.ibm.com, pawel.jasionowski@pl.ibm.com

Abstract — This paper presents our initial efforts towards
building a cognitive analytics framework for change
management. We propose a novel predictive algorithm for
change risk calculation based on historical change failures,
server failures, change triggered incidents as well as expert user
input. Our predictive algorithm provides significant
improvement over traditional risk assessments in proactively
capturing problematic changes when tested with real client
account data.

Keywords—change risk; change management; proactive risk
mitigation; change failure elimination; incident reduction

I. INTRODUCTION

Researchers have long investigated different risk
prediction methodologies to reduce change failures [1, 2], and
thereby eliminate service disruptions caused by changes [3, 4].
Assessing change risk accurately at change creation time is
critical for the change approval process, as the risk level
determines the level of scrutiny or automation the change
would be subject to within the Change Management (CM)
process. Change risk is typically represented as a numeric
value within a range; for example, 1 representing the highest
possible risk (Critical), and 5 representing the lowest possible
risk (BAU). Although systematic change risk assessment (as
opposed to assessing the risk through intuition) has taken its
rightful place as a must in the CM process, the level of
sophistication of practical assessments remains low, and most
such assessments are still in the form of risk surveys. The
reason for this is two-fold; first, Change Analysts may resists
using a sophisticated risk assessment if it takes up more time
than the traditional surveys, and second, they may feel the
sophisticated risk assessment may have no added value. After
all, both methods produce a risk number and risk mitigation
actions, and it may take a while until time-consuming
sophisticated risk assessment methods significantly reduce
already small change failure rates to justify their usage.

In the IT service management community, there is often
consensus around the importance of reducing failed changes to
prevent client outages, however, as the number of failed
changes are typically fairly small (~1%), it is often difficult to
numerically justify focusing research efforts on change failure
reduction [5]. Our recent work on exploring change incident
relationships [6] revealed that it is often the seemingly
successful changes that lead to incidents. Further, our analysis

showed that up to 35% of client outages are caused by change
(based on our analysis of 160 client account data over a period
of 1 year). This explains the discrepancy between the numbers
we see around failed changes, and change induced outages.

In our previous work [6, 7], we have established that,
despite the unbalanced nature of the change data (~1% failed
and 99% successful changes), it is possible to enable predictive
model building for pro-active detection of failed and incident
causing changes by merging them under the umbrella of
problematic changes. In this paper, we build on top of and
extend that work to propose a framework for cognitive
analytics for change. We present the COACH framework,
which is designed to provide capabilities to assess and
accurately predict change risk (Figure 1). Our COACH Risk
Calculator is designed with the Change Analysts’ concerns in
mind. It automates the change risk assessment to the extent
possible to save time, provides a multi-faceted risk to provide
insights into the calculated risk and also focuses on not only
failed change prevention, but also change induced incident
reduction.

The two main analytics components of COACH are
Change Incident Link Discovery (right side of Figure 1) and
Change Risk Prediction (left side of Figure 1). Continuous
Learning and Improvement (bottom of Figure 1) ensures that
the analytics learns from observations and improves over time.
The next Section provides more details on COACH.

Figure 1. COACH Framework

978-3-901882-89-0 @2017 IFIP 720

II. COGNITIVE ANALYTICS FOR CHANGE

COACH’s Change Incident Link Discovery module
focuses on discovering relationships between changes and
incidents based on a comprehensive analysis of historical
change and incident data. Knowing which changes caused
incidents in the past is crucial in establishing a data set that
accurately reflects the historical risk of various types of
changes. In our earlier work [7], we showed that such data is
not readily available and that establishing accurate linkage
between changes and the incidents that caused them requires
sophisticated analytics. We demonstrated how natural
language processing and machine learning can be used to
extract clues from incident description and resolution text as
well as categorical data to statistically link incidents to culprit
changes. COACH uses the outcome of this analytics as an
important input for change risk prediction (Figure 1).

The Change Risk Prediction module forms the basis of our
cognitive change risk calculator that can be used at change
preparation time to assess the risk of a change. The novelty of
COACH lies in its ability to provide an all-encompassing risk
context for change not only in terms of its likelihood of
failure, but also its prospect of causing an incident. Change
Risk Prediction leverages several cognitive analytics
techniques to understand the change, reason about its risk, as
well as employ Continuous Learning and Improvement to
learn from past similar change outcomes over time. The rest
of this paper will focus on the Change Risk Prediction aspect
of COACH.

A. Cognitive Change Risk Calculator
This section illustrates how COACH provides the

fundamental analytics to implement a cognitive change risk
calculator that can accurately predict the risk of a change at
change creation time.

Whenever a change to the IT infrastructure is required, a
Change Analyst needs to assess the potential impact of the
proposed change. Information available for assessment
consists of, but is not limited to, the change description,
details about the affected configuration items (such as a list of
servers and their configuration), the team that will perform the
change, and answers gathered to risk survey questions about
the probability of change failure (e.g. how often was this
change performed before) and the potential impact of change
(e.g. how many business-critical processes and applications
may be affected). COACH leverages all this information from
the change record being created as input to its Change Risk
Prediction module.

COACH also leverages additional information about the
health of the involved configuration items, and the outcome of
past changes performed on those specific configuration items.
Moreover, the risk assessment may include how change
scheduling affected the outcome of past changes and take into
account various other traits.

In addition, COACH uses the Natural Language Classifier
(NLC) [8] available on our BlueMix platform to automatically
derive the broad category of the change (such as Hardware:
Server or Software: Application Server). It then enhances this

category further through information extraction from the text
to arrive at a more fine-grained category (such as Hardware:
Server: Reboot, or Software: Application Sever: Upgrade).
Using this fine-grained change classification for the incoming
change, COACH can determine similar historical changes and
leverage their outcome to arrive at its risk prediction.

An important differentiator of COACH is its ability to
provide an all-encompassing risk context in addition to the
predicted risk score. This is depicted in the form of a spider
chart (Figure 1 right bottom corner) that shows different risk
dimensions, as well as a comparison of the proposed change’s
risk to similar changes across all client accounts in our data
warehouse. This gives the Change Analyst additional insights
regarding what the risk is related to (failure vs. incident, etc.),
how the changes belonging to the same change category
typically perform within the Change Analyst’s account, as
well as how the account’s performance compares to other
accounts for this type of change. The predicted risks are stored
and periodically compared against the observed outcomes.
While the predictive algorithm itself will adapt over time
based on newly observed change outcomes, it is critical to
learn additional more fine-grained context from recent
inaccurate risk assessments. In order to do so, the predictive
algorithm is complemented by looking at the predicted and
observed outcome for similar changes in the same change
category. If the algorithm predicts a low risk for a change, but
a very similar change with a low predicted risk ended up
having a problematic outcome, the assessed risk for the
change is increased. More details of COACH’s predictive
algorithm are covered in Sections III and IV.

B. Cognitive Underpinnings
We now describe in more detail how COACH builds on

the cognitive capabilities of understand, learn, and reason.

UNDERSTAND. In order to understand and judge the
similarity of changes, COACH relies on a comprehensive
change taxonomy that we derived based on 2.5 million
historical change records for 160 clients.

We initially looked into simply reusing existing categories
assigned by Change Analysts as part of the change record
creation process. However, the granularity and type of
categories varied considerably for different clients and
different ticketing systems. While some clients assign detailed
categories, such as “Application Shared Services (Database,
BI, web and mobile development)”, others only use generic
categories such as “Application”. Initial experiments also
revealed that clustering historical changes by their description
would not yield meaningful enough clusters. Due to the
variety of ways the same change activity can be expressed by
different people, historical changes considered to be similar by
a subject matter expert did not necessarily end up in the same
cluster. For example, changes related to patching the OS of a
server can be expressed in many different ways: patch host,
apply patch, install KBs, deploy hotfix, etc.

As a consequence, we had to build our own change
taxonomy to arrive at meaningful groupings that were neither
too broad nor too specific. Figure 2 depicts an excerpt from
the three-level taxonomy COACH employs. Note that while

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper 721

we do not represent configuration-related information (such as
the operating system of a server) in our taxonomy, this
information is used by the predictive algorithm and inferred
from the specific configuration items affected by the change.

Figure 2. Change Taxonomy

 We built rules to map historical changes to the second
level of our taxonomy. The rules rely on (1) mapping existing
categories where possible (2) exploiting change owner group
information to narrow down to likely categories, and (3)
extracting information from the change’s short description that
is specific to a change category. This allowed us to assign
approximately 80% of all historical changes to a specific
second-level group. We used natural language processing to
extract activities from change descriptions in order to,
wherever possible, further break-down the change category to
the third taxonomy level.

LEARN. Using the second-level taxonomy labels assigned
to each change using the rules described above, we trained a
state-of-the-art natural language classifier [8] to predict the
change category given a change short description. Using this
classifier, COACH is able to assign the correct change
category with a 96% accuracy. We did not include the third-
level change activities into the classification process as many
activities are similar across categories. For example, installing
a driver is an activity that is common across all hardware sub-
categories. As such, including activities in the classification
effort makes it unnecessarily hard for the classifier to
distinguish between categories. Instead, we separately extract
activities from the abstract reusing the techniques built for
historical data and use this information to assign a third-level
category to each change.

We note here that the accuracy of the initial rule-based
labeling was only spot checked and not all labels may be
correctly assigned. Thus, despite a 96% accuracy on test data,
the real accuracy may be less. Fortunately, the change risk
calculator gives users the ability to overwrite the automatically
predicted change class. Over time, this provides COACH with
additional training data that allows it to retrain and improve
the NLC classification accuracy.

COACH also continuously learns new change failure rates,
change incident rates, server failure rates by refreshing these
statistics through automated analysis of new incoming data to
our data warehouse. Change incident rate refresh requires
continuously discovering new pairs of changes that led to
incidents, from incoming change and incident data. Similarly,
server failure rate refresh requires that the underlying
problematic server classifier [9] runs continuously as new
hardware problems are identified.

COACH initially presents the users with all risk
assessment questions, but learns over time which risk
assessment questions to eliminate due to low correlation to

outcome, or if a question always tends to yield the same
answer.

Finally, the predictive algorithm, described in Sections III
and IV, continuously learns as new changes are performed and
new data becomes available.

REASON. Section III and IV describe in detail how
COACH reasons about the risk of a change building on the
understanding and learning described in this section.

III. RISK PREDICTION ALGORITHM

This Section provides a description of how we determined
the various inputs to the COACH Risk Calculator, and also
presents details of its underlying risk prediction algorithm.
Unlike traditional change risk calculators, our risk prediction
is cognitive (see Section II): it understands the change, learns
from a dynamic data set and outcomes, and reasons with a
data-driven statistical approach.

A. Predictive Algorithm Design Considerations.
During the predictive algorithm design process, we tried

various machine learning models, however, we decided to go
with a statistical algorithm instead due to the following
restrictions:

a) Unbalanced Data: The number of problematic changes
(even with the addition of changes that cause incidents)
remain fairly low compared to the successful change volume
(exact numbers cannot be disclosed due to confidentiality).
The heavily unbalanced nature of the data makes it unideal for
machine learning models. Although there is a lot of research
on building predictive models on unbalanced data [10, 11],
proposed techniques mainly work on static models built out of
training data sets and updated manually. Because COACH
needs an underlying predictive algorithm that learns over time
as new change, incident and server data become available, we
were not able to leverage these techniques.

b) Access Restrictions: We had certain data access
restrictions across different geographies, which meant that we
may not have access to historical change descriptions at risk
calculation time to compare them to our incoming change
description. As COACH needs to be available to any client
account, the data access restriction further limited the
selection of machine learning algorithms to a small set. With
the change features available to us at change creation time, it
was not possible to create a meaningful predictive model
through machine learning algorithms.

B. Determining Potential Predictors
Next, we defined a set of potential predictors, based on the

different pieces of information available to us at change
creation time. We used IBM SPSS Statistics software to
perform Chi-square tests on the potential predictors to see if
the perceived relationship between the predictors and the
change closure code (successful or problematic) is due to
chance, or if there is a true association between the predictors
and the outcomes. For example, when we tested the effect of

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper722

survey risk on change outcome, the p-value = .000 indicated
that there's a 0% chance to find the observed (or a larger)
degree of association between the variables if they're perfectly
independent in the population. In other words, survey risk
significantly impacts the change outcome, and thus, is an
important predictor for change risk. Similarly, we tested
several other predictors using the same method. In the next
few sub-sections, we only report on those predictors which
were observed to have a strong association (p = .000.) to the
outcome (change closure code).

C. Predictor: Risk Assessment Survey
A risk assessment survey typically comprises Probability

and Impact questions. For example: How many times have you
implemented this type of change? How complex is the
implementation? What is the potential business impact in case
of failure? Each question is rated, for example, from 1 (the
highest) to 5 (the lowest) by the Change Analyst, and the
probability and impact values are aggregated through a
formula to calculate the final risk through a look-up of a risk
matrix, such as the one in Table 1.

Table 1. Change Risk Matrix

Let us assume that the risk is initially calculated with the
traditional survey method and is denoted as survey_risk.
Before designing a predictive algorithm, we first wanted to
test the effectiveness of the traditional survey method by
comparing the survey_risk with the change outcome. To
perform this test, we built a dataset based on one client’s data
(26,600 change records) from our data warehouse that
comprised successful changes (with no incident), and
problematic changes {changes that failed, were backed out,
had issues, or caused an incident). We decided to focus on one
client with the most number of problematic changes to have
enough representation of problem cases. Also, because the
definition of risk is not consistent across all client accounts
(risk level 1 can mean the lowest for one account and highest
for another), we did not want to impair the analysis by
comparing mapped risk ratings.

Once the dataset is built, we inspected the changes and
compared their survey_risk ratings to their observed outcomes
to calculate:

a) successful recall (i.e., how many of the successful
test changes were correctly classified as ‘low risk or medium
risk’ by the survey_risk)

b) problematic recall (i.e., how many of the problematic
test changes were correctly classified as ‘high risk’ by the
survey_risk)

Table 2 provides a summary of survey_risk effectiveness.
When we look at the recall rates, we see the survey does a
decent job of calculating the risk of successful changes (48%
low risk, 52% medium risk and no high risk). However, the
survey falls short when capturing problematic changes (88%
of problematic changes have medium risk, and none has high
risk). In general, the survey seems to assign medium risk
irrespective of whether the change is actually problematic or
successful. The high number of successful changes classified
correctly (100%) by survey_risk confirms the association Chi-
square test indicated. However, since our focus is to identify
problematic changes (while not over-predicting risk), we
confirmed the need for a more sophisticated risk calculation
approach.

Table 2. Survey Risk Effectiveness

D. Predictor: Change Failure Rate
In order to calculate change failure rates, we rely on at

least one-years’ worth of historical data from our data
warehouse, which comprises 160 client accounts’ operational
IT data. By considering a fine-grained change category (see
Section II B) and change closure code (successful, failed,
issues, backed-out), we can compute the percentage of failed
changes in each category. Our definition of a “failed change”
comprises any change with {failed, issues, and backed-out}
closure codes.

E. Predictor: Change Incident Rate
If change closure codes readily indicated whether a change

led to an incident, we could have used the same logic as in
Section III D to calculate the percentage of changes that cause
incidents. Unfortunately, this is usually not the case as it may
not be apparent at change closure time whether the change
caused an incident, and if it becomes apparent a while later
through root cause analysis, it is not practical for Change
Implementers to go back and update closed change records
due to time constraints. Instead, we rely on COACH’s
Change–Incident Link Discovery analytics [7] to mine such
change – incident relationships. Once we have the change –
incident pairs, we compute what percentage of changes cause
incidents in each change category. Our definition of “changes
that cause incidents” comprises any change that led to
incident(s) and has one of {successful, failed, issues, backed-
out} closure codes.

F. Predictor: Server Failure Rate and Server Properties
Server failure rates are important to consider when

predicting change risk as they indicate how likely it is that the
change running on a server may fail due to the server’s current
health issues. Server failure rates are determined by statistical
modeling and simulation techniques used to study server
incidents, utilization, and configurations to classify them into
two groups: problematic and non-problematic. Moreover, the

Impact

P
ro

b
ab

il
it

y 1 2 3 4

1 1 1 2 3

2 1 2 3 4

3 2 3 4 4

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper 723

simulation component of these capabilities propose
improvement actions for problematic servers along with
quantifiable benefits for each (what-if scenarios) [9].

Server properties, such as operating system, manufacturer,
environment (production vs. development) are also available
to us through our client account data warehouse, and will be
used to model similar server behavior when we do not have
explicit knowledge about the server on which a change would
be implemented.

With our predictors identified and confirmed, we can now
design a predictive algorithm to calculate change risk based on
survey risk, change failure rate, change incident rate and
predicted server failure rate.

G. Formalizing Change Risk Prediction Algorithm

Our risk prediction approach takes survey_risk as its basis,
and provides an adjustment function to increase or lower the
risk as determined by COACH. The reason behind this design
decision was to leverage the effectiveness of the survey_risk
on successful changes to avoid over predicting the actual risk.
The rest of this Section formally expresses our algorithm.

i) Change Failure Rate: Based on historical change data,
we can define all possible change categories (Section II B).

Let cj, j = 1, 2,..., n be all available change categories.

We define the number Pfc(cj) as a probability of failed
change inside the category cj, i.e. the number of all failed
changes in the category divided by the number of all changes
in the category.

Let mc = 1/n Σ Pfc (cj) be an average of Pfc(cj).

Moreover, we define sc 2= 1/n Σ (Pfc(cj) − m)2 where sc is
the standard deviation of Pfc(cj).

Now we define the function cfr(xc). The value xc represents
how problematic the change is. The number xc ∈ [0, 1] is
defined based on the category of the performed change. We
compute xc as a probability of change failure in at least one
category of cj if and only if the user defines that the change
belongs to category cj. Then:

cfr(xc) = 0, xc ∈ [0, mc]

cfr(xc) = 1 − exp[-(xc-mc)2/(2sc
2)], xc∈(mc,1]

This means that cfr(xc) will only increase risk if the
probability of failure for the selected change category is
higher than the average failure rate across all change
categories. The advantage of using a function of change
failure probability instead of simply using the change
probability is that we do not unnecessarily increase change
risk when the probability of failure is low (less than average).

ii) Change Incident Rate: The Change incident rate
function is defined in exactly the same way as the change
failure rate function (see above).

Let cir(xi) be the change incident function.

Again, the value xi represents how problematic the change
is based on the category of the performed change. We
compute xi as a probability of change causing incident in at
least one category of cj if and only if the user defines that the
change belongs to category cj.

iii) Server Failure Parameter: Next, we define the
problematic and non-problematic server parameter. Let h be
the name of the server specified by the Change Analyst (if
more than one server is specified, we perform the described
action for all servers and choose the maximum result
parameter). Let xh denote the problematic score for the server
h. ms and ss

 denote the mean and standard deviation of the
problematic score for all the servers in our data warehouse
combined. We define the function hfr(h, xh) as follows:

a) when the server h is identified as non-problematic in our
data warehouse, then hfr(h, xh) = 0;

b) when the server h is identified as problematic in our
data warehouse, then:

hfr(h, xh) = 0, xh ∈ [0, ms + ss]

hfr(h, xh) = 0.5 + p, xh ∈ (ms + ss, 1]

where p = 1-cfr(mc + 3sc).

If the server’s information is not available in our data
warehouse, then we compute the hfr(h, xh) value based on the
percent of problematic servers with the same attributes, such
as OS {provider, name, version}, purpose and environment.

Now, we can define the risk adjustment function:

ra(h, xc, xi, xh) = cfr(xc) + cir(xi) + hfr(h, xh)

Based on the change category distribution, we observe less
changes in higher risk categories. This is intuitively correct
from the change management process point of view as most
changes are of medium (risk = 3) difficulty. To accommodate
this observation, we use the 3-sigma concept to adjust the risk:

Let m and s represent the mean and standard deviation of
the adjusted risk score, ra(h, xc, xi, xh) computed above for all
the changes in our data warehouse and let ts be defined as:

if survey_risk > 3 then ts = 1

if survey_risk = 3 then ts = (m + s)

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper724

if survey_risk = 2 then ts = (m + 2s)

if survey_risk = 1 then ts = 0

Finally, the change risk can be defined as follows:

risk = survey_risk + ts · ra(h, xc, xi, xh)

The resulting risk rating is determined by taking the risk to
be the nearest positive integer of the risk parameter. Finally, as
our algorithm is made up of distinct risk functions, COACH
can provide specific insights about the change risk to Change
Analysts by indicating if they should expect change failure vs.
incident vs. potential server failure as part of the change they
are implementing.

IV. PREDICTION ALGORITHM VALIDATION

In order to calculate recall precision for our predictive
algorithm, we used the same dataset we built for testing
survey risk effectiveness, and compared the changes’
predicted outcomes to their observed outcomes. As seen in
Table 3, using our predictive algorithm, there is significant
improvement in our ability to proactively detect problematic
changes (0% 78%), at the expense of slightly increased
false positives (0% 38% high risk for successful changes).
We argue that successful changes end up being successful due
to correct actions having been taken at change preparation
time. This means that 38% of the successful changes can be
inherently risky, but ended up being successful due to the risk
being mitigated, and thus our prediction has the potential of
being even more accurate than results depicted in Table 3.

Table 3. Comparison of Survey Risk (top) and Predicted
Risk (bottom) Performance

As our change categories improve over time through
cognitive learning, we will have more granularity around how
change risk is calculated. At the same time, as more changes
with known outcomes accumulate in our data warehouse, our
change failure rates, change incident rates, and server failure
rates are automatically re-learned, keeping the underlying
predictive algorithm data up to date. Finally, comparison of
the predicted risk with recently observed outcomes of similar
changes will ensure that change risk is consistent with the
expected outcome. Such features of the COACH framework
will, in turn, enable more accurate risk prediction.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the COACH framework and
focused on its change risk prediction capability. We described
our predictive algorithm design considerations and
restrictions, as well as the data that was available to us at
predictive algorithm design phase. We also explained how our
predictors were selected and demonstrated that our predictive
algorithm is significantly more accurate than traditional
survey based risk assessments in proactively identifying
problematic changes.

Our work only scratched the surface of the effort required
to build a cognitive framework for change management. There
are several areas where we need to improve our system. First,
we have access to root cause analysis (RCA) and service level
agreement (SLA) data in our warehouse. As the next step, we
will integrate SLA miss and Major Incident (MI) likelihood
parameters to our predictive algorithm. As SLA and MI data
points are rare (just like failed changes), our current predictive
algorithm design provides the right base for integration of
such predictors. Further, we would like to explore our RCA
data to be able to provide “reasons” for problematic changes
in addition to highlighting their risk. This would enable
Change Analysts to take appropriate actions to mitigate the
indicated risk. Our journey in improved change risk
classification will certainly continue as more data and more
client accounts become available in our data warehouse. Our
goal is to get to the right level of granularity for change
categories to be able to easily compare changes across all
accounts without losing the categories’ inherent risk. Finally,
we will test the effectiveness of our Continuous Learning and
Improvement loop as the COACH Risk Calculator continues
to accumulate more and more assessed changes.

REFERENCES
[1] Bianchin et al., “Similarity Metric for Risk Assessment in IT

Change Plans,” In IEEE CNSM, Niagra Falls, ON, Oct. 2010.
[2] S. Güven, C. Barbu, D. Husemann, D. Wiesmann, "Change Risk

Expert," In IFIP/IEEE NOMS, Maui, Hawaii, 2012.
[3] Wickboldt et al., “Improving IT Change Mgmt Processes with

Automated Risk Assessment,” In IEEE DSOM, Oct. 2009.S.
[4] Hagen, M. Seibold, A. Kemper, “Efficient Verification of IT

Change Ops.,” In IFIP/IEEE NOMS, Maui, Hawaii, 2012.
[5] J. Druebert. "Changes, Incidents & Unintended Consequences,"

In Insight on IT Service Management, 2010.
[6] S. Güven and K. Murthy, “Understanding the Role of Change in

Incident Prevention” In IEEE/IFIP CNSM, Montreal, 2016.
[7] S. Güven et al., “Towards establishing causality between

Change and Incident”, In IEEE/IFIP NOMS, Turkey, 2016.
[8] https://console.ng.bluemix.net/catalog/services/natural-

language-classifier
[9] J. Bogojeska, D. Lanyi, I. Giurgiu, G. Stark, D. Wiesmann.

“Classifying Server Behavior and Predicting Impact of
Modernization Actions”. In IFIP/IEEE CNSM, Zurich,
Switzerland, 2013.

[10] A.-D. Lipitakis and S. Kotsiantis, “A hybrid Machine Learning
methodology for imbalanced datasets,” in IEEE IISA, Crete,
Greece, 2014.

[11] F. Bulut, “Performance evaluations of supervised learners on
imbalanced datasets,” in Electric Electronics, Computer
Science, Biomedical Engineerings’ Meeting (EBBT), 2016.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Experience Session - Full Paper 725

