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Abstract—Quality of Service (QoS) and Experience (QoE)
monitoring is a must during the management of services deployed
over the Internet. This is particularly critical for Voice over
IP (VoIP), as its degradation is immediately perceived by end
users. From our experience, we highlight the impact that TCP
segmentation exerts on online VoIP monitoring systems. On
the one hand, it makes difficult to interpret the segmented
signaling messages for application monitoring. On the other hand,
complete messages do not provide information about packet
level behavior, which is necessary for internetworking layer
monitoring. Paradoxically, the Network Management community
has not paid much attention to this fact, although it compromises
several VoIP management tasks. To fill in this gap, we provide
an empirical evaluation of its impact for the most popular VoIP
signaling protocols using traces from enterprise networks, and
present the architecture and heuristic that we are currently
developing to partially solve the effect of the segmentation. Our
proposal avoids the overhead of reconstructing the entire data
stream and, at the same time, it enables the analysis of the
packets that are actually sent. To do so, it maps TCP flags with
segmented application messages, and exploits data structures that
reduce latency. In this way, our solution paves the way for online
monitoring tools that take into account both internetworking and
application layers performance.

Index Terms—TCP segmentation; Traffic reconstruction; On-
line metrics; Voice over IP; Application Performance Evaluation.

I. INTRODUCTION

The increasing number of services deployed over IP net-
works and the variety of activities that depend on such services
call for integral network monitoring and analysis to assure
their correct operation. From the network management stand-
point, this is usually accomplished by analyzing the traffic
that those services generate. The case of Voice over IP (VoIP)
deserves particular attention, as end users rapidly detect its
degradation. Hence, the monitoring of such services requires
the continuous consideration of both Quality of Service (QoS)
and Experience (QoE) metrics to assure optimal service levels.
Interestingly, it usually encompasses signaling and multimedia
traffic, and both types of traffic must be considered to obtain
a comprehensive set of Key Performance Indicators (KPIs) —
some of them related to multimedia streams, such as estimated
Mean Opinion Score (MOS), and others purely associated
to signaling traffic, such as the Post Dial Delay (PDD).
Furthermore, this network monitoring field does not only
requires retrieving the information which is present in the

application level messages, but also to account for the traffic
profile at transport and network layers. Coherently, network
monitoring tools sniff traffic below application layer and all
applications suffer from the peculiarities of the transport level
protocol behavior —e.g. TCP or UDP. Particularly, if traffic
is encapsulated on top of TCP, the apparition of segmented
messages is a possibility that must be considered to extract
fully valuable measurements1.

During our experience in the monitoring of VoIP deploy-
ments, we have realized the importance of this fact: the
segmentation of messages in the TCP stack produces errors
during the analysis of such traffic, especially during on-line
monitoring. Additionally, on-line monitoring tools provide
network managers with almost instantaneous indicators of the
network state which makes complete TCP stream reassembly
unfeasible in current high throughput and demanding scenarios
—especially when the latency between the data acquisition
and the presentation of results must be low, as it is usually the
case for VoIP management. Furthermore, a complete charac-
terization of the service levels for VoIP monitoring requires to
correlate signaling connection and multimedia transmissions.
As a result, delays in signaling TCP stream reconstruction
jeopardize the results of traffic analysis.

This work provides an insight into the impact of TCP
segmentation in VoIP monitoring and the solution we have
applied to face it. Our study focuses on voice signaling
messages which include relevant data during calls negotiation.
The importance of such messages is justified because if they
are lost, monitoring tools may produce erroneous statistics
and lose the corresponding multimedia transmissions. Hence,
our contributions are intended to pave the way for smarter
application agnostic strategies that improve the mitigation
of this matter, given its potential effects during the study
of applications over the Internet. With application agnostic
strategies we denote methodologies that cover all kind of
applications, leading to a common middleware for upper-layer
analysis devices.

Our solution exploits the relations between the seg-
mented application messages and TCP flags to mimic the
sender/receiver TCP stack in in-between monitoring systems.

1http://www.lovemytool.com/blog/2016/08/analyzing-tcp-segmentation-
offload-tso-with-wireshark-by-paul-offord.html
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Fig. 1. Description of the segmented messages reassembler architecture.

It leverages a heuristic treatment of segmented messages to
improve the trade-offs between the delay and accuracy of their
analysis. Remarkably, this design allows a simultaneous con-
sideration of internetworking and application level behaviors
during traffic analysis. It provides an improved access to traffic
data, as upper layer tools can analyze the behavior at network
and transport level if the traffic is directly analyzed after the
capture, illustrated as stream (a) in Fig. 1, and also at the
application level by accessing the reassembled messages in
stream (b) instead of using (c) as data source.

The rest of the paper is structured as follows. Section II
includes a review of some previous works related to our study.
We highlight the advantages of our approach when compared
to several state-of-the-art solutions by discussing the limita-
tions we have found when applying them to traffic analysis and
VoIP monitoring. In Section III, we present an algorithm that
makes use of TCP header information to mitigate segmented
application messages for the main VoIP signaling protocols.
After that, in Section IV we evaluate the impact of TCP
segmentation for VoIP services as well as its reduction after
the application of our algorithm. To do so, we consider a
set of real traces from enterprise VoIP deployments using the
most popular signaling protocols. Finally, we summarize the
main contributions of our work and depict future work lines
in Section V.

II. TCP SEGMENTATION AND NETWORK MONITORING

Let us now review some previous results that motivate our
study and pointed out the impact of TCP segmentation during
traffic analysis. As distinguishing elements, this paper extends
this state-of-the-art results by (i) estimating the impact of
TCP segmentation in the VoIP domain, and (ii) describing an
algorithm to improve on-line monitoring tools.

In [1], the authors included an evaluation of TCP segmenta-
tion in the case of HTTP traffic classification. They found that
TCP reassembly could be omitted as they focused on traffic
switching taking into account layer 4 (and higher) information.
Nonetheless, such information losses are unacceptable during
traffic analysis while on-line processing may still be a must.

The technical report in [2] includes an evaluation of security
issues related to the TCP stack behavior in several systems.
The authors pointed to two different situations where TCP
segmentation makes more difficult to monitor and analyze
network traffic. On the one hand, they claim that malicious
segmentation of application messages can mislead Intrusion
Detection Systems (IDSs) when detecting some anomalous
event. On the other hand, TCP segmentation also changes
the manner in which applications and middleboxes manage
the transmitted data. These facts illustrate the motivation of
strategies that mitigate the segmented application messages
which are indiscriminately processed by traffic analysis tools.

Other works, such as [3], [4], [5], [6], considered different
aspects of complete TCP stream reassembly, which is a
demanding task that can be exploited by adversaries to saturate
network elements which implement it. This motivated the
solution presented in [3], where a hardware TCP reassembly
module is presented. Alternatively, our solution considers
segmented messages and not the whole TCP stream, which
reduces the cost of the traffic preprocessing —as it filters a
subset of segments to reduce reassembling cost. In [4], [5], the
authors used the reconstructed TCP streams to detect anoma-
lous events. Their solutions highlight the importance of the
study of the relations between transport and application layers’
behavior during the optimization of network monitoring tools.
Finally, the authors in [6] exposed the importance of improving
the reconstruction of incomplete network data, as otherwise
important information losses may arise —a matter partially
related to TCP segmentation. Nonetheless, all the approaches
in such works can be useless during network monitoring tasks
with strict latency and synchronization requirements.

Regarding voice analysis solutions, the system which is
presented in [7] includes a module to cope with segmented SIP
messages. The authors claimed that such module is required
to track all the VoIP connections, as complete signaling
messages over TCP are required to fully form call records.
Nonetheless, their approach is specific for SIP traffic, while
the problem appears in other VoIP signaling protocols —e.g.,
Skinny Client Control Protocol (SCCP) used in many Cisco
VoIP deployments.

The incorporation of software elements such as our solution
or the layer for SIP messages reconstruction commented above
can help attenuating the distortions that the network and trans-
port layers introduce in the results of traffic analysis. Remark-
ably, this problem does not only affect to VoIP monitoring,
but also to every application which uses TCP as transport
protocol —see, for example, the study in [8], which illustrates
the effect of middleboxes on the dynamic of TCP streams.
The conclusions of that work pointed out to a wide range of
alterations, which motivates the incorporation of elements that
minimize the consideration of bogus traffic data in application-
oriented monitoring tools. In this light, the modular design of
current tools makes the testing of these functional modules
easier: for example, in [9] the authors presented an architecture
which separates common activities (such as flow generation)
from the main analysis in network monitoring systems. As we
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will show, the inclusion of our lightweight TCP reassembly
layer is totally straightforward with this type of architectures,
and it can help to better understand the TCP segmentation
impact during the monitoring of applications over the Internet.

III. AGNOSTIC REASSEMBLING OF APPLICATION
MESSAGES

A. The root of the problem

TCP uses a stream-oriented strategy to send data, but the
description and specification of its implementation (i) does
not provide any fixed criteria about the data segmentation
and (ii) is not always met by vendors. Thus, the behavior of
segments transporting application data depends on the concrete
TCP stack implementation —e.g., in the case of Linux-based
systems, the RFC 793 [10] is implemented for the TCP
specification, and RFC 1122 [11] for the TCP requirements.

Moreover, some Network Interface Cards (NICs) provide
functionality to both segment and reassemble large data
buffers. We can distinguish different TCP offloading capa-
bilities, such as Simple TCP Segmentation Offload (TSO)
and TCP Offload Engines (TOEs) [12], among others. The
use of such offloading methods is related to performance
improvements during data transference [13], [14] and energy
efficiency and power savings [15].

Many Operating Systems take advantage of TSO capabil-
ities to reduce data movements between the different levels
by (i) sending only one large data buffer which is finally
segmented by the NIC; and (ii) recovering only a large data
buffer that includes data from several TCP segments. TOEs
are implemented by vendors, and the inclusion of support for
such elements depends on the specific Operating System which
is used —e.g. Linux does not support such elements [12].
Furthermore, some high performance capture engines cannot
use these mechanisms [16], which forces the introduction
of software elements above the system network stack to
handle segmentation of application data in scenarios with a
demanding traffic load —which also motivates the use of
lightweight heuristics.

B. Algorithm description

We have designed an algorithm based on a heuristic that
takes advantage of the meaning of the TCP PUSH flag to
reduce the amount of segmented messages in on-line monitor-
ing systems: roughly speaking, our heuristic can be understood
as a selective buffering policy based on the semantic of that
flag. Algorithm 1 illustrates the main stages of the whole
process. Some memory and data management activities must
be implemented to get a fully operational reassembler —
e.g., as in general traffic capture processes segment losses
can arise, garbage collection elements must be implemented.
Thus, a configurable expiration time for segmented messages
is included in our design, as such losses derive in unnecessary
resource occupancy and extended latency when processing the
available information.

The implementation of this algorithm should be included as
a middle software layer as described in Fig. 1 (b). Interestingly,

Algorithm 1 Application Agnostic Message Reassembler
packet = getNextPacket()
IPHeader = getIPInfo(packet)

if (IPHeader.protocol == TCP ) then
TCPHeader = getTCPInfo(packet)

else
return packet

end if

if (getTCPPayloadLength(packet) == 0) then
return packet

end if

if (TCPHeader.PUSH == 0) or
((TCPHeader.PUSH == 1) and
(inSegmentedMessage(packet))) then

message = addSegmentedMessage(packet)
if testCompleteSegment(message) then

return getPacket(message)
end if

else
return packet

end if

the design of the algorithm provides means to use that middle
layer as a traffic source in the same manner as the standard
libpcap: when the upper software layer request a new
packet, it is checked before served. If it is a TCP segment
with application data and the PUSH flag set to 0, all the
segments in such connection are buffered until a segment with
the PUSH flag set to 1 is received. After that, the next packet
to be served to the upper layer is the buffered one, reducing
the probability of serving segmented application messages to
the upper analysis layer. We note that with this design, the
integration of such a middle layer in a broad variety of network
analysis tools that use libpcap is straightforward [17].

Finally, the algorithm tests if the message has been com-
pletely received when a new segment is added to it: that is, if
one of the segments includes the PUSH flag set to 1 (which
is considered as the last segment with data from that specific
message) and all the sequence numbers from the first to the
last detected segments have been received.

C. Design and implementation

To decrease the latency during the buffering and data
management, we use the structure represented in Fig. 2. This
structure provides an access with cost O(1) during segment
updates, thanks to the hash table (a) in the figure which
provides an index of the active segments in terms of their
4-tuple —source IP address, source TCP port, destination IP
address, and destination TCP port. Furthermore, the deletion
of time-expired segments also requires access of cost O(1) as
a result of the self-ordering properties of the list of messages
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Fig. 2. Description of the links among the data structures in our implemen-
tation of Algorithm 1.

Fig. 3. Description of the content of the data structures to maintain the
segment buffer state.

(b): we maintain it ordered by appending the message which
includes the last received segment to the head of the list. The
garbage collector expires every message starting from the tail
of the list until it reaches a non-expired one.

The fields in Fig. 3 are considered to maintain the state of
segmented messages during the reassembly process, and the
information of all the segments is buffered in a list which
is ordered by sequence number. Interestingly, this strategy
maximizes the robustness of the algorithm against out-of-
order segments, which is a situation that arises during network
monitoring. Additionally, the fields of the 4-tuple used to index
the segments must be included to solve hash collisions, and
some accounting variables are required to conform a proper
network packet with the buffered segments. While this mimics
the behavior of the TCP stream reconstruction process, our
proposal restricts its application to the segments in P .

IV. EVALUATION

A. Expected reassembly delay

As a first performance indicator for our method, we com-
pare its expected reassembly delay with the state of the art
approaches previously commented. We can classify all of
them as methods which analyze complete segments to detect
incomplete messages, or methods which are based on buffers
with timeouts. For each category, we can see that:

• On the one hand, our method reduces the delay of
methods that analyze complete segments because it only
requires the information present in the TCP header. It
shrinks the portion of data which is inspected per packet
to detect segmented messages and, consequently, reduces
the computational cost of such detection.

• On the other hand, our method only adds delay to the
acquisition of such packets containing messages which
have been filtered and detected as potentially segmented
at TCP level. Then, it improves the expected delay of
methods which are based on buffering with timeout.

We also note that the time until a reassembled message is
delivered to the upper analysis layer is minimal, given that
the trigger for the completion test is the reception of the last
segment of the message.

B. Measuring the TCP Segmentation Impact

As a first step during the evaluation of our method’s
accuracy, we measure the impact of TCP segmentation in
voice service detection and analysis. To do so, we have used
tshark 1.10.6 [18] as ground truth. This tool is able
to reconstruct TCP streams and detect segmented application
messages, while it is not usable for on-line monitoring tasks
in demanding scenarios —given its latency and performance.
Hence, we follow a forensic approach using captured traces
and we consider the following segment sets as they appear in
the formulation of our algorithm:

• N , the number of TCP segments with data from a
signaling protocol. We denote this set of segments as N .

• S, the number of TCP segments with an incomplete sig-
naling message —detected with tshark. We represent
this set as S. We note that this tool marks as segmented
the last segment which contains a part from the signaling
message.

• P , the number of TCP segments with payload and the
PUSH flag set to 0. The corresponding set is denoted
with P .

With those sets, we define the following metrics as indi-
cators that characterize the effect of TCP segmentation and
performance of the algorithm, respectively:

1) The ratio S/N , as it indicates the proportion of segments
with incomplete messages of voice signaling protocols.

2) The ratio P/S, as it indicates the number of incom-
plete application messages detected by the previously
described algorithm.

The consideration of set P is related to the semantic of
the PUSH flag: when set to 1, it indicates that the receiver
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Fig. 4. Comparison between the cardinal of the sets and values of the metrics
involved in the characterization of segmentation impact for SIP and Skinny.

application should pass the data as soon as received [19].
We hypothesize that segments with that flag set to 0 and
carrying application data are linked to a block of one or
more incomplete messages [10], [11], thus P is the set of
TCP segments which are candidates to contain segmented
messages.

To evaluate points (1) and (2) in a controlled environment,
we have collected traffic traces from two enterprise voice
deployments, with SIP and Skinny (also known as SCCP) as
signaling protocol respectively. Our objective is also to study
the differences between the impact of TCP segmentation on
two protocols with different characteristics:

• SIP is a text-based protocol, with relatively long mes-
sages. SIP is an open protocol and is highly accepted as
a de facto standard for VoIP signaling.

• Skinny is a binary protocol, with relatively short mes-
sages. It is a proprietary protocol, currently used by Cisco
terminals.

Following the results we present in Fig. 4, which includes
the value of N , S and P restricted to SIP and Skinny protocols
in our traffic traces, we can see that the impact of TCP
segmentation is much more important in the case of SIP than
in the Skinny one —21.33% and 0.003% respectively. The
results for SIP messages confirm the requirements manifested
in [7], while the proportion of Skinny segmented messages is
relatively low —this is an expected result, as SIP messages
are larger and so the probability of segmentation is.

C. Reduction of segmented messages

Not only the number of segments in sets N , S and P is
important but also the existing relation between such segments
to reassemble segmented application messages using transport-
level information. To illustrate this, we evaluate the relation
between TCP segments in each set to estimate the partial mit-
igation of segmented application messages that our algorithm
produces.

TABLE I
SUMMARY OF RESULTS.

.
Protocol Detected Segments Reassembled Messages (%)

SIP 6719 20.91
Skinny 167 79.52

The relations S ⊂ N and P ⊂ N are clear by the
definition of these sets. Nonetheless, there are no inclusion
relations between sets S and P given their definitions and the
results of the detection of segmented application message by
tshark. After our empirical analysis, we have detected that,
if we consider two segments Segmentn, Segmentn+1 in a
unidirectional TCP stream between two given hosts, then:

Segmentn ∈ P ⇒ Segmentn+1 ∈ S

Thus, the application of our heuristic leads to a reduction
of segmented application messages that are considered by
any application-oriented monitoring tool. This relation is also
observable in the Skinny traces, but there is not such a
direct evaluation as certain Skinny messages are not well
interpreted by the tshark dissector —Skinny is a proprietary
protocol, which makes it difficult to get a fully operational
dissector. Hence, we have manually tested those messages
which were not correctly detected by the dissector, so our
accuracy evaluation is robust against this limitation.

Apart from this qualitative consideration, we also provide
some figures about the effect of including our solution during
the analysis of the traffic collected from enterprise VoIP
deployments. The results show that our proposal reduces the
impact of the segmented application messages in approxi-
mately a 21% and an 80% for SIP and Skinny, respectively
—a summary of the obtained results is presented in Table I.
We note that in this table, P is restricted to SIP and Skinny
messages that are correctly detected by the corresponding
tshark dissector, which is the cause of the differences
between the values in this table and the included in Figure 4.

V. CONCLUSIONS AND FUTURE WORK

The segmentation of application messages as a result of
the TCP stack behavior is a problem that must be taken into
account during network traffic analysis. Actually, if monitoring
applications do not include countermeasures, this process can
produce erroneous results. In many situations, this fact leads
to biased conclusions when studying the behavior of services
deployed over TCP/IP networks.

We have evaluated the impact of such segmentation in the
VoIP monitoring domain, where the consequent information
losses produce important errors during on-line monitoring.
We have presented the results of our experience after the
application of a general methodology to mitigate its impact on
traffic analysis which exploits the relation between segmented
messages and TCP flags.

We have analyzed the expected latency of such approach by
comparing it with the corresponding to other approaches in the
literature. Furthermore, we have also provided the community
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with some figures on the impact of segmentation for the main
VoIP signaling protocols. Particularly, the measured effect
is of << 1% and ≈ 20% for SIP and Skinny messages,
respectively, in real traffic traces from two different enterprise
deployments. Additionally, we have assessed the attenuation
of this matter after applying our algorithm, which we estimate
in a ≈ 21% in the case of SIP messages, and an ≈ 80% for
Skinny ones.

Based on this experience, our future lines of work are
related to the implementation and performance evaluation of
an optimized version of this algorithm —currently, we are
carrying out further quantitative evaluations of the computa-
tional cost of a partial reassembly of TCP streams. With that
implementation, we plan to obtain more accurate estimations
of the effect of TCP segmentation not only in voice services,
but also in other protocols that use this transport protocol.
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