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Abstract— Analytics of network telemetry data is useful for 

addressing many important network operational problems. 
While Big Data techniques have been pushing scale boundaries 
for processing data ever further, in many cases the real 
bottleneck for analytics is the acquisition, i.e. the ability to 
generate and export the data on which analytics depends. To 
address this issue, we have earlier introduced DNA, a framework 
for Distributed Network Analytics that pushes analytics 
processing into the network and dynamically sets up data sources 
as needed.  One of the challenges of such a framework concerns 
providing users with simple ways to articulate network analytics 
queries and instruct the network which data to generate and 
provide.  We have addressed this issue using a model-driven 
approach that is presented in this paper.  Using YANG as a way 
to model network analytics tasks, our system lets users articulate 
network analytics tasks at a very high level of abstraction that is 
subsequently broken down by the framework into lower-level 
analytics tasks which are deployed across the network.    1  

Keywords—Network Analytics, Service Assurance, SDN, YANG 

I. INTRODUCTION 

Network devices generate a rich set of telemetry data, such 
as flow records, MIB data (such as interface counters), service-
level measurements, and system event (syslog) records. 
Network telemetry data facilitates many operational tasks, 
from monitoring networks and services for anomalies, trends, 
and changes, to diagnosing subtle causes for intermittent faults 
and performance degradations.  It therefore comes as no 
surprise that network service providers have significant interest 
in acquiring and analyzing network telemetry data to obtain 
near-time visibility of the network health.  

A common approach to network analytics involves 
centralized, possibly cloud-based systems.  With this approach, 
data is collected from the network in a central place and 
subsequently analyzed. Networks and networking services can 
easily involve tens of thousands of devices, resulting in 
substantial amounts of data.  Much of the focus has been 
accordingly on scaling the processing of that data, leading to 
the development of systems and algorithms commonly 
associated with “Big Data” such MapReduce, Hadoop, Hive, 
or Pig.   

There are several hidden assumptions with a centralized 
network analytics approach. Most importantly, its effectiveness 
depends on the ability of the network to provide the required 
raw data in the first place.  However, this can turn out to be a 
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formidable task, as generating and exporting that data is 
resource-intensive and subject to bandwidth constraints.  The 
factor that dominates performance and scale lies in many cases 
in the generation and export of the required data records, not 
analytics processing itself. A practical bottleneck lies 
furthermore in the ongoing system management tasks that are 
involved with setting up networking devices for analytics tasks 
as needed and keeping up with dynamic network changes.   

To address those challenges, we have introduced a novel 
framework for distributed analysis of network telemetry data, 
Distributed Network Analytics (DNA) [5].  DNA consists of 
DNA Agent, an embedded analytics application that is 
deployed with networking devices, and DNA Controller, a 
Software Defined Networking (SDN) control application 
[12][9] that orchestrates analytics tasks across the network.  
Contrary to traditional analytics solutions that bring data to the 
processing, DNA brings processing to the data and in the 
process also takes care of system management tasks such as 
dynamically managing telemetry sources as needed.  

One aspect that needs to be addressed for a network 
analytics framework like DNA, or for any network analytics 
application, concerns the articulation of network analytics 
queries. Our requirements included the ability to let users 
articulate new analytics queries in simple fashion that can be 
accomplished by a network administrator without requiring 
analytics code development skills.  It also included the need to 
deal with heterogeneity of network devices. Different devices 
may expose the same data in different ways, for example 
involving different show commands or MIB or YANG objects. 
Some data may be supported by one device but not another, 
such as service level measurements To the user, network 
device heterogeneity differences should be hidden as much as 
possible and allow the user to articulate network analytics tasks 
holistically across the network, instead of needing to deal with 
the network one device or one type of device at a time.   This 
means that users need to be able to apply operations across the 
network which are understood and supported by as many 
devices as possible, ideally all of them.  Short of that, users 
would have to revert to manage networks one device at a time.  
Alternatively, SDN controllers would need to degenerate into 
legacy network management systems that require development 
of device-specific adapters for each device, resulting in 
systems that are unwieldy, slow, and costly to sustain.   

We addressed these requirements by making analytics tasks 
model-driven.  Categories of analytics tasks are modeled as 
analytics templates that can be customized by users.  The 
translation of templates to actual analytics processing is 
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maintained in a set of bindings, specifically maplet bindings 
that define the translation for processing to be performed in the 
device. The prerequisites that a system needs to support in 
support of a query are specified through capabilities.  Like a 
policy, the same capability may be rendered differently by 
different devices to shield users and controller from device 
differences. In our system, analytics templates, template 
bindings, and capabilities can all be specified via data models, 
in addition to the data itself that is being subjected to analytics.   

We chose YANG [3] as data modeling language to 
facilitate analytics configuration through Netconf [8] or 
Restconf [2] and ease of integration with SDN frameworks.  At 
the same time, data that is subjected to analysis does not 
necessarily have itself to be described via YANG but can be 
incorporated by proper references.  In fact, the vast majority of 
data sources supported by DNA concern non-YANG defined 
data, such as MIB objects of information elements in flow 
records.   

In this paper, we will present our model-driven approach to 
distributed network analytics in greater detail.  Section 2 will 
provide some additional background on DNA.  Section 3 gives 
an overview of the analytics data model and its various 
components.  Section 4 describes the YANG data tree that is 
basis for our implementation.  Section 5 gives an outlook and 
provides conclusions.  Please note that this paper should not be 
construed as providing any indication regarding product 
direction and no such inferences should be made.    

II. BACKGROUND 

A. YANG and Netconf  
YANG is a standards-based, extensible data modeling 

language to model network device configuration and 

operational data. That data provides contents used by Netconf 

operations, remote procedure calls (RPCs), and server event 

notifications.  Among the goals of YANG are a highly 

readable data model that supports the definition of data 

hierarchies, facilitates the validation of configuration data 

before it is applied, and promotes model reuse. The data that is 

described by a YANG model data model is conceptually 

contained in a data store and can be instantiated as XML or 

JSON.   

YANG was originally defined as the basis to provide 

interoperable data in conjunction with Netconf.  However, 

more recently YANG has been used also as the basis for 

model-driven controller architectures and SDKs that generate 

APIs from model definitions, notably in the case of Open 

Daylight [11], an open source SDN controller platform of the 

Linux Foundation.  

B. Distributed Network Analytics - DNA 
Distributed Network Analytics is a distributed solution 

framework that provides a network analytics on the basis of 
network telemetry data, such as flow records, device statistics 
represented via MIB objects, or IPSLA service level 
measurements [4].  DNA is specifically targeted at operational 
use cases that have near-real time characteristics, such as 
monitoring a network for changes, trends, and anomalies.   

The DNA architecture consists of two components, as 
depicted in Figure 1:

� A DNA Controller, an SDN application running on top 
of an SDN Controller Framework such as Open 
Daylight, that orchestrates network analytics tasks 
across the network, collates the results reported from 
DNA Agents, and provides a single point of entry for 
users of the Network Analytics Service. 

� A DNA Agent, an embedded application running on 
each network element, configures underlying telemetry 
data sources and performs analytics on the resulting 
telemetry data streams.   

The DNA solution is at its core a network-embedded 
management application [7] and offers important advantages 
over centralized analytics solutions.  Not only is the amount of 
required off-box processing reduced, but CPU and bandwidth 
within the network are conserved as well:  additional cycles for 
analytics performed in the device are offset by the avoidance of 
cycles that would otherwise be required to generate, format, 
and transmit data that is not required for the actual task at hand.  
Likewise, management of analytics tasks themselves is greatly 
facilitated.  Perhaps most importantly of all, DNA Agent 
configures the data sources as needed.  This allows to 
dynamically adapt what data is generated when it is needed for 
a specific analytics task, which is important because in many 
cases there are practical limits to the amount of telemetry data 
that a device can generate, for example with regards to service 
level measurements involving synthetic traffic or very high 
sampling rates of interface statistics.   

 

Figure 1: DNA Architecture

III. ANALYTICS MODEL OVERVIEW 

In this section, a data model for model-driven analytics in 
DNA is presented.  Our analytics data model applies at two 
levels, network controller and network device. At the network 
controller level, the model serves as the basis of interaction 
between the network analytics service provided by the 
controller and the end user for articulating the analytic queries. 
At the network device level, the model serves as the basis of 
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interactions between controller and device.  As a result, there 
are actually two models – a network analytics model, and a 
device analytics model.  Because a network analytics task is 
ultimately broken down into a set of device analytics tasks, the 
models are clearly interrelated, but they are not the same and 
need to address different requirements.   

We first provide a summary of the requirements that the 
model had to address.  Subsequently we provide an overview 
of the model components and explain how the requirements are 
addressed by the model.   

A. Model Requirements 
DNA needs to meet a number of important requirements, 

which the data model has to facilitate.  Most importantly, it has 
to allow to apply analytics to different sources and types of 
network telemetry data.  This includes data that is defined in 
YANG itself and exposed (for example) via a Netconf or 
Restconf server.  However, it also needs to cover data that is 
available only via different formats and interfaces, including 
MIB objects, CLI show command output, Netflow and IPFIX 
records, and IPSLA service level measurements.  It also needs 
to be expansible to cover other interfaces in the future, such as 
syslog messages, IoT sensor data streams, and packet captures.   

At the network controller level, the model needs to be very 
easy to use and facilitate simple interactions between users (or 
client applications) and the system.  Specifically, the model has 
to be able to encapsulate predefined analytics use cases and 
allow for their customization, so that users can adapt the model 
to their specific situation with minimal programming.   

While the model needs to shield users from the need to 
specify detailed analytics logic, it has allowed for the dynamic 
introduction of new types of analytics tasks and queries by 
experienced users, such as consultants of a services 
organization or experienced network operations personnel 
engaging in DevOps methodology [1].   

At the device level, DNA Agents need to accommodate a 
wide range of telemetry sources, including but not limited to 
MIBs, CLI show output, Netflow records, active service level 
measurements such as provided through IPSLA, as well as 
YANG-defined objects themselves.  In addition, DNA Agents 
must be able to support a variety of analytics engines as well as 
result exports, requiring analytics queries and result data to be 
described in ways to support different formats.   

B. Model Components 
The data model at the controller consists of the components 

that are depicted in Figure 2.  Broadly speaking, the model 
distinguishes between aspects that define how network 
analytics tasks can be configured, and aspects that represent 
instantiated analytics tasks during runtime.  Each of those 
aspects is further defined in the following sections.  How those 
components are represented using YANG is described in 
Section IV.  

a) Network Analytics Task Template 
A network analytics task template, or simply analytics 

Template, is a pre-canned analytics query with predefined 

semantics, which does allow for some degree of customization 
by a user.  The idea is to have the DNA Controller provide a 
library of predefined Analytics Templates that users can 
choose from, and allow the users to make certain 
customizations to those queries when they request an analytics 
task.  This enables network operators to articulate new network 
analytics tasks in simple fashion without requiring specialized 
analytics software development skills or complex testing of 
analytics logic. Customizations can affect aspects such as 
which data items to subject to a query or which of a set of 
aggregators to apply to a set of data items, but they do not 
affect the logic flow per se (which would require 
programming).   

 
Figure 2: Network Analytics Model Components 

b) Network Analytics Task 
A network analytics task represents a task requested by a 

user.  It instantiates an analytics template with a set of 
parameters as applicable. It also includes scheduling 
information (as tasks will typically be running for longer 
durations of time) and a network scope, i.e. a policy regarding 
which devices in the network will be subjected to the task, such 
as an enumerated set of devices in a list, all devices of a certain 
type, or all devices tagged with a certain property.    

c) Maplet (and Reducelet) 
A maplet represents the task that is deployed and run at a 

device.  The maplet defines the analytics query, data streams 
that are to be subjected to the query, as well as additional 
information needed to configure sources of the data streams.  
In addition, the maplet can include scheduling information.   

The information contained in the maplet needs to be 
sufficient to render the data stream.  For example, if the data 
stream involves flow records, the stream configuration needs to 
include parameters such as flow expiration timers.  Similarly, if 
the data stream involves IPSLA service level measurements, 
the stream configuration needs to include information that 
characterizes the test traffic, such as the number of test packets 
and probing intervals.   

A reducelet defines an analytics query that is used to 
correlate result streams sent by DNA Agents to the DNA 
Controller.  In many cases, the reducelet will in effect be an 
identity query. For example, when the purpose of a network 
analytics task is to monitor certain conditions inside network 
elements which when met are reported back to the user, no 
further analysis is required at the controller.  However, certain 
network analytics tasks may involve comparing results, such as 
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when the severity of conditions needs to be ranked across 
devices.   

d) Maplet (and Reducelet) bindings 
To run an actual Analytics Task that instantiates an 

Analytics Template, the query that is implied as part of an 
analytic template needs to be translated to an actual analytics 
query respectively device analytics task that can be deployed to 
the device.  This means that for a given Analytics Template, 
rules for how to generate a corresponding query (that can be 
fed to an analytics engine) need to be defined which can be 
interpreted at runtime.  In addition, rules need to be defined for 
how the parameters with which the user can customize the 
query map into that query.  We refer to the corresponding 
mapping rules of an Analytics Template as a binding.   

In addition to the mapping rules and the Analytics 
Template that it supports, a binding may also contain a list of 
prerequisite capabilities that need to be supported by DNA 
Agents for the generated maplets to be run.  An example of a 
prerequisite capability is the support for a specific analytics 
engine or for a specific type of data source. It is therefore 
conceivable that several bindings for the same Analytics 
Template exist, providing alternative mappings dependent on 
supported capabilities.  For example, low footprint devices 
might support only basic analytics processing capabilities, 
whereas higher footprint devices might support advanced 
analytics processing capabilities that could be optimized in 
different ways.  Similarly, with evolution of technology 
landscape, there may be new analytics engines to take 
advantage of in the future.  Instead of defining Analytics 
Templates with a specific engine in mind, the ability to define 
separate bindings allows to separate the concerns of how to 
present an analytics task to the user, from how to map it.   

Bindings are maintained and interpreted at the controller to 
render a maplet that is then deployed at the DNA Agent.  An 
alternative design would have been to maintain bindings at the 
DNA agent and render the maplets locally there.  In that case, 
DNA Agents would need to become Analytics Template aware 
and allow to dynamically deploy bindings to DNA Agents, 
either as part of the query or through a separate control 
flowThe DNA Controller would in that case not deploy 
analytics tasks containing analytics queries to the DNA Agent, 
but analytics tasks requests would simply contain the 
instantiated template.   

e) Capability Definitions and NE Inventory 
Networks are heterogeneous in nature.  Analytics Tasks 

will therefore have to be able to run across a multitude of 
devices.  Those devices may differ in terms of what telemetry 
data sources they support.  Some telemetry sources may not be 
supported everywhere – for example, IPSLA will be supported 
on some but not all devices.  Some devices support Netflow v9 
or IPFIX, others support only Netflow v5.  Even more 
importantly, the data offered across the same type of telemetry 
source will differ.  Some MIBs may be supported on some 
devices but not on others.  Sometimes, the same data is 
supported on different devices, but resides in different MIBs. 

The value of DNA lies in no small extent in its ability to 
support operational scale in a diversity of platforms.  Users can 
articulate a single query and the query should be deployed 
across the network, regardless of which or how many devices 
need to participate in the query.  Differences between devices 
affect the ability to deploy an analytics task across the network, 
inconveniencing users and potentially reducing DNA’s 
effectiveness.  Where a single analytics request might have 
sufficed, multiple analytics requests would now be required, 
one for each set of devices that supports a given functionality.  
In addition, multiple bindings or even Analytics Templates 
need to be maintained.   

Homogenization of manageability interfaces goes beyond 
the scope of DNA.  However, DNA can mitigate the impact of 
heterogeneity.  This is achieved through the concept of 
capabilities.   

A capability refers to a set of functionality with pre-
established meaning that is supported by a DNA Agent.   
Capabilities can refer to specific data sources (e.g., IPSLA, 
Netflow v5, Netflow v9, SNMP MIBs), to specific sets of data 
(e.g., interface-stats, bgp-stats), or even to analytics capabilities 
(e.g. Spark-Streaming, Storm).  DNA Agents are aware of the 
capabilities they support and announce those capabilities to the 
Controller.  

The functionality that a capability refers to is in many cases 
pre-established.  For example, there is a predefined list of 
capabilities that refers to data sources and analytics 
capabilities.  However, in the case of capabilities that refer to 
sets of data supported by a device, new capability definitions 
can be dynamically added.  For this purpose, new capability 
definitions can be introduced that include a list of named data 
items that specify particular data items and their data types that 
can be subjected to analytics.  The rendering of named data 
items to specific data sources is up to the DNA Agent that 
supports the capability.  For example, a capability 
“Interface_Stats” might include a set of named data items such 
as “inOctets” and “inDiscards”, which a DNA Agent might 
map to a set of MIB objects as defined in RFC 2863 [10].   
This is a pure convenience function that allows users and 
controllers to reference frequently analyzed data items by a 
common name.  Alternatively, data items can be referenced by 
identifiers as implied by the data source.   

DNA Agents are aware of the capabilities that they support.  
Information about supported capabilities is maintained as part 
of the DNA Controller’s network inventory.  This way, when 
an Analytics Task is requested, the DNA Controller can select 
matching bindings and validate whether prerequisite 
capabilities are supported by DNA Agents that are within the 
task’s scope, as well as handle interactions with users when 
they are not and a requested analytics task will be degraded 
accordingly.    

C. Model usage 
Figure 3 depicts how the model components are used to 

collectively drive the deployment of an analytics task across 
the network.  First, a user defines a network analytics task by 
selecting a template from the controller’s template library.  The 
user customizes the task with parameters such as which data 
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items to subject to the task (for example, interface or BGP or 
ACL statistics), which one of a set of trending functions to 
select, or which percentile value to compare a dynamic 
threshold against.  Subsequently, the controller needs to 
generate a set of maplets to deploy to the network devices 
within network scope.  For this purpose, the controller checks 
the template bindings.  Where more than one template binding 
exists, the controller selects one, for example based on the 
capabilities that are supported by the device in question.  
Subsequently, maplets are deployed.   

 
Figure 3: Use of the model to drive an analytics task 

IV. YANG DATA MODEL  

The following section provides an overview of how the 
model is mapped into YANG, and why YANG was chosen as 
data definition language in the first place.   

A. The Rationale for YANG 
 YANG was chosen as data definition language for a 

number of reasons that include the following: 

- YANG is readily supported by controller frameworks, 
such as Open Daylight (foundation for DNA 
Controller) or Network Service Orchestrator [14], as 
well as agent frameworks, such as YumaPro [15] or 
Cisco’s ConfD. This facilitates implementation on both 
agent and controller.   

- YANG is readily supported by Netconf and Restconf, 
making the resulting analytics model easily accessible 
for applications  

- With proper structuring of the model, YANG allows 
for easy extensions using YANG augmentations 
without needing to churn the base model.   

- Model definition using YANG allows for easy tie-in of 
the analytics model with data source configuration, 
which may be configurable via a YANG-supported 
interface already 

- As YANG is gaining traction with networking 
vendors, the number of data models specified using 
YANG is exploding, allowing for easy tie-in with 
model-driven analytics that is YANG based. By the 
same token, it allows for easy tie in with MIB data 

(still an important category of telemetry data), which 
can be easily transposed into YANG [13].   

- It facilitates an integration strategy with YANG-Push 
that allows applications to subscribe to YANG data 
[6], for example in cases where subscribed data should 
also be subjected to analytics.     

B. Module Structure 
The DNA Yang module tree diagram is depicted below.  In 

the interest of brevity, simplifications have been applied and 

only some key parts are shown.    

 
module: task-templates 
   +--rw task-templates 
      +--rw task-template* [tt-name] 
         +--rw tt-name            string 
         +--rw stream* [stream-name] 
         |  +--rw stream-name    string 
         |  +--rw field* [field-name] 
         |     +--rw field-name    string 
         |     +--rw type?         datatype 
         +--rw task-parameters* [param-name] 
         |  +--rw param-name    string 
         |  +--rw type?         datatype 
         +--rw result-stream 
            +--rw field* [field-name] 
               +--rw field-name    string 
               +--rw type?         Datatype 

Figure 4: YANG tree for task templates 

Task templates specify merely the structure of data streams 
to be processed as well as the result stream.  Task parameters 
include all additional parametrization, such as which input data 
to populate particular fields with or which aggregation function 
to apply.   

module: bindings 
   +--rw bindings 
      +--rw maplet-binding* [tt-ref mb-name] 
      |  +--rw tt-ref                 tt:template-ref 
      |  +--rw mb-name                string 
      |  +--rw required-capability*   capability 
      |  +--rw stream-binding* [stream] 
      |  |  +--rw stream           tt:stream-ref 
      |  |  +--rw field-binding* [field] 
      |  |  |  +--rw field      tt:field-ref 
      |  |  |  +--rw binding?   string 
      |  |  +--rw source-config* [source] 
      |  |     +--rw source           tt:source-type 
      |  |     +--rw source-config     
      |  +--rw (analytics-binding)? 
      |     +--:(csa) 
      |     |  +--rw csa-binding             
      |     +--:(spark-streaming) 
      |        +--rw spark-binding           
      +--rw reducelet-binding* [tt-ref rb-name] 
         +--rw tt-ref           tt:template-ref 
         +--rw rb-name          string 
         +--rw (analytics-binding)? 
            +--:(csa) 
            |  +--rw csa-binding       
            +--:(spark-streaming) 
               +--rw spark-binding     

Figure 5: YANG tree for bindings 

Bindings include the rules for how to generate a query for a 
task template, based on parameters supplied by the user for 
which parameter substitution is applied.  The specific rules 
depend on the target analytics engine, subsumed e.g. under 
“csa-binding” and “spark-binding”.   
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module: device-tasks 
   +--rw device-tasks 
      +--rw task* [task-id] 
         +--rw task-id          string 
         +--rw stream* [stream] 
         |  +--rw stream           tt:stream-ref 
         |  +--rw field-binding* [field] 
         |     +--rw field    tt:field-ref 
         |     +--rw (source-type)? 
         |        +--:(IPFIX) 
         |        |  +--rw ie-id?   ie-id 
         |        +--:(MIB) 
         |           +--rw oid?     oid 
         +--rw source-config 
         |  +--rw (source-type)? 
         |     +--:(IPFIX) 
         |     |  +--rw ipfix-config 
         |     |     +--rw expiration-timer?   uint32 
         |     +--:(MIB) 
         |        +--rw mib-config 
         |           +--rw interval?   uint32 
         +--rw (analytics-query)? 
            +--:(csa) 
            |  +--rw csa-query?       csa-query 
            +--:(spark) 
               +--rw sstream-query?   sstream-query 

Figure 6: YANG tree for instantiated device analytics tasks 

Device tasks finally include the instantiated analytics 
query, as well as the precise source configuration to populate 
the data streams.  Data source specific parameters are defined 
via augmentations in additional modules.  For example, to add 
support for IPSLA, IPSLA specific configuration parameters 
such as type of probe, number of packets, probe intervals will 
be defined in a new “case” statement in a module that 
augments the “source-config” choice.   

V. EXPERIENCES, CONCLUSIONS, FUTURE WORK 

We have applied the model to a variety of use cases and 
have received overwhelmingly positive feedback by network 
providers deploying Distributed Network Analytics in their 
networks.  One use case involves a monitoring scenario, in 
which device analytics tasks involve computing a baseline for 
the normal operating range of key statistics and performance 
indicators.  Subsequently, the current state of those statistics 
and performance indicators is compared against the baseline.  
When the top of the baseline is approached, for example the 
top percentile is breached, an analytics match is found and a 
result sent, which is in effect treated as a special type of 
threshold crossing alert.  Other use cases are similar, involving 
for example analysis of trends and reports when sustained 
trends are observed, even when nowhere near extremes.  

In general, we have found that the system is used to 
perform overwhelmingly fairly simple analytics.  While the 
Agent includes a full-fledged stream processing engine, most 
of the use cases involve simple aggregations and time series 
analysis.  The most important requirements of users are the 
ability to do away with polling, be able to cut down on the 
volume of analytics data, and simplify the configuration of data 
generation tasks across the network; beyond that, the 90/10 
rule applies (over 90% of analytics use cases exercise less than 
10% of analytics processing features).   

We have found that the model addresses our requirements 
to conduct network analytics very well.  YANG has proven 
adequate to represent our analytics model; the ease with which 

it can be integrated into SDN and networking environments 
and their associated control interfaces has made it a smart 
choice.   

That said, there are a number of possible extensions that 
have not yet been addressed, which would bring the power of 
the solution concept to yet another level.  One concerns the 
ability to close control loops and specify actions to take in 
response to analytics conclusions.  Such an ability will be key 
to true automation and greater network intelligence.  Of course, 
challenges abound, from security to the problem of how to deal 
with heterogeneous devices lacking a common network 
programming model.  A second extension concerns the ability 
to stage different phases of analytics to spin off additional 
analytics tasks when warranted by conditions.  For example, 
upon observation of a baseline violation, additional supporting 
evidence might be collected and secondary forensics analytics 
tasks be launched.  This type of capability will be key for smart 
analytics tasks that dynamically adapt processing and are able 
to zoom into underlying data sources precisely when needed 
during any given analytics task.   
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