
On Achieving High Data Availability
in Heterogeneous Cloud Storage Systems

Mouhamad Dieye∗, Mohamed Faten Zhani†, Halima Elbiaze∗
∗Université du Québec À Montréal, Montreal, Quebec, Canada
†École de Technologie Supérieure, Montreal, Quebec, Canada

Abstract—In the era of Big data, cloud storage services
have become the option of choice to store and share data
thanks to their cost-effectiveness and seemingly limitless capacity.
The increasing success of these services is driving cloud
providers to further improve their storage management systems
in order to offer more stringent guarantees on data availability
and access time. However, despite recent efforts towards this
goal, existing solutions have largely overlooked the heterogeneity
of the workloads and the underlying storage components in terms
of failure rates, capacity and I/O speed. To fill this gap, we present
in this paper a heterogeneity-aware data management scheme
(dubbed Heron) based on a genetic algorithm that takes into
consideration disk heterogeneity to satisfy SLA requirements
in terms of access time and availability and minimizes costs
in terms of data migration, storage and energy consumption.
Through realistic simulations, we show that Heron significantly
improves data availability and access time and ensures minimal
storage costs and data migration overhead compared to
heterogeneity-oblivious solutions.

Index Terms—Cloud Storage Systems, Data Availability, Fault
tolerance, Genetic algorithms

I. INTRODUCTION

With the unprecedented growth of large-scale Internet
applications, cloud storage services have become the
top platform for hosting and delivering data, providing
instantaneous and easy access to seemingly limitless storage
resources. As a result, Cloud Storage Providers (CSPs) are
compelled to further increase their capacity and to provide
more stringent guarantees on data availability and access
time. Recent reports estimated the cost of critical business
applications downtime between $84,000 and $500,000
per hour [1, 2], making the lack of guarantees on data
availability a major barrier to a wider adoption of the cloud.

Typically, cloud providers resort to data replication
as an effective technique to meet Service Level Agreement
(SLA) requirements in terms of data availability and access
time. Replicas are then used as a mean for data recovery in
case of disk failure, thereby increasing data availability. They
can also be leveraged to serve incoming data requests and
alleviate the workload burden on some disk drives in order
to improve the overall data access time. For CSPs, the main
challenge related to data replication is to find the optimal
number of replicas for each data block and to find the optimal
placement of these replicas in the cluster in order to satisfy
SLA requirements in terms of data availability and access time.

In recent years, a large body of work has been devoted
to the design of replica management schemes [3–8].
Despite these efforts, the inherent heterogeneity within cloud
storage systems have remained largely overlooked. Indeed,
cloud storage systems are typically clusters of thousands
of machines, containing disk drives with various characteristics
in terms of capacity, I/O speed, energy consumption,
model [9]. Consequently, in such heterogeneous environments,
disk failures are very common with failure rates significantly
varying over space and time from one disk to another
and from one year to another [10, 11].

The aforementioned considerations have deep implications
on the performance of replica management systems.
First, overlooking the heterogeneity of failure rates
and their variability over time may lead to unpredictable
data availability which might severely decrease over time.
The number of replicas and their placement should ideally
be decided based on the availability of the hosting disks
and should be adjusted dynamically taking into account
the variability of disk failures over time. Second, in order
to ensure that access delay requirements are satisfied,
data requests should be directed to different replica
locations based on their heterogeneous processing capacities.
A heterogeneity-oblivious scheme may distribute requests
evenly across replica locations; However, as disk drives
have different I/O processing speed, some replicas may not
be able to handle the requests within the targeted access
delay. Finally, one must also consider management costs
incurred when replicas are created, migrated or deleted. Such
operations consume disk I/O, computing and bandwidth
resources at both the source and destination and, of course,
lead to increased energy consumption in the cluster.
It is therefore necessary to minimize such costs and ensure
the overall system stability.

In this paper, we aim at addressing replica management
problem in a heterogeneous storage cluster while taking into
account all the aforementioned considerations. We hence
propose Heron1, a HEteROgeneity-aware replica management
framework that relies on a genetic algorithm. Heron takes into
account the variability of workloads (i.e., access rates) and disk
characteristics (i.e., model, capacity, failure rates, power
consumption) over time and space in order to satisfy SLA

1Heron: a bird known for its long legs with more than 64 different species
worldwide.
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requirements (in terms of data availability and access time)
and minimize energy costs. To the best of our knowledge,
accounting for the heterogeneous characteristics of disk drives
and their variations over time has yet to be considered
in the context of cloud storage management.

The rest of the paper is organized as follows.
Section II reviews the related work. section III describes
the architecture of the proposed storage management system.
In Section IV, we mathematically formulate the replica
management problem. Section V presents the proposed replica
management algorithm. We finally present our simulation
results in Section VI and conclude in Section VII.

II. RELATED WORK

In this section, we briefly overview recent work on disk
failure characterization and replica management in the cloud.

A. Disk failure characterization

Disk drive failures have been reported as one of the
biggest cause of data unavailability and, in worst cases,
permanent data loss [10, 11]. As a result, characterizing
disk drive failure behaviour has been much investigated in
recent years [10–13]. For instance, Schroeder et al. [11]
observed increasing disk failure rates over time with annual
replacement rates commonly ranging from 2 to 4%, reaching
up to 13% in some systems. Moreover, they observed that
the failure behaviour of disk drives vary even for disks from
the same model depending on the operating conditions such
as temperature, workload. Vishwanath et al. [14] reported
that disk drive failures represented 78% of the total failures
behind service disruption and server failures. In addition, they
found that servers having experienced prior failures are more
prone to fail in the near future. Pinheiro et al. reported that
the annual failure rates of the disks grouped by age ranged
from 1.7% to 8.6% [10]. They indicated that the values of
S.M.A.R.T attributes are highly correlated with disk failures.
Leveraging this observation, recent work have proposed disk
prediction models based on S.M.A.R.T attributes that are able
to achieve high accuracy and low false rates [12, 13]. In [12],
Li et al. presented an approach based on classification and
regression trees that is able to predict disk drive failures with
a 95% accuracy and false alarm rate under 0.1%. Leveraging
back propagation neural networks, Zhu et al. [13] proposed
a prediction model with an accuracy reaching 95%.

Several previous works have also attempted to quantify
data availability. Generally speaking, it is easy to devise
a mathematical expression for data availability under the
assumption of constant failure rate [15]. As a result, many
studies have considered the steady state availability defined
as the proportion of time for which the data is available
after a long run [16, 17]. However, this assumption has
been repeatedly contested for electronic components such
as disk drives [10, 11] as it oversimplifies the availability
analysis, potentially leading into false conclusions. In practice,
disk drives are in use for a limited time period during
which the steady state availability may not be reached.

Consequently, the instantaneous availability is more critical
when time-varying failure rate are considered although it is
mathematically more tedious to compute [15, 18].

B. Replica management in the cloud

Replica management in cloud computing systems have been
studied in many contexts, typically focusing on determining
the minimal number of replicas and their placement in
the system depending on various goals such as minimizing
costs or space consumption, maximizing data availability and
reducing data access latency. For instance, Abad et al. [6]
proposed DARE, a data replication mechanism for MapReduce
clusters which adapts to file popularity change. Bin et
al. [19] presented DRDS, a dynamic replica management
strategy which aims to reduce storage and maintenance by
deleting non-performance crucial replicas while ensuring QoS
requirements. Rahman et al. [20] consider a p-median model
where the replica hosts are determined based on the response
time. However, all of these studies overlook the underlying
heterogeneity of storage components.

In [3], the authors proposed a dynamic replica strategy
which triggers replication as the popularity of a data file
passes a dynamic threshold. Wei et al. proposed CDRM [4],
a dynamic replica management scheme implemented in HDFS
which aims to satisfy availability requirements by maintaining
a minimum number of replicas and dynamically placing them
based on the blocking probability of storage nodes in order to
distribute the workload. While both solutions take into account
node heterogeneity in terms of capacity and speed, they do not
consider time-varying failure rates in their availability analysis.

Different from previous work, this paper considers
the heterogeneity of the nodes and their time-varying failure
rates to dynamically adjust the number of replicas and their
placement in order to satisfy the desired data availability
and access time.

III. SYSTEM OVERVIEW

Fig. 1: HERON storage management system

In this section, we provide an overview of HERON,
the storage management system we are proposing in this paper.
Traditionally, storage systems aim at storing/retrieving files
in/from a large pool of servers. Usually, each file is divided
into multiple blocks of data, called hereafter logical blocks.
The available physical disks are also divided into physical
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blocks of data. Logical and physical blocks are assumed
to have the same size. Each logical block is then mapped onto
one physical block and its content will physically be stored
there. A physical block content might be replicated in other
physical blocks. The content of a logical block can hence be
retrieved from any of the existing replicas.

Such a storage system requires a management framework
to efficiently manage the data placement and replication to
satisfy SLA requirements in heterogeneous cloud storage
environment. In this context, HERON is proposed to provide
a storage service with stringent guarantees on data access
time and availability by taking into account the heterogeneous
nature of disk drives (in terms of capacity, I/O speed,
time-varying failure rate) available in data centers.

Fig. 1 shows the proposed storage management system
which is built up from the following components:
• L-To-P block mapping structure: This data structure

is a table which contains information about the mapping
between Logical blocs and the Physical blocs (L-To-P) and the
placement of the physical blocs (including block replicas) in
the infrastructure. This table is maintained by the management
module and will be frequently used by the Proxy module.
• Proxy module: this module serves as an interface between

the storage system and the end users. Hence, it mainly receives
file upload/download requests. When a file is requested, the
proxy checks the L-To-P block mapping structure in order
to retrieve the placement of physical blocs composing the
file. The proxy fetches those blocks and send them back to
to the user. Conversely, when a file is uploaded, the proxy
communicates with the management module to inquire where
the file blocs should be placed in the physical infrastructure.
The proxy then uploads the file blocs to their corresponding
physical placement in the cluster.
•Monitoring, analysis and prediction module: this module

is in charge of monitoring and collecting information about
the I/O requests, access latency and the state of each disk
drive. This data is used afterwards to forecast future data
access requests and disk failures. In this work, we leverage
classification and regression trees to predict disk failures [12]
in data centers as it was shown that they provide low false
alarm rates [12, 13]. To forecast the request rate, we use the
Auto-Regressive Integrated Moving Average (ARIMA) model
as it has been shown to provide acceptable accuracy when
predicting cloud workloads [9, 21, 22]. However, the proposed
system can be easily extended to use other prediction models.
•Management module: this module decides of the physical

blocs placement in the infrastructure. In other words, maintains
the L-To-P block mapping structure. Furthermore, based on
the measurements and disk failure prediction provided by the
monitoring module, the manager takes appropriate measures to
ensure SLA requirements in terms of data access time and data
availability. To achieve this goal, the manager dynamically
migrate and replicate the blocs of data over time while
minimizing replica migration and creation costs as well as
energy costs.

IV. PROBLEM FORMULATION

In this section, we provide a formulation of the
heterogeneous replica management problem. Assume a
discrete time system T = {0, 1, 2, ...,|T |} with t ∈ T . At the
end of each time period, replica creation or migration decisions
are taken by the management module in order to guarantee
SLA requirements. Given a data center consisting of a pool
of disk drives H = {0, 1, 2...,|H|}, taken from a mixture of
M disk models. Each model m ∈M is characterized by a set
of specifications: capacity cm ∈ N, an active and idle power
consumption represented respectively by pm,act ∈ R+ and
pm,idle ∈ R+, and a disk model service time lm defined as
the time necessary to complete a single I/O request by a disk
drive. Define a matrix Q|M |×|H|, where qm,h = 1 denotes a
disk h belonging to model m and 0 otherwise. We derive the
following relations:

sh =
∑
m∈M

qm,h · lm, ∀h ∈ H (1)

where sh expresses the disk service time of a disk h. Further
let λm,h = {λm,h

1 , λm,h
2 , ..., λm,h

|T | } represent a set of time
varying failure rates where λm,h

t designates the observed
failure rate at time t for a hard drive h of model m.
Given that user data are partitioned into data blocks, let
B = {0, 1, 2...,|B|} denote the set of data blocks stored across
disk drives where each block b has a size b̄ ∈ N+, a minimum
availability required Ab

thr and maximum data access response
time W b

thr. Consider a matrix R|B|×|H|×|T | = (rb,ht ) mapping
the locations at time t of each replica. rb,ht is equal to 1 when
a replica of b is placed into h and to 0 otherwise. We infer
the following constraints:∑

b∈B

rb,ht · b̄ ≤
∑
m∈M

qm,h · cm ∀h ∈ H, ∀t ∈ T (2)

By holding constraint (2), we ensure enough space
is available prior to assigning a replica to a location and that
multiple replicas are not lost through a single disk failure.

A. Modeling the availability constraint

Disk drives are the most replaced component and leading
reason behind server downtime in a data center [10, 11],
we therefore simplify our model by assuming the availability
experienced by a block b to be identical to that of the disk
on which it is stored. We thus model the time-variation
of disk drives failure rate using a stair-step approximation
algorithm [15] based on the observation that the time-varying
property for the failure rate is mainly exhibited at a large
time scale such as a year or month. Given that disk failures
are proactively predicted in HERON, the repair time for each
disk drive is reasonably assumed to be constant. Therefore,
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the instantaneous availability Am,h
t of a single disk drive h is

obtained through [15] :

Am,h
t =



if t ∈ [0, 1]
µ

λm,h
0 +µ

+
λm,h
0

λm,h
0 +µ

e−(λm,h
0 +µ)t

if t, i ∈ [2, 3, ...,|T |]
µ

λm,h
i +µ

+ [Am,h
t − µ

λm,h
i +µ

e−(λm,h
i +µ)(i−t)]

(3)
with λm,h

t and µ, respectively denoting the failure rate of
disk h of model m and the repair rate at time t ∈ T and
i ∈ T , the next time slot to t. Keeping in mind that a data
block is available when at least one replica is accessible, the
instantaneous availability Ab

t of a data block b at time t is then
given by:

Ab
t = 1−

∏
h∈H

(1− (Am,h
t · rh,bt )), ∀b, ∀h,∀t (4)

Finally, we enforce the availability requirement for b
through the constraint below:

Ab
t ≥ Ab

thr, ∀b, ∀t (5)

B. Modeling the processing delay constraint and demand
assignment

The heterogeneity of disk drives in a data center in terms
of I/O speed naturally leads to discrepancies with regard to
the processing delay. Thus, define Db

t as the access demand at
time t for a data block b expressed in terms of I/O requests per
second (IOPS). The demand is then split amongst replicas with
a processing delay constraint W b

thr. Using a M/M/1/K queue,
we model a single disk drive where I/O requests are held until
they are serviced with the queuing delay wh

t computed by:

wh
t = ρht d

b,h
t

(
1

1− ρht
− (k + 1)(ρht )

k+1

1− (ρht )
k+1

)
≤W b

thr (6)

with ρht and db,ht respectively denoting the utilization and
arrival rate of I/O requests at disk h. From equation (6), it is
easy to derive, for each replica location, the following relation:

(db,ht )−1 ≥ ρht
W b

thr

(
1

1− ρht
− (k + 1) · (ρht )k+1

1− (ρht )
k+1

)
(7)

with the following constraint to ensure all data access demands
are treated:

Db
t =

∑
h∈H

rhbt · db,ht ∀t,∀b (8)

C. Modeling the management costs

In this section, we focus on expressing the costs incurred
during the replica management process. We translate each
replica operation (i.e, replica creation, migration, deletion,
access) in terms of monetary costs. Assume that each disk
model m has a storage space cost κm expressed in terms of

$/MB. We then derive the storage space cost κb
t for each block

b as:

κb
t =

∑
m∈M

∑
h∈H

qm,h · κm · rb,ht · b̄ ∀b, ∀t (9)

with b̄, the size of data block b.
Thus the cost of replica creation can be deduced by:

zbt = κb
t−1 − κb

t ∀b, ∀t (10)

Let us consider a binary variable γb,h
t = {0, 1} indicating

whether a replica operation concerning a data block b is carried
out on a disk h at time t. Inversely, let δht = 0, 1 denote
whether the disk h is idle at time t. Each replica operation
then induces an energy consumption cost Eb

t [23] :

Eb
t = (Eb,act

t + Eb,idle
t ) · ϕ ∀b, ∀t (11)

where ϕ represents the power cost for a data center
expressed in $/kWh, Eb,act

t the active power consumption
(i.e, read or write operations) and Eb,act

t the idle power
consumption for a block b respectively defined by:

Eb,act
t =

∑
m∈M

∑
h∈H

qm,h · pm,act · sh · γb,h
t · b̄ ∀b,∀t (12)

Eb,idle
t =

∑
m∈M

∑
h∈H

qm,h · pm,idle · δht ∀b, ∀t (13)

with pm,act and pm,idle, respectively denote the power
consumption for a disk model m when active and idle.

We further define a penalty νbt to be paid by the
CSP whenever unavailability occurs during replica migration
process. To this effect, let yh,ub,t denote the total downtime
of a block b migrated from disks h to u at time t. If we
consider a monetary penalty β expressed in $/sec., we obtain
the following relation:

νbt = yh,ub,t · β (14)

Combining 10, 11 and 14, we express the total replica
management cost below by:

Cbt = zbt + Eb
t + νbt ∀b,∀t (15)

Finally, to minimize replica synchronization management
overhead, HERON must ensure that the chosen replica
allocation is solid enough to endure the fluctuation of demand
and disk drive failure rate based on the values forecasted
by the monitoring, analysis and prediction module. However,
we must also carefully calibrate the scope of predictions
to avoid unnecessary costs due to over-provisioning. Thus,
let O = {t, t + 1, ..., t + |O|}, denote the time scope
of the forecasts considered, we are then interested in
allocating replication schemes that globally minimizes the
aforementioned costs while ensuring the SLA requirements.
Therefore, the overall objective of HERON is to minimize the
amortized costs through the objective function below while
respecting constraints (5), (7) and (8):

min
1

|O|

T∑
t=0

Cbt ∀b ∈ B (16)
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The problem described previously is NP-hard to solve as it
generalizes the bin-packing problem with variable bin sizes
and prices. Hence, we describe below our proposed heuristic.

V. HEURISTIC

In this section, we present the design of the Heron
algorithm which aims to tackle the heterogeneous replica
management problem. The Heron algorithm is based
on Genetic Algorithms (GA) which are heuristic search
algorithms built around the concept of population genetics, in
which the process of natural evolution compels each individual
to increase its fitness in order to survive throughout future
generations. A key advantage of GAs is that they allow
the use of historical information to efficiently direct the
search towards better regions within a large search space
allowing to yield near optimal solutions [24]. In Heron, we
leverage the combined usage of workload and disk failure data
obtained through data collection and prediction mechanisms
along with an efficient characterization of the storage cluster
heterogeneity in order to satisfy SLA requirements while
minimizing reconfiguration costs.

A. Genetic algorithm encoding

Typically, each potential solution in GA is considered
as an individual and represented by a chromosome. Each
chromosome consists of genes which encode specific
characteristics of the individual. In Heron, a chromosome
is considered to be equivalent to a candidate replica
allocation scheme with genes corresponding to a set
of heterogeneous disk drives. In our work, we represent
chromosomes using value encoding where each gene is
identified by a unique disk identification, therefore allowing
the retrieval of its heterogeneous parameters (e.g., model,
active power consumption). Our goal is to find the optimal
data block replica allocation scheme such that reconfigurations
are minimized and system stability is ensured.

B. Search space reduction

Fig. 2: Search space reduction

In order to increase Heron’s efficiency and robustness,
we introduce a search space reduction mechanism such that
the replica location search is focused on promising areas in
accordance with the SLA requirements. To this end, the first
step is to evaluate the level of heterogeneity within the storage
cluster with the objective of identifying which disk parameters
should be emphasized during replica locations search. We
hence define the premium set of disks as the the set of disks

with low failure rates. In Heron, we use the k-means clustering
[25] applied to the disk model failure rates to divide disks into
3 sets. The set with the lowest failure rates is considered as a
the premium set of disks.

We consider in our study five main disk parameters for the
solution search space mechanism:

• the disk active power consumption pm,act to indicate
potential energy consumption, particularly when the disk
hosts heavily requested data blocks.

• the standard deviation σh of the disk model’s typical
failure rates as an indication of the fluctuation over time.

• the average of the disk failure rates λ
m,h

• the disk service time as an indication of the its processing
speed sh

• the mean disk utilization πh

Henceforth, depending on the proportion of the premium disks,
the replica locations search will focus on disk parameters
which tend to be harder to find within the storage cluster. For
instance, in a storage cluster consisting of a large majority
of premium disk drives, we believe it is wiser that the
replica location search to be geared more towards optimizing
the required number of replicas to satisfy access delay
requirements. Therefore, we define the notions of primary
set and secondary set of disk parameters that refer to disk
parameters which are more or less critical towards satisfying
the requirements of the concerned data block. Obviously, the
disk parameters retained in each set depends on the severity
of the data block’s SLA requirements. The goal is to associate
a profile to regions within the search space in order to reduce
the dimension of the search space. This profile is defined
based on the SLA requirements and the proportion of premium
disks using machine learning techniques. In Heron, we use
decision trees to determine primary and secondary disk
parameters. For instance, in a storage cluster environment
with a large set of premium disks and for data blocks
with high availability requirements (e.g., above 99.99%),
we consider as primary parameters the standard deviation σh

and disk service time sh while active disk power consumption
is regarded as a secondary parameter.

Once the primary and secondary set of disk parameters are
configured, we further define a reduced search space as shown
in Fig. 2 which contains a main group and a diversity group
which respectively cluster disks with regard to the primary and
secondary parameters. The dimensions of each group vary in
accordance with the severity of the data block requirements
to avoid resource starvation for data blocks with higher SLA
requirements. For each group, we define a reference disk with
regard to the concerned parameters. We then apply a similarity
score function defined below in order to bundle similar disks.

sim(hi, hj) =
1

1 +
√∑

k∈P

(hk
i − hk

j )
2

(17)

where k ∈ P represents the concerned parameters and hi

the reference disk considered. Disks with the highest score

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)330



Algorithm 1 Search space reduction mechanism

Input: Storage cluster H = {1, 2, ..., |H|}, Ab
thr, Db =

{Db
t−i, ..., D

b
t−1, D

b
t , D

b
t+1, ..., D

b
t+o}, decision tree P

Output: Reduced search space I = {1, 2, ..., |I|} with
|I| < |H|

1: f b,thr
t ← k −means(H, 3)

2: H
′
= {∀h ∈ H | λm,h

t ≤ f b,thr
t }

3: if SLA violation predicted then
4: tbdec ← min(tf , tw)

// primary and secondary parameters : p
′

b, p
′′

b

5: p
′

b, p
′′

b ← ∅
6: (p

′

b, p
′′

b )←walk the decision tree P
// main group, diversity group : g

′

b, g
′′

b

7: g
′

b, g
′′

b ← ∅
// reference disk main and diversity group: r

′

b, r
′

b

8: g
′

temp ← H , g
′′

temp ← H

9: for ∀g ∈ g
′

temp [alternatively ∀g′ ∈ g
′′

temp] do
10: Compute eq. (17) with hi = r

′

b and hj = g
[alternatively hi = r

′′

b and hj = g
′
]

11: end for
12: sort g

′

temp, g
′′

temp

// max. dimension main and diversity group :
dim(g

′

b), dim(g
′′

b )
13: i, j ← 0
14: while i ≤ dim(g

′

temp) [alternatively dim(g
′′

temp)] do
15: Take next element k in g

′

temp and put in g
′

b

[alternatively g
′′

temp and put in g
′′

b ]
16: end while
17: I ← g

′

b ∪ g
′′

b

18: end if
19: return I

are selected in the group. If there are disks with similar
similarity score, the mean disk utilization ϕh is used to
separate them. We summarize the search space reduction
mechanism in Algorithm 1.

C. Design of the Heron Algorithm

Algorithm 2 summarizes the proposed heuristic.
Heron initially generates potential solutions, hereby called
candidate allocation scheme, through random selection of disk
drives obtained from the population obtained in the reduced
search space such that constraints (2, 5, 7 and 8) are satisfied
for each candidate replica allocation scheme. The complexity
to generate a potential solution is O(n · m) where n and m
respectively denote the size of the reduced search space and
the number of disks in the candidate allocation scheme.

The second step is the crossover of the replica allocation
schemes in which we generate promising solutions through
the combination of existing solutions. Our adopted strategy
consists of retaining the previous replica allocation scheme
as one parent and mate successively with existing candidate
allocation schemes in order to create offspring solutions
as illustrated in Fig. 3. Given that disk drives are

Fig. 3: Replica allocation scheme crossover

heterogeneous, the size of candidate allocation scheme may
differ. In Heron, we use a uniform crossover [26] given that
it allows information to be taken from one parent while
inheriting the best information from the other parent. The goal
is to make sure that, from each replica allocation scheme
to another, there is still similarity to the original allocation
in order to ensure system stability and avoid excessive
operations over time. The complexity to produce an offspring
is O(n). Note that offspring allocation schemes may not
necessarily be a valid scheme.

The next step of the evolution process is mutation whose
role is to introduce randomness, and thereby allow efficient
exploration of new regions in the search space to avoid local
optima. In Heron, the mutation process targets particularly
invalid offspring allocation schemes in an attempt to transform
them into valid ones. Offspring solutions are evaluated using
equation (16) and sorted based on their scores. To avoid local
optima, we temporarily place disks which regularly appear
in low ranked offspring schemes into a blacklist in order to
avoid them in the following solutions. Unfeasible offsprings
are deleted while the highest ranking offsprings are taken into
the next iteration of crossover and mutation.

The iterations are stopped when the decision time
is reached. The offspring candidate scheme with the highest
rank is then selected as the final solution.

VI. EXPERIMENTAL EVALUATION

A. Simulation setup

Heron is implemented using the CloudSim toolkit
simulator [27]. All files in the cluster are mapped
into fixed-size data blocks which are then assigned
SLA requirements consisting of a minimal availability
and a maximum access delay requirement respectively
taken randomly from [99.0, 99.9, 99.99, 99.999, 99.9999]
and [0.1, 0.25, 0.5, 1]. Initially, the number of data blocks
in the cluster is 100000. We model the file access
patterns and size according to file access traces provided
by Yahoo! [28] using the stratified sampling technique
[29]. Workload fluctuation and application diversity are
ensured by distributing the access requests arrival times using
a mixture of exponential, pareto and weibull distributions.

We set the prediction horizon of the monitoring, analysis
and prediction module to two times periods corresponding
to around 6 days. We simulate a heterogeneous storage cluster
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Algorithm 2 Heron algorithm

Input: Reduced search space I = {1, 2, ..., |I|}, Original
allocation scheme Sb

ori, tbdec
Output: Alternative allocation scheme Sb

alt

1: tcur ← current time
// schemes inherited from previous generations : P b

eli ← ∅
// max. dimension of P b

eli : |P b
eli|

2: while tcur ≤ tbdec do
// Initial population: P b ← ∅
// max dimension of P b : |P b|
Selection

3: j ← 0
4: Db

aj = max({Db
t+1, D

b
t+2, ..., D

b
t+o})

// Candidate allocation scheme: Sb
can

5: Sb
can ← ∅

6: while j ≤ |P b| do
7: while constraints (5), (7) and (8) not respected with

Db
t = Db

aj do
8: disqueTemp← rand(i | i ∈ I)
9: if constraints (2) respected then

10: Sb
can ← Sb

can ∪ disqueTemp
11: end if
12: end while
13: P b ← P b ∪ Sb

can

14: Sb
can ← ∅

15: j ← j + 1
16: end while

Crossover
// Set of offspring schemes : P b

off ← ∅
17: for pb ∈ P b do

// Offspring allocation scheme : Sb
enf , Sb

enf1

18: (Sb
off , Sb

off1)← uniformCrossover(Sb
ori, pb)

19: P b
off ← P b

off ∪ (Sb
off , Sb

off1)
20: end for
21: P b

off ← P b
off ∪ P b

eli

Mutation
// Set of invalid offspring schemes : P b

inv

22: P b
inv ← P b

inv ∪ {pb ∈ P b
off | pb invalid }

// mutation probability : m
23: According to m, modify p

′ ∈ P b
inv

24: Compute evaluation function in (16) for {pb ∈ P b
off}

and sort P b
off k ← ∅

25: while k < |P b
eli| do

26: Take next element in sorted P b
off

27: k ← k + 1
28: end while
29: tcur ← current time
30: end while
31: Sb ← min[ eval(pb) ∀pb ∈ P b

off ]

32: return Sb

consisting of 5000 disk drives from several manufacturers
and models. Table I shows relevant information for each disk
model as reported in [30]. The failure rate threshold used in

TABLE I: Disk models

Hd model # Cap.
TB

Act.
Pow. (W)

Failure rate (%)
Year 1 Year 2 Year 3

WD10EADS 1 5.4 4.29 3.9 9.91
WD10EACS 1 7.5 0.01 5.21 0.01
ST31500541AS 1.5 5.8 10.52 9.52 12.07
ST31500341AS 1.5 11.6 23.29 23.53 26.29
HDS722020ALA330 2 9.4 1.03 1.07 2.81
DT01ACA300 3 6.4 6.93 3.68 2.8
WD30EFRX 3 4.4 3.79 6.94 8.79
ST33000651AS 3 9.3 6.91 4.8 3.55
HDS723030ALA640 3 8 10.35 43.08 30.94
HDS723030ALA640 3 8.6 1.01 2.27 2.12
HDS5C3030ALA630 3 6.4 0.99 0.59 1.31
HMS5C4040ALE640 4 6.2 3.85 1.41 0.7
HDS5C4040ALE630 4 6 1.65 0.91 0.86
ST4000DX000 4 7.5 1.12 1.12 3.73
ST4000DM000 4 7.5 4.17 2.58 3.31

the search space mechanism is set to 2.37% corresponding to
the lowest centroid value of the k-means clustering (k = 3)
applied on Table I. For realistic purposes, we set the annual
failure rates of each disk in the cluster to be in a ±20% range
of it’s model estimated failure rate. In order to study the impact
of heterogeneity, we consider in our simulations three different
scenarios as shown in Table II. From a scenario to another, we
reduce the proportion of premium disk models and increase
the number of disks with high failure rates.

In our simulations, each disk is prone to fail over the year
in accordance with its respective annual failure rate. Prior to
the failure of a disk, it is detected and a notification is sent
by the monitoring, analysis and prediction module 3 days in
advance. This is a reasonable assumption as 96% prediction
accuracy can be maintained with a 352 hours advance notice
according to [12]. The management is then tasked to find an
alternative replica allocation scheme for the data block such
that its SLA requirements are maintained.

For comparison purposes, we have evaluated
the effectiveness of Heron using a heterogeneity-oblivious
3-static and greedy replication scheme implementation.
• In the 3-static algorithm, we created for each data block

three replicas which we then randomly place on a given
disk. To maintain fairness between schemes, we ensure that
two data block replicas are not placed at the same location.

• The greedy algorithm first selects a random group of disks
which initially ensure the satisfaction of SLA requirements.
Over each iteration, members of the replica allocation
scheme are progressively replaced by selecting disks which
provide the best trade-off between the mean failure rate
of the replica allocation scheme and its mean service time.
The number of iterations for the greedy algorithm is set
to 50. Once an alternative allocation scheme is found,
we proceed to first migrate replicas from the previous replica
allocation scheme and create/delete replicas if needed.

B. Results

Fig. 4 shows the availability violation ratio which represents
the percentage of requests that were not accommodated.
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Fig. 4: Availability violation Fig. 5: Access time violation Fig. 6: Total number of replicas

Fig. 7: Total number of migrations Fig. 8: Total energy consumption Fig. 9: Availability violation cost

TABLE II: Scenarios

Scenario 1 Scenario 2
Hd model # # of disks Hd model # # of disks
WD10EADS 125 ST31500541AS 380
ST31500341AS 130 ST3000DM001 120
ST31500541AS 370 WD30EFRX 1500
HDS722020ALA330 1500 HMS5C4040ALE640 2100
ST33000651AS 375 ST4000DM000 580
HDS5C3030ALA630 2500 ST4000DX000 1400

Scenario 3
Hd model # # of disks
ST31500341AS 630
HDS723030ALA640 1220
ST3000DM001 370
DT01ACA300 150
WD30EFRX 850
HMS5C4040ALE640 1780

An availability violation occurs when all replicas of the
requested data are not available due to disk failures. It is clear
from the figure that Heron induces less violations than
the 3-static and the greedy algorithm. Indeed, Heron leverages
the predicted failure rates to better distribute replicas among
disks based on the SLA requirements and thereby ensure that
there are always replicas that are available.

It can be seen also in Fig. 5 that Heron provides less data
access time violations than the other two schemes. Here we are
considering requests that were accomodated but for which data
access time requirement was not satisfied. As Heron estimates
the number of replicas based on workload prediction, it is able
to deal with temporary workload fluctuation and to increase
the number of replicas whenever necessary in order to meet
the requested access time. This comes with the cost of a higher
number of replicas in the system as shown in Fig. 6.

Fig. 8 shows also that the energy consumption of Heron
is high compared to the greedy algorithm. However,
this is normal because Heron dynamiclly adapts the number
of replicas to the storage characteristics. It is also worth

noting that the 3-static replication mechanism provided
relatively good results in terms of availability and data access
time requirements, particularly in simulation scenarios with
a low number of disks with high failure rates. However,
this approach comes at the expense of unnecessary replica
creations and substantial energy consumption compared
to Heron (Fig. 6 and Fig. 8).

In Fig. 7, we observe that Heron reduces the overall number
of migrations. This is because it selects disks with failure rates
that are low and stable over time to place the replicas. This
allows to avoid subsequent migrations. In addition, Heron,
through its mutation operator, ensures that from a replica
allocation scheme to another, minimal migration is done by
maintaining the same block locations when possible.

To further show the benefits of Heron compared to the other
solutions, we considered a penalty model where the CSP
pays a penalty that is proptional to the violation of the data
availability requirement. Fig. 9 shows that the penalty
(i.e., violation cost) incurred by Heron is less than those
incurred by the two other schemes. As Heron reserves
premium disks to data blocks with stringent requirements,
the ratio of violations for these block is small compared
to other schemes, and hence penalties are reduced.

VII. CONCLUSION

Despite recent efforts on data replica management
in the cloud storage systems, existing solutions have largely
overlooked the heterogeneity of the underlying storage
components in terms of failure, capacity and I/O speed.
In this paper, we proposed Heron, a heterogeneous-aware
data management scheme based on a genetic algorithm
that takes into account time-varying disk failure rates
and heterogeneous disk capacities to satisfy SLA requirements
while ensuring minimal storage and energy consumption
compared to heterogeneous-oblivious solutions.
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