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Abstract—dynamic cloud workloads necessitate forecasting 

methodologies for accurate resource provisioning affecting both 

cloud providers and clients. This paper focuses on forecasting in 

the cloud in order to understand its underlying workload 

dynamics. It analyzes recent workload traces and discovers 

characteristics that are not adequately captured by traditional 

linear & nonlinear models employed for forecasting in the cloud. 

This paper completes a comprehensive statistical analysis of 8 

workloads realized from production cloud environments. 

Through characterization, time-series elicitation and model 

fitting, it isolates a limited but important set of statistical 

distributions that capture cloud traffic dynamics. Furthermore, it 

adopts a recent econometric modeling technique called the 

Autoregressive Conditional Score (ACS) model that improves 

forecasting accuracy over existing methods. To exploit our 

findings from the workload characterization of the traces, we also 

extend the ACS model to realize a variant called ACS-l that 

models errors using the lognormal distribution.  Compared with 

existing models, the ACS-l offers a 10%-25% improvement in 

forecasting accuracy when right-tailed distributions are observed 

in workloads. Furthermore, the score-based characteristics 

observed in time-series and their diversity has inspired a novel 

classification of cloud workloads into three distinct groups 

according to the most appropriate model: linear, nonlinear and 

hybrid models. A methodology that employs statistical measures 

to guide this selection has also been developed.  
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I.  INTRODUCTION  

 The characterization of aggregate cloud workloads and its 
application in prediction makes for accurate provisioning 
whereby resources can be allocated over appreciable forecast 
windows into the future. Forecasting is however challenging 
due to the attendant fluctuation in cloud workloads given the 
diversity of applications and the cloud pay-as-you-go 
deployment model. Current practices to mitigate load 
fluctuation include resource over-provisioning & scaling 
[1],[2]. These however lead to inefficient resource usage while 
impacting both customer and provider Quality-of-Service 
(QoS) and profit margins.  
 The ability to accurately forecast future workloads given 
cloud application diversity is of primary importance in the 
achievement & maintenance of customer QoS objectives. This 
paper focuses on the characterization of workloads that 
represent the diversity of cloud applications as well as their 
usage areas. Eight unique datasets from production cloud 
environments used in current research were selected. They 
include storage, video, web & analytics workloads. We elicit 

each individual workload’s time-series and employ statistical 
methods to capture salient features. The methods can be 
generalized for the variety of existing cloud workloads 
provided their accumulated history is available for realization 
as a time-series. The work here discovers a limited set of 
statistical distributions that define the studied time-series and 
corroborates the same findings in current research. It also 
examines and models volatility exhibited with the development 
of methodologies that effectively tracks such workload 
dynamics as observed in production cloud environments. The 
methods here discussed improve forecasting accuracy by 10% 
– 25% when compared with existing methods. 
 Existing methods for time-series prediction in the cloud are 
based primarily on linear models captured in the Auto-
Regressive Integrated Moving Average (ARIMA) model of 
Box and Jenkins [3]. Their use in online prediction is 
understood for arrival processes that are well understood and 
linear models are adequate. Beyond linear models, cloud traffic 
volatility captured by the statistical property of variance has 
inspired the adoption of nonlinear econometric models. The 
Generalized Auto-Regressive Conditional Heteroskedastic 
(GARCH) model of Engle [4] has found application in the 
modeling and forecasting of cloud traffic variability [5]. Recent 
studies however stress the need for augmenting both linear and 
nonlinear methods discussed in order to efficiently track 
workload dynamics given modeling drawbacks. Furthermore, 
recent studies [6],[7] indicate the need for the realization of 
new statistical models to effectively capture cloud traffic 
dynamics. 
 In this paper traffic characterization is employed in the 
realization of a novel time-series model. The salient feature is 
the modeling of time-series errors, the difference between its 
original and forecasted value, by capturing volatility differently 
from the variance as done in classical nonlinear models. Here, 
it is captured with the score function that provides a more 
accurate measure of volatility based on the conditional 
probability distribution of observed errors. The integration of 
this component into the realized model has demonstrated 
improvement in forecasting accuracy.  The new model affords 
a tradeoff between the complexity of nonlinear models and the 
simpler features employed in linear models. The summary of 
contributions is: 

 A novel workload selection methodology with a global 
view that determines when linear models are suited to 
time-series under study and when there is statistical 
justification to pursue nonlinear models. The introduction 
of the score function enables the realization of models that 
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bridge the gap from simple to complex model selection. 
Current practices are limited to either linear or nonlinear 
models often without a statistical decision making 
methodology in place to determine the model selection. 

 A novel time-series model that captures the dynamics of 
cloud workloads specifically in the area of storage traffic.  

 A forecasting algorithm realized as two variants which 
integrate model-based estimators for future time-series 
prediction over time-windows that are useful for resource 
provisioning. Their forecasting advantages and drawbacks 
are explained.  

 The rest of the paper is organized as follows. Section II 
details the datasets selected for study from current research, the 
statistical basis that provided a new perspective on error 
modeling and subsequently the novel workload 
characterization methodology. Section III presents the novel 
time-series model developed. Section IV presents the 
performance evaluation of the forecasting algorithm and 
prediction comparisons with existing methods. Section V 
presents related work while Section VI provides conclusion 
and future work. 

II. DATASETS STUDIED 

     The datasets selected for study are listed in table 1 below. 

The diversity of datasets explored is similar to work by Di, 

Kondo and Cirne [8] where 8 workloads were also studied. 

Series I is from a comprehensive study of workloads obtained 

from 10 datacenters [7] & is composed of multicast video 

traffic in a multi-layer networked datacenter environment. 

Series II comes from the dataset of the well-researched Google 

compute cluster of 12,500 nodes spanning one month of 

collection. Series IIIA and IIIB are from a private production 

IaaS cloud cluster running business critical workloads [9]. The 

dataset is aggregated from the communication of 1750 VMs 

spanning 4 months for CPU, Disk, Memory and Network I/O. 

Series IVA and IVB were released from current research in 

characterizing video traffic [10]. The environment is a video-

server cluster providing streaming services. Series V and VI 

come from an extensive characterization of traffic from the 

popular personal storage platforms of Dropbox, Box and 

SugarSync [11].  

The analysis of all the time-series realized from the 

datasets employs bandwidth as the metric of observation. An 

initial comparison is done in terms of the standard deviation 

and the Coefficient of Variation (CoV). This metric serves as a 

first measure of variability. It is however of limited use given 

that it becomes an inefficient metric of variability if the mean 

value under observation is of magnitude close to zero. It 

however serves its purpose as a starting point in the realization 

of metrics that are better able to track variability applicable to 

the time-series under study.  The method of analysis follows. 

A. Analysis Methodology 

Upon the realization of time-series for each dataset listed, 

the standard methodology employed in analysis was used [12], 

a process that involves initial visual analysis. We adopt the 

signal + error modeling approach given that its basis for the 

linear classical models of Box and Jenkins [3]. With reference 

to Figure 1, the plot of each time-series is subjected to an 

Table 1: Basic Time-Series Statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Time-Series Model Fitting Methodology 

 

initial visual inspection to discover observable properties such 

as trends and seasonality. Real data traffic may contain 

outliers and gaps which should be removed to benefit more 

accurate modeling. The identification of these properties is 

evidence of non-stationarity, a property whereby its statistical 

measures of the mean and variance are non-constant with 

time. Doing a logarithm transformation and/or differencing of 

the initial time-series is done to achieve stationarity. 

Subsequently, the Auto-Correlation Function, ACF, is 

examined. This is a measure of any relationships that may 

exist between the observations of the time-series over lags. 

The ACF of a series Yt is given by: 

                

         (1) 

 

Where 𝜇 is its mean value, 𝜎 is the standard deviation and t,h 

is the lag, the separation over time at which the values of the 

time-series are observed. After the determination of the model 

order, observable as the number of lags after which the ACF 

graph decays exponentially, the errors are examined to 

determine their statistical properties. The standard assumption 

is that they are Gaussian white noise for classical linear 

regressive models. Through the analysis of the time series 

Series Type Metric Mean CoV S.Dev. 

I IaaS  Packets/s 104904 52.45 55031 

II Compute Jobs/min 132399 10.98 14532 

IIIA IaaS Megabits/s 485 47.42 230 

IIIB IaaS Megabits/s 204 54.9 112 

IVA VoD Megabits/s 158 45.36 71.67 

IVB VoD Megabits/s 181 34.86 63.10 

V Storage Kbytes/s 821 16.32 134 

VI Storage Kbytes/s 843 79.12 667 

 

𝐴𝐶𝐹(𝑡, ℎ) =
𝐸[(𝑌𝑡 − 𝜇𝑡)(𝑌ℎ − 𝜇ℎ)]

𝜎𝑡𝜎ℎ
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studied, three types of errors have been identified according to 

their distributions: (1) Gaussian errors (2) Right-tailed errors 

and (3) Heavy tailed errors.  

With Gaussian observations in the errors, the ARIMA 

modeling process follows. With reference to Figure 1, when 

the errors are non-Gaussian and the log transformation and 

differencing does not yield Gaussian errors, the methodology 

examines either the squared errors or fits the observed error 

distribution. The examination of the ACF of squared errors 

enables the determination of when the nonlinear GARCH 

model can be adopted. Furthermore, we explore the modeling 

of non-Gaussian errors as an alternative to GARCH models. 

To do so, we avail ourselves of a recent modeling method 

which enables the realization of hybrid models that measures 

traffic variability different from the standard nonlinear 

measure of variance while still being able to retain the 

autoregressive components of linear models. We proceed with 

an analysis of the arrival process of all time-series studied. 

B. Arrival Process 

In Figure 2, the empirical Cumulative Distribution 

Function (CDF) for the arrival process of each time-series is 

illustrated. The disparity in the bandwidth measures have been 

normalized in order to bring all series into one graph for easier 

visual exploration. With the exception of series V, it can be 

observed that a large percentage of the arrival process for all 

series is dominated by small values which suggests fitting with 

heavy-tailed distributions. This is evident if we consider the 

sections of the CDF graphs that account for the arrival process 

at 60% and 80% for all time-series studied. To corroborate this 

initial visual conclusion, the histogram for each series was 

observed after which statistical testing was completed to 

determine the model with the best fit. Figure 3 illustrates 

representative distributions for 4 of the studied time-series. It 

will be observed that a right-tailed distribution is common to 

series IIIB & IVB. Series II fits a (skewed) student-t 

distribution while the normal distribution is observed for 

series I. Observations from fitting the empirical histograms 

discovered three types of distributions: normal, skewed and 

right-tailed distributions. This determines the workload model 

for the original time-series while playing an important role in 

the modeling of its errors which will be discussed 

subsequently. Subsequent fitting was done according to the 

observed distributions and Akaike’s Information Criterion 

(AIC) was employed to determine the model with the best fit. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Empirical CDF for all Time-Series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Empirical Histogram for Selected Time-Series 

 

For series IIIB & IVB, the lognormal distribution returned the 

lowest value for the AIC. This observation was made for both 

the original time-series and in the probability distribution of 

the error term. This also corroborates observation of the 

lognormal distribution among others in the right-tailed family, 

for arrival processes as done in current research [13-15]. The 

same procedure was carried out for all time-series studied.  

C. Model Fitting 

The focus of workload characterization enables the 

discovery of features that enable isolating the best model. It 

also enables the classification methodology. This proceeds 

with Figure 1. Using linear models as a starting point, initial 

time-series differencing and log transformation yields a 

stationary form of the series by which to determine the 

autoregressive component done by an examination of the ACF 

graph. The examination of errors follows and this guides the 

selection of models as linear, nonlinear and hybrid. Using one 

representative plot from each group, Figure 4 provides the 

ACF & empirical histograms, one each, for the classification 

of models as linear, nonlinear and hybrid. Series I’s ACF 

decays rapidly after the first four lags and can be described as 

white noise thereafter. The histogram also shows the regular 

bell-curve that describes the Gaussian distribution. Series II 

didn’t yield normal errors with a log transformation and 

differencing. The squared errors show evidence of correlation 

as shown, it suggests evidence of time-variation in the 

variance of the time-series otherwise described as 

Heteroscedasticity in the econometrics literature [4].      

ARIMA models are not suited to volatility. Series II shown in  
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Figure 5a is differenced in Figure 5b. Here, it displays non-

constant magnitude the phenomenon of time-variation in 

variance as described in the econometrics literature. Series 

IIIB presents an interesting departure from the white noise 

errors observed in series I as well as the squared errors of 

series II. A log-transform and differencing did not result in 

stationary errors. Furthermore, squaring the errors did not 

show correlation over appreciable lags. The observation of 

skewed distributions in the original time-series for series IIIB 

suggests the realization of models better able to capture traffic 

dynamics as observed in cloud environments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Error ACF & Histograms for Series I, II and IIIB 

 

 

 

 

 

 

 

 

 

 

 

Figure 5a: Series II from Google’s Compute Cluster 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5b: Series II after taking a first difference. 

     With reference to Figure 4, the empirical histogram of the 

errors for series IIIB shows a right-tailed distribution. 

Furthermore, conclusions from current research regarding the 

arrival process and inter-arrival processes for compute and 

storage clusters are of right-skewed distributions [13-15]. The 

Ljung-Box test for error autocorrelation was conducted for all 

time-series studied. Furthermore, based on the observations 

and an analysis of their errors as illustrated, the series are 

classified into linear (I, IVA), nonlinear (II,V,VI) and hybrid 

(IIIA, IIIB, IVB). For the linear models as illustrated, the error 

observations that follow the Gaussian distribution and ARIMA 

models were deemed fit. For the nonlinear models, the squared 

errors displayed significant correlation as determined by 

employing the Ljung-Box test. For the hybrid models, these 

were determined for those series where both the original and 

errors show skewed empirical distributions. For these, right-

skewed distributions were observed for those in the study and 

the lognormal distribution returned the lowest AIC value. The 

realization of models for fitting is done after discussing related 

work. 

III. MODELING  

A. Linear ARIMA Models: Mean As Estimator 

In the standard linear ARIMA model, we denote the 

independent variable (input application traffic say) by Xt with 

the error denoted as zt an additive component: Yt = Xt + zt , 

with Xt regressed on itself to order p & coefficients b1,…,bn 

likewise the error term regressed to order q & coefficients 

ψ1,…,ψ n, the series differenced for stationarity Yt: 𝛻Yt = Yt - Yt-

d, then 𝛻𝑑𝑌𝑡 = (𝐵)𝑌𝑡 where B = 𝛻d
 is a backshift operator that 

shows the differencing order, the ARIMA model is given by: 

 

         b(𝐵)𝑌𝑡 = 𝜓(𝐵)𝑒𝑡           (2) 

    

The error is Gaussian with zero mean and finite variance 𝜎2
 

denoted by W(0, 𝜎2
).  

B. Nonlinear GARCH Model:Variance As Estimator 

The GARCH model retains the form of the ARIMA 

model. The focus however shifts to errors which are squared. 

Equation (2) becomes zt = Yt - Xt with  𝑧𝑡 =  𝜎𝑡𝑒𝑡  where et is 

the same as the white noise earlier discussed and 𝜎t is the 

standard deviation with 𝜎𝑡
2 = 𝑎0 + 𝑏1𝑧𝑡−1

2 + ⋯ +  𝑏𝑝𝑧𝑡−𝑝
2 , the 

generalization of the GARCH model is: 

 

            𝜎𝑡
2 = 𝑎0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1  + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1           (3) 

 

The standard GARCH model also models white noise. 

C. Conditional Score Models: Score As Estimator 

The models discussed thus far are able to capture the 

dynamics of some types of cloud traffic observed in the 

analysis of the time-series selected for study. Recent research 

has made the observations of extreme value distributions in 

cloud traffic [6]. This same observation we have made in 5 of 

8 time-series studied. Two of them (IIIB & IVB) are 

illustrated in Figure 3. Furthermore, recent research in 
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econometrics presents a new modeling approach that provides 

adaptations to the extreme value distributions observed in 

cloud traffic more accurately than the linear and nonlinear 

models discussed. This is done by modeling the error 

component in terms of its score, the derivative of the log-

likelihood of the observed distribution. This is elaborated 

more in the ensuing paragraphs. 

Recent econometrics research [16],[17] applicable for 

modeling non-normal errors discovered that: (1) GARCH 

recursions conditional on past observations are impacted by 

outliers affecting forecast estimates developed. (2) Once 

Gaussian assumptions are dropped, the expression of volatility 

by employing variance may not be the best modeling choice. 

This is because of the observations of non-Gaussian 

distributions observed are expressed in terms of volatility 

specific to the identified distributions (e.g. lognormal, 

Weibull) which each have their specific expression of variance 

[16]. Thus the sample variance will not apply for the identified 

distributions.  

Given this, dynamic models for time-varying parameters 

have  been realized given the independent works of Harvey 

[16] and Creal et al [17]. In the new approach, modeling time-

varying properties, both in the mean and the variance, of time 

series is described as Autoregressive Conditional Score (ACS) 

models. The score refers to the derivative of the maximum 

likelihood estimate of the probability density function 

describing the errors. 

For the purpose of Maximum Likelihood Estimation 

(MLE), let Yt as previously parameterized be conditioned 

according to a time-varying parameter ft (for instance in the 

GARCH model ft = 𝜎2
). Furthermore, let 𝜃t be a parameter 

vector. For modeling, these are often restricted to the first and 

second order parameters of the mean and variance 𝜇 and 𝜎2
 

respectively. Thus we have Yt ~ p(Yt|ft,θt)  and writing Yt as an 

autoregressive function of ft: ft = 𝛽ft-1 + 𝛼st, the score st is the 

derivative of the log-likelihood given as: 

 

 

               (4) 

 

Here, ft is autoregressive on past terms while the noise is now 

replaced by the score, 𝛼 & 𝛽 are parameters to be estimated. 

Given that estimation is by MLE, if we assume a Gaussian 

distribution for Yt, then Yt ~ p(Yt|μ,𝜎2) where it is 

parameterized by the mean and the variance and log-

likelihood of Yt is the log-likelihood of the normal 

distribution. Given the diverse collection studied, the 

lognormal distribution provided a fit for 4 of the 8 time-series 

studied. This has motivated the development of the ACS 

model with lognormal errors described as ACS-l. The 

likelihood of Yt is the log-likelihood of the lognormal 

distribution: 

 

                     (                     (5)            

                                                                                                 

The score of the lognormal distribution st = ln 𝑦2 − 𝜎2 and 

given that the time-varying parameter is the variance, ft = 𝜎2
, 

and substituting st and ft : ft = 𝛽ft-1 + 𝛼st, it yields: 

 

          𝜎𝑡
2 =  𝛽𝜎𝑡−1

2 + 𝛼(ln 𝑦𝑡−1
2 − 𝜎𝑡−1

2 )          (6) 

 

Equation (6) is the specification of the ACS-l model. It will be 

noticed that if the errors are assumed to be normal, then the 

standard GARCH model is realized from log-likelihood. In 

order to test the forecasting accuracy of the realized model, a 

forecasting algorithm was developed in MATLAB. The next 

section details the performance evaluation and comparison 

with existing methods. 

IV. PERFORMACE EVALUATION 

     The model comes in two realizations. The first is an 

algorithm in MATLAB and the second is its integration into 

the R statistical computing package. Datasets that yield long 

time-series (1 month or greater) can leverage the parallel 

computation toolbox in MATLAB for model training by using 

multiple CPUs for processing. Several MATLAB APIs also 

exist to integrate the application realization of the forecasting 

algorithm to provide online data for prediction. The R 

implementation benefits from an extensive repository of 

existing forecasting applications. These can be combined for 

parallel or ensemble forecasting for better predictive results. 

Furthermore, testing is done according to: (1) In-sample 

forecasting and (2) Out-of-sample forecasting. In-sample 

forecast evaluation makes use of available time-series data in 

order to make current and future predictions. In this method, 

the model parameters are estimated using the time-series 

observations in order to make predictions. The prediction 

procedure employs a rolling-forecast. In this case, all available 

observations up to time T is employed to predict T + 1. This is 

conducted continuously for T + 2, T + 3, as required. The 

motivation for this is the minimization of the error in 

prediction as it continually makes use of the available 

observations both in modeling as well as in forecasting.  In-

sample forecasting is variously described as point, one-step-

ahead and rolling forecasts.  

    Out-of-Sample forecast evaluation employs a subset of all 

available time-series observations for model fitting and 

forecasts over the withheld observations in order to validate 

the model while testing forecast accuracy. This method is 

employed in forecasting horizons T + n. Here, n is the number 

of unused observations over which the forecasting accuracy is 

tested. In order to compare the ACS-l model with existing 

methods, the measure selected is the Mean Absolute 

Percentage Error is calculated. This is given by: 

 

                                                                                                (7) 

                                                                                                 

Where yt and �̅�𝑡 are the real and predicted observations of the 

time-series. The evaluation proceeds with in-sample forecast 

performance. Given space constraints, the performance 

evaluation is done with a few representative workloads for 

visual analysis while the MAPE is used for evaluation.  

𝑠𝑡 =
𝜕2 ln 𝑔(𝑦𝑡|𝑓𝑡; 𝜃)

𝜕2𝑓𝑡

 

 

log like [
1

√(2𝜋𝜎2)
exp [−

(ln 𝑌 − 𝜇)2

2𝜎2
]] 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑡 − �̅�𝑡

𝑦𝑡

|

𝑛

𝑡=1
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To examine the diversity of cloud application areas according 

to the methodology developed the series evaluated are 

categorized as linear (I,IVA), GARCH (II), Hybrid (IIIA, IIIB 

and IVB).  Their evaluation follows. 

A. In-Sample Forecast Evaluation 

For in-sample forecasting, the algorithm was realized in 

MATLAB was employed. The forecasting methodology 

employed is captured in Figure 6 below. The workload serves 

as input to the model by which it is used for training. It is the 

observations of the time-series that determine the model 

parameters subsequent to forecasting. Once these are 

determined, prediction commences followed by the 

determination of predictive accuracy. This is one by an 

examination of the errors post prediction. The comparison 

begins by a performance evaluation of ARIMA representing 

existing methods with the ACS-l representing 

nonlinear/hybrid methods. To illustrate when ARIMA models 

are adequate, series IVA is evaluated with both the ARIMA 

and ACS-l models. Figure 7 illustrates the in-sample forecast 

for the ARIMA model while Figure 8 illustrates the same for 

ACS-l. The MAPE returned for ARIMA is 19% and 18% for 

ACS-l respectively. Given that error examination backed by 

statistical inference determined Gaussian noise, in this 

instance the linear ARIMA model is accurate enough for 

forecasting.  

For the nonlinear GARCH, series II is evaluated and the 

comparison is done given two representative models: (1) 

ARIMA-GARCH which represents current methods employed 

for linear and nonlinear prediction and (2) the ACS-l for 

hybrid models. Each series underwent training as illustrated in 

Figure 6 before the subsequent prediction phase. Comparison 

is done with their returned MAPE values. Figure 9 illustrates 

the rolling 5-minute ahead forecast for the ARIMA-GARCH 

model while Figure 10 displays the same for the ACS-l model. 

To draw the distinction between employing variance to track 

volatility as occurs in most of current methods and the new 

proposed model, Figure 11a shows the score function over 

time for the same time-series compared with variance of the 

ARIMA-GARCH model. While the conditional variance is 

persistent throughout the time-series as illustrated in Figure 

11b by the variation in amplitude of the measured variance 

observed over the x-axis, the method of the score is better able 

to track the fluctuations of the time-series as observed in 

Figure 11a. Another property of the score is that its forecast 

remains within the range of the original time-series compared 

to the ARIMA-GARCH forecast. To compare forecast 

accuracy, the calculated MAPE for ACS-l is 4.1 compared to 

5.5 for ARIMA-GARCH which is a 25% improvement in 

accuracy. 

 

    

 

 

 

    

Figure 6: Forecasting Algorithm 

 

 

 

 

 

 

 

 

 

 

Figure 7: ARIMA In-Sample Forecast for Series IVA. 

 

 

 

 

 

 

 

 

 

 

Figure 8: ACS-l In-Sample Forecast for Series IVA 

 

 

 

 

 

 

 

 

 

 

Figure 9: Forecast of Series II with ARIMA-GARCH 

 

 

 

 

 

 

 

 

 

 

Figure 10: Forecast of Series II with ACS-l 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: (a) ACS-l, Score & (b) ARIMA-GARCH, Variance 
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Figure 12: Series IIIA Forecast with ARIMA-GARCH 

 

 

 

 

 

 

 

 

 

Figure 13: Series IIIA Forecast with ACS-l 

 

 

 

 

 

 

 

 

 

 

Figure 14: In-Sample Forecasting Accuracy for all Series 

 

Series IIIA is characterized by a high-degree of burstiness. 

The forecast window for this series is much longer than for the 

Google compute cluster (1 hour). For this time-series, the 

Figures 12 and 13 illustrate the series IIIA forecast evaluated 

with the ARIMA-GARCH and the ACS-l models respectively.  

The upward trend noticeable from the 500
th

 time-interval is 

accounted for by ARIMA given the moving average 

component that tracks mean value evolution while the 

GARCH component tracks the volatility. The ACS-l model 

demonstrates improvement on the GARCH recursion. In 

GARCH the calculation is conditional on the square of past 

errors where the ACS-l model employs the log of the 

dependent variable.  The improvement in performance of the 

ACS-l model over ARIMA-GARCH is by 20%.  Series VI 

was also compared but the forecast graphs are not illustrated 

due to space constraints.  

Table 2 provides a comparison of all models for the time-

series evaluated. The key contribution of the ACS-l model is 

the reduction in forecast errors when right-tailed distributions 

are statistically evident as the distribution for the time-series 

under study. This is when it provides a 10% - 25% reduction 

in forecast errors. The modeling accuracy for all three 

categories evaluated is given in Figure 14. 

B. Out-of-Sample Forecast Evaluation 

In the previous section, forecasts were made whereby all 

time-series observations up to and including time T were used  

Table 2: MAPE Comparison for All Models 

 

 

 

 

 

 

 

 

 

 

 

to make predictions at time T + 1. The practice is to ensure 

low forecasting error by using as much information as possible 

continuously about the time-series to forecast its future. 

However, in order to conclusively validate realized models, 

only part of all the observations of a time-series are used in 

training the model and then forecasts are subsequently made. 

To this end, a subset of observations from each time-series 

selected for evaluation was withheld from the model fitting 

process with forecasting over the withheld observations used 

for validation. Furthermore, for evaluation, the model was 

realized as original C++ code which was integrated into the R 

statistical computing package. For training, the entire series 

except the last 60 observations were used. This makes for 

variable forecast windows according to the time-series under 

evaluation. For instance for series II (Google), this gives a 5-

hour forecast horizon and for series IIIA, a two-day forecast 

horizon. This means resource provisioning can be planned 

over these forecast horizons as required. To show that the 

ARIMA forecast becomes inadequate especially for volatility 

prediction for series II (Google), a comparative forecast is 

illustrated in Figure 15. Given constant variance linear models 

are unable to accurately predict the series as shown. This is the 

out-of-sample forecast which begins 27 days into the time-

series. For illustration, the two and half day out-of-sample 

forecast for series IIIA is given in Figure 16 and 17.  

 

 

 

 

 

 

 

 

 

Figure 15: Out-of-Sample Forecast Comparison for Series II 

 

 

 

 

 

 

 

 

 

Figure 16: ACS-l Out-of-Sample Forecast for Series IIIA  

 

 

 

Series MAPE (%) 

 ACS-l ARIMA-GARCH 

Linear Models: (ARIMA) 

I 28 30 

IVA 18 19 

Hybrid Models: (ACS-l) 

IIIA 18 25 

IIIB 15 22 

IVB 25 42 

Nonlinear Models (GARCH) 

II 5 5 

VI 8 11 
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Figure 17: ACS-l Series III Out-of-Sample Forecast (Only) 

C. Discussion of ACS-l Model. 

    The ACS-l model is able to capture the dynamics of time-

series that exhibit right-skewed tails in their empirical 

distributions. It is easy to understand given that it is 

parameterized by the mean and the variance while tracking 

long-tailed distributions compared to others in the family like 

the Gamma and Weibull distributions. As illustrated, it is able 

to improve forecasting accuracy when compared with existing 

methods. However the realized model is not without its 

drawbacks. It has a tendency to over-fit time-series as 

observed for some of the time-series studied. In addition, 

given that it is right-tailed, all observations in a time-series 

must be positive or adjusted accordingly for the realization of 

a valid forecast. Given these drawbacks the forecasting 

algorithm is presented under two variants. The first which is 

prone to over-fitting employs the standard deviation of the 

random variable in its calculation of volatility as obtains in 

traditional methods. The variant that affords stability employs 

the practice of volatility adjustment as done for lognormal 

forecasting [18]. This realization employs the exponent of the 

random variable and it is able to minimize the observed over-

fitting.  

V. RELATED WORK 

        Prediction in the cloud has been largely reliant on the 

general class of linear ARIMA models. Cloud workload 

prediction based on ARIMA according to the research 

conducted by Calheiros, Masoumi, Ranjan & Buyya [19] was 

employed in Software-as-a-Service (SaaS) provider scenarios. 

Similar work by Han, Chan & Leckie [20] researched arrival 

and departure processes on the Amazon EC2 & Windows 

Azure platforms with the development of methods evaluated 

in different application scenarios. Similarly, the research 

conducted in [21] employed ARIMA models for resource 

usage predictions to minimize SLA violations & resource 

usage patterns and dynamic traffic in the cloud [22]. 

    Beyond the linear methods, in [23], ARIMA was employed 

to track the mean value of cloud workloads while the GARCH 

model was employed to forecast trend and volatility. In [24], 

the GARCH model was combined with Artificial Neural 

Networks to predict future requests used in the attendant 

resource requirements. The GARCH model was combined 

with ARIMA in [25] for the optimization of cloud-assisted 

video distribution in content delivery networks. The utility of 

the GARCH model in predicting volatility in cloud video 

systems was realized as forecasting solutions in [26]. 

     The forecasting methods discussed thus far belong to the 

category of classical linear and nonlinear methods. Nonlinear 

models that do not employ statistical parameters of time-series 

but are inspired by nature and Artificial Intelligence (AI) 

belong in this category. The class of Artificial Neural Network 

(ANN) time-series models has enjoyed adoption in forecasting 

cloud traffic. Xue et al [27] employed an ANN model for the 

realization of predictive solutions for CPU, memory and 

network bandwidth in IBM’s cloud computing environments. 

Comparison was made with significant improvements over 

ARIMA methods. In [28], the predictive accuracy of cloud 

auto-scaling was investigated with an ANN solution realized 

with improvements in forecast error performance when 

compared with existing methods. In [29], an evolutionary 

neural network solution was realized to forecast and mitigate 

energy consumption in the cloud. Resource scheduling for 

increased optimization was the focus of research in [30] where 

average web response time was improved with an ANN 

solution. 

    The methods and models here proposed are based on a 

careful statistical analysis of diverse workloads. There are 

distinct properties by which to determine the model 

appropriate for forecasting. The models introduced combine 

linear and nonlinear components of existing methods in a 

novel manner and belong to a hybrid class of models 

applicable to specific traffic patterns in the cloud. 

 

VI. CONCLUSION & FUTURE WORK 

    In this paper, we present a methodology that guides the 

selection of models for time-series realized from cloud 

metrics. This is based on statistical analysis of empirical 

distributions from the original cloud datasets. Furthermore, it 

develops a novel model also based on the same statistical 

observations for predicting various cloud metrics that can be 

employed in resource planning solutions. We embarked on a 

performance evaluation of the model and compared it with 

existing methods. The realized forecasting algorithm offers a 

10%-25% improvement over existing methods. The 

drawbacks of the model have been identified also with efforts 

to mitigate its adverse impact on forecasting. Future work will 

explore failure prediction as occurs in environments like 

Google’s compute cluster, VM consolidation planning in IaaS 

cloud environments and the QoS predictive solutions. 
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