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Abstract—In this paper, we propose an OpenFlow enabled
Internet infrastructure, using virtual path slicing in an end-to-
end path, so that any user connected to an OpenFlow network
is dynamically allocated a corresponding right of way. This
approach allows an interference-free path, from other traffic,
between any two endpoints, on multiple autonomous systems,
for a given application flow (e.g., WebHD Video Streaming).
Additionally, we propose and implement an end-to-end quality of
service framework for the Future Internet and extend the virtual
path slice engine to support future Internet technologies such
as OpenFlow. The proposed framework is evaluated in distinct
multiple autonomous scenarios for a city with a population of 1
million inhabitants, emulating xDSL (Digital Subscriber Line),
LTE (Long-Term Evolution) and Fibre networking scenarios.
The obtained results confirm the suitability of the proposed
architecture between multiple autonomous systems, considering
both data and control traffic scalability, as well as resilience
and failure recovery. Furthermore, challenges and solutions for
experimentation in a large-scale testbed are described.

I. INTRODUCTION

In recent years, Internet traffic from content provider com-
panies (e.g., Skype, Google, Netflix, Akamai, Facebook) has
been increasing drastically due to the exponential usage of
over-the-top applications by users. This traffic is expected
to keep increasing, as content providers launch more and
more over-the-top applications. However, telecommunication
companies, who bear the operational and maintenance cost
of the Internet infrastructure, are not interested in investing
on additional infrastructure capacity to provide the required
bandwidth for these applications without an adequate return
on network capital employed.

Several solutions such as IntServ (Integrated Services) [1]
and DiffServ (Differentiated Services) [2] have been proposed
to solve the problems above. IntServ provides Quality of
Service (QoS) based on a per-flow basis and has a scalability
issue, whereas Diffserv alleviates this issue by providing QoS
on aggregated flows. One of the problems with DiffServ is that
QoS requirements (specified in Service Level Agreements i.e.,
SLA) are defined in the classes of service and the definition of
the classes of service is valid only within that domain. Hence,
until and unless, all the AS domains in the path towards the
destination agree to provide the same service to traffic, it is
difficult to provide end-to-end QoS over the Internet.

Since no content provider has created a successful business
model for large scale QoS over the Internet [3], it is very
difficult for Internet infrastructure owners to get profit from
the growing demand for bandwidth and quality. Currently, the

Internet works on a best-effort basis and content owners, who
obtain revenue for their applications, can inject traffic into the
Internet at an originating Autonomous System (AS) and expect
it to be carried over the Internet to a destination autonomous
system without sharing revenue with infrastructure owners.
Enabling end-to-end QoS, instead of QoS specific to an
autonomous system, is one possible solution to the above
problem. In addition, it is in the interest of content providers
and users to open guaranteed pipes over the Internet.

As part of innovation in FP7 and H2020 of the FIRE
(Future Internet Research and Experiment community), small
and medium Enterprises were encouraged to submit project
proposals regarding innovation. For these innovations, the
CityFlow project1, which was centered on the virtual path
slice engine2 (due to its capability of multiple autonomous
system innovations and conducting experiments at scale), was
approved. In this paper, we describe an end-to-end QoS frame-
work, experimentation, challenges, and solutions proposed in
the CityFlow project. We propose a differentiated Internet
based on virtual path slicing (VPS) and Software Defined
Networking (SDN) technologies, such as OpenFlow. Using
SDN [4], [5], the control plane can be separated from the
data plane of network devices (such as switches or routers)
and can be embedded into one or more external servers called
controllers. Using VPS [6], telecommunication companies can
enable a right of way (end-to-end) for users’ traffic over the
Internet without interference from best-effort traffic.

For the differentiated Internet, we also propose an op-
erational model for the Internet and give opportunity for
infrastructure owners, content providers, and users to benefit
from it. We test our model and framework using a wide range
of large-scale multi autonomous signaling experiments that are
performed on a large scale experimental facility in Europe, i.e.,
at OFELIA (OpenFlow in Europe Linking Infrastructure and
Applications) [7]. One of the experiments is also performed
on the public Internet using the Amazon cloud facility. Our
experiments mimicked the conditions that would be required
for WebHD Video Streaming and HD Video to Video. All
the experiments are performed by taking into account the
key Internet technologies (4G/xDSL/Fibre) for a mid-sized
European city of around 1 million inhabitants.

The contributions of this paper are:

1The CityFlow project: https://www.cityflow.eu/
2A commercial product from Redzinc, www.redzinc.net
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1) The proposal, implementation and experimentation of a
scalable end-to-end QoS framework (large-scale) for the
SDN enabled future Internet (Section II, Section V);

2) An overview of reference scenarios (emulating real
conditions) for a city of 1m inhabitants (Section III);

3) An overview of challenges and solutions to perform
a large scale experiment on a large-scale experimental
facility (such as OFELIA) (Section IV).

II. QOS MODEL FOR THE INTERNET

Our QoS framework is derived from previous works (Eu-
QoS [6], NSIS [8] and IPsphere/TMForum [9] methods) on
implementing end-to-end QoS over the Internet. To deploy
end-to-end QoS, multiple autonomous systems are required
to have a consistent view of the classes of services (CoSs).
Therefore, in the CityFlow project, we use end-to-end CoSs
proposed in the EuQoS project [6], following IETF recom-
mendations. The essential principal of the CityFlow research
is that bandwidth resources are managed in an on-path off-
line manner. By on-path we mean that resource management
follows the forwarding path of the IP packets, across multiple
autonomous systems, as determined by BGP (Border Gateway
Protocol). By off-line we mean that the resource management
is implemented in software off-line from the network elements
that are responsible for packet forwarding. Along the path,
capacity management is implemented only at choke points
which are mostly the interconnection points and the edges.

A. VPS Engine Overview
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Fig. 1: VPS Engine Overview

Our model uses the VPS engine (commercial product from
Redzinc) to setup virtual path slices over the Internet. This
engine contains three main interfaces (shown in Fig. 1):
(1) the first one (the triggering API interface) is to receive
requests from users, (2) the second one (the inter-carrier
domain interface) is for inter-carrier domain communication
and (3) the third one (the management/control interface) is to
communicate with infrastructure networks. The first interface
is implemented to receive requests from users to reserve a
right of way in the Internet. The implementation of the inter-
carrier domain interface within the VPS engine (i.e., for inter-
carrier domain) is largely influenced by the initial work done
in the IETF for Next Steps in Signalling (NSIS) [8]. Currently,
implementation of managment/control interfaces for adding
QoS in SDN networks are also explored in [10], [11]. Our

implementation of the management/control interface for the
CityFlow project is detailed in the next subsection.

B. Components of the proposed model
The architecture devised by CityFlow was envisaged for

future OpenFlow networks, enabling them with the possibility
to dynamically configure paths with guaranteed traffic perfor-
mance. Motivated by the separation between data and control
planes followed by the SDN paradigm, additional business
intelligence is included on top of the control plane, which in
turn enforces the necessary decisions on the data plane. Fig.
2 depicts a high-level perspective of this approach.
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Fig. 2: CityFlow’s architecture and components

In CityFlow, the VPS engine is the entity responsible
for business intelligence and manages relationship with the
remaining CityFlow components, namely RouteFlow [14] and
the controller (extended with the QueuePusher module [12]).
RouteFlow is used for running routing protocols in the Open-
Flow networks. The QueuePusher module (the source code of
QueuePusher is available at: www.cityflow.eu) is used to set
up queues for providing high QoS to the personalized flows.

Since the beginning of this project several platforms have
been developed for SDN. In fact, even though during the
development of this work the Floodlight controller was chosen
due to its northbound API, nowadays, other controllers provide
similar characteristics (e.g. OpenDaylight). Nonetheless, the
conclusions presented by this paper are independent of these
factors and could be verified with the latest SDN software.

In the proposed architecture, the communication between
the components within the control plane is based on a REST-
ful interface, so that it can easily ported between different
software solutions, while interactions with OpenFlow switches
and the controller are supported by the OpenFlow and OVSDB
(Open vSwitch Database Management) protocols [13]. Other
supporting tools such as Pulse Generator and CityFlow’s mea-
surement system are also developed for enabling the scenarios
presented in Section III. The pulse generator tool is developed
to transmit high rate of control or data traffic to cover 1 million
city population. The measuring tool is developed to gather the
measurement data from the system.

C. Routing framework
As already explained, our framework relies on the path

discovered by routing protocols used in the current Internet (to
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establish end-to-end QoS). For routing, we assume intra-AS
routing protocols (such as Open Shortest Path First, i.e., OSPF
and IBGP) to be run within an AS and inter-AS protocols (such
as EBGP) to be run between different autonomous systems.
For running these routing protocols in an SDN infrastructure,
we use the RouteFlow framework [14].

The problem with RouteFlow is that it is not suitable
for large-scale experimentation, as its configuration is not
automatic. Before running RouteFlow, an administrator needs
to devote a significant amount of time in configuration [15].
In the CityFlow work, we proposed a framework which
configures RouteFlow automatically with a little manual con-
figuration. In this framework, we run an additional controller
module, which discovers the underlying network topology and
then forwards configuration information to RouteFlow. The
description of this framework is given in [15].

D. Queue Management
1) Controller Queue Management: Since the configuration

of queues in OpenFlow Switches is not part of existing
OpenFlow Controllers, the QueuePusher (shown in Fig. 2)
was created with the intention of providing an interface to
be exposed by an OpenFlow controller.

Fig. 3: Queue management from the controller side

The Queue management in the QueuePusher presents the
following characteristics:

1) Modular implementation, easy to be embedded in any
OpenFlow Controller

2) Able to support OVSDB, OF-Config, or other configura-
tion protocols (currently only OVSDB RFC compliant)

3) Independent state-machine and communication handling
The QueuePusher architecture is based on a client/server

model (shown in Fig. 3), where the role of the client is played
by OpenFlow controller, whereas the server role is played
by an OpenFlow enabled switch that receives the requested
commands and configurations. It provides a comprehensive
REST API for providing access to the queue management
process. In addition to the general logic for queue manage-
ment, the QueuePusher needs to process each request and
assemble appropriate configuration messages, according to the
user protocol. The QueuePusher handles the link between
installed QoS entries and Queues. The QoS Assembler defines
the type of QoS and bandwidth limits per port, and matches
queues to their associated QoS entry. The Queue Assembler
specifies the characteristics of the Queues to which flows can
be associated through OpenFlow. Then, the Final OpenFlow
Configuration Assembler validates all configurations before
interfacing with OpenFlow switches.

2) VPS engine Queue Management: End-to-end resource
management is handled by multiple VPS engines based on
the protocols defined by IETF NSIS working group, which
includes a signalling protocol for quality of service, the NSIS
Signaling Layer Protocol (NSLP) for QoS Signaling [8]. This
allows the support of multiple reservation models, being inde-
pendent of the underlying QoS specification or architecture.

In addition to the QoS NSLP from NSIS, the used VPS
engines take also advantage of the principles of the General
Internet Signaling Transport (GIST) protocol [16], which can
be used together with QoS NSLP to provide functionalities
similar to RSVP and further extending it.

E. Operational Model for the Internet

Fig. 4: Conceptual Operational Model for the Internet

A high level view of our proposed operational model is
shown in Fig. 4. The essential idea is to segment the network
capacity into a Best-Effort (BE) and a high priority (HP)
domain. As capacity grows an operator can make a policy
decision regarding the proportion to be allocated to the BE
or HP domain. Initially, the HP domain might have a low
share, but as demand grows, and BE becomes constrained,
new capacity could be allocated to the HP domain. This can
be implemented by using an aggregated queue in a gateway
network element dimensioned for x% (can be 50%) of the
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capacity for traffic painted as BE using DiffServ code points.
The remaining capacity (i.e., HP) can be painted as Expedited
Forwarding or Assured Forwarding code points.

Content or application providers (appcos) with multiple
applications in the area of Internet of Things, eHealth, Con-
sumer and Cloud can use the slicing mechanism (queuing
mechanism shown in Fig. 2)through VPS to obtain a slice of
bandwidth in the HP domain across multiple AS domains and
to the consumer connected via optic fibre access or 4G/5G
radio access network. In exchange for obtaining guaranteed
bandwidth to users, applications providers who will be able
to drive new business models (e.g., 4K webTV) can expect to
receive a charge for conveying the guaranteed traffic. This can
be implemented using cascade charging on a wholesale basis,
from access-to-core to applications provider.

The concept model in Fig. 4 is based on the separation
of control from the data plane and the inclusion of features
for business engagement. We add business logic and event
signalling between the remote “appco” (application traffic
source) and the flow core (at traffic sink) where the consumer
is located. A gateway distributes application traffic on the BE
or HP domain based on DSCP and/or MPLS EXP marking.
The flow core allocates a discrete flow in the distribution and
access network onwards to the consumer. While the consumer
has a contract relationship (e.g., Netflix contract) with the
appco. Cascade charging from the access to the core to the
appco enables all infrastructure stakeholders in the traffic
pathway share in the economic activity.

Our model works based on the requests from the user
application to the VPS Engine as the user request determines
the end points themselves. The OpenFlow controller, which
in the case of the CityFlow project is Floodlight, tells the
VPS Engine (c.f. Fig. 2 and Fig. 4) where those endpoints are
connected in the data plane (i.e. the switch). RouteFlow by
running BGP determines the output ports of the end points for
delivering the user application. The VPS engine then replicates
the existing best-effort flow rules and creates a new flow on the
output port of the ingress switch. This new flow is ‘painted’
with the DiffServ code point for expedited forwarding. In
parallel with this, a new flow is assigned to a queue that is
given a scheduler rate corresponding to the bandwidth for the
associated virtual path slice.

From a path point of view, the virtual path slice model
follows the path determined by BGP between different au-
tonomous systems and OpenFlow areas. The bandwidth of the
slice is determined by the rate in the shaper of policer on the
ingress switch. The model is relevant for a mixed topology
including legacy IP routers and new OpenFlow switches. Con-
nection Admission Control (also known as RACF – Resource
Admission Control Function) is implemented at the ingress. A
count is taken of the allocated capacity and a “busy tone” is
implemented if a threshold is reached.

F. Billing Logic

Our framework has an internal business logic and which
we believe will be ultimately adopted in OpenFlow networks.

The recent agreement of the European Commission to accept
value added services in the net neutrality debate is a key
inflection point on this path [17]. The idea with billing is that
the consumer pays wholesale cascade charging. This allows
the charge to follow the traffic and ensures that all actors who
provide forwarding infrastructure participate economically in
the consumer service driving the traffic flow. This is something
which does not happen in the Internet today. Retail billing
which is focused on the consumer is out of scope. The API
towards the application layer received the composite charge
as the actor on the the application layer collects retail billing
and makes a margin on the value added above the transport
charges.

III. REFERENCE SCENARIOS FOR EXPERIMENTATION

The CityFlow experimentation was defined, considering
a target population of 1 million inhabitants, representing a
mid-sized city as a reasonable and practical dimension –
not too large and not too small – implementable on the
OFELIA testbed. We have analyzed the network infrastructure
of Brussels, population 1.1 million, in order to obtain reference
scenarios for mobile, xDSL, and Fibre. Unfortunately, Brussels
has currently no fibre access network deployed, thus in order to
have a more future-proof reference network, we add Fibre-To-
The-Home (FTTH) data from other European cities of similar
size (e.g., Cologne). Starting from real data gives us a realistic
scenario from which we can base our experiments. In reference
scenarios, we use the ACG study [18] to design mobile, DSL,
and FTTH networks for our experimental city, Flowville.

For mobile networks, we collect data from real sources i.e.,
BIPT (Belgian Institute for Postal Services and Telecommu-
nications). According to BIPT, there are 958 base stations in
Brussels. These stations provide wireless access to all users
in the city. In addition, there are three large mobile operators:
(1) Base, (2) Mobistar and (3) Proximus. For each operator,
we consider a latest radio access technology, e.g., LTE. For
each LTE, we place 958 base stations in the access rings of
Flowville. According to the ACG Study, a maximum of 25
radio base stations operated over a ring can be connected with
a pre-aggregation site. Therefore, there can be a maximum
of 39 pre-aggregation sites (958/25=39) for Flowville. In
addition, as there can be a maximum of 16 pre-aggregation
sites per one aggregation site, there can be a maximum of
three aggregation sites (39/16=3) in the aggregation network.
Moreover, in order to connect these three aggregation sites to
the core, we require two core locations [18].

In xDSL scenarios, DSLAMs (Digital Subscriber Line
Access Multiplexers) are used to connect multiple customer
Digital Subscriber Lines (DSL) to an aggregation network.
Currently, Brussels has only VDSL (Video Digital Subscriber
Line) technology and 59.29% of Brussels population use this
technology. In our design, we assured that 90% of DSLAMs
in Flowville are with 8 line cards and 10% of DSLAMS
are with 3 line cards. Therefore, the number of DSLAMs
required for Flowville is 1026, as one DSLAM line card can
serve a maximum of 48 households [19]. As a DSL-based
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access/aggregation network is operating over rings, we can
use similar architecture as the LTE case. Therefore, there can
be a maximum of 42 pre-aggregation sites (1026/25=42) and
three aggregation sites (42/16=3) for Brussels.

In FTTH scenarios, we assume that 20% of population
will use FTTH connections (e.g Passive Optical Networks,
i.e., PONs). PONs consist of Optical Line Terminals (OLTs)
and Optical Network Units (ONUs). The OLT resides in the
central office and the ONU resides in the customer’s premises.
For PON, there can be 48 subscriptions per OLT [20]. As
there is an average of 2.06 persons per household, Flowville
requires 11,518 OLTs to cover the total population. For 20%
of population, Brussels requires around 2300 OLTs. As OLTs
resides in the central offices and one central office can have
up to 500 OLTs, we require 5 central offices to cover 20%
of Flowville’s population. If we consider 3% growth rate
in FTTH adoption, we will require seven central offices.
Assuming that one central office is directly connected with one
pre-aggregation site, we require seven pre-aggregation sites
and one aggregation site for Brussels.
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Core Network

CDN Network

LTE1

LTE2

LTE3

Backhaul A CoreA

CoreB

xDSL

Fiber

Content
(CDN)
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Fig. 5: CityFlow Reference city (Flowville, integrated model)

As a city can contain mobile, DSL, and FTTH networks
simultaneously, we also present an integrated model that
combines these networks. In Brussels, there are two operators
in the Backhaul network: (1) Telenet (Backhaul-A in Fig. 5)
and (2) Belgacom (Backhaul-B in Fig. 5). These operators
connect the access network to the core network. Therefore,
for the integrated model, we connect one LTE and one DSL
or Fibre network to one of the Backhaul operators, and the
remaining to the second Backhaul operator (Fig. 5). Here,
LTE 1, LTE 2 and LTE 3 are the access network scenario
from three mobile operators in Flowville. In this design, all
core locations are connected with the CDN (content delivery
network) servers. The goal of a CDN server is to serve content
to end-users with high availability and high performance.

IV. EXPERIMENTATION METHODOLOGY

A. Software used for experimentation

Due to emerging importance of SDN, a large number of
OpenFlow switches and controllers are currently available.
In particular, software-based switches such as Open vSwitch
(OvS), Trafficlab 1.1, Indigo, CpQd could have been used
for CityFlow experimentations. This also includes a large
number of controllers such as Open DayLight, NOX, POX and

Floodlight. As previously mentioned, Floodlight was chosen
as the reference controller for the CityFlow project due to its
RESTFul API and associated high performance, which was
not rivalled by any other controller when this research work
was conducted. Moreover, OvS was chosen as the reference
OpenFlow switch implementation due to its production quality.

B. Topology setup on OFELIA
The OFELIA testbed has 10 different islands and has

hardware OpenFlow switches (from NEC and HP) and other
machines to deploy soft OpenFlow switches in a real or virtual
machines environment. The iMinds island, which is located in
Belgium, has resources to perform large-scale emulations and
has the ability to emulate multiple AS experiments and most of
the CityFlow experiments are performed on the iMinds island.
However, one of the experiments is also performed on different
islands in which some of islands worked like autonomous
systems of the Internet.

1) Topology setup on the IMEC island: The iMinds island
has a limitation that it has only 100 physical nodes with a max-
imum of 6 interfaces per node. Therefore, for the experiments,
we converted the Flowville scenarios to an experimental setup
(Fig. 6), which could be implemented in the iMinds island.

The access networks in the island are implemented by nodes
USER1, USER2 and USER3. In these nodes, multiple access
clients (the numbers are described in Section III) are emulated
using virtual interfaces. There are three ASs (AS1, AS2 or
AS3) that represent aggregation networks, one AS represents
the core network and one AS represents the CDN network,
running OvS for forwarding user traffic. Each of these ASs
is connected with a separate Floodlight controller. Similarly,
OvSs representing the aggregation networks and CDN AS
nodes are also connected with the VPS Engine through the
connected Floodlight controller. For load sharing, we use three
VPS Engines (shown in Fig. 6). In addition, for bidirectional
experiments (i.e., user to CDN and CDN to user), we duplicate
the access and aggregate networks (Fig. 6).

2) Topology setup in multiple islands of the OFELIA
testbed: For multiple islands experiments, we extended the
Redzinc lab at Dublin to the OFELIA testbed. Therefore, the
Redzinc lab also worked like an additional OFELIA island
in our experiments. We configured 4 VMs at each of the
following islands: TUB (Berlin), ETH (Zurich) and Dublin
islands. Our objective was to setup an OpenFlow environment
on the virtual machines of each island and to make virtual
machines of each island behave like an autonomous system.
For topology creation of the autonomous system, we needed
to setup virtual interfaces on top the interfaces of the virtual
machines in different islands. For creating virtual interfaces
to create the required topology, we used Generic Routing
Encapsulation (GRE) network tap (TAP) interfaces on the
top of interfaces of virtual machines. Additionally, VPS,
Floodlight and OvS are installed on the VMs of the islands.

C. Scale of test platform
Establishing very large topology emulation on OFELIA was

a challenging task due to installation and running of software
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on many nodes, and collecting and parsing the debugging data.
To overcome the challenge, we made Linux images in which
OvS, Floodlight, RouteFlow, and VPS are already installed. In
addition, we made scripts to automatically run all software in
experiments of CityFlow. For collecting and parsing debugging
data, we built a measurement system.

Another challenge for test platform was to configure Route-
Flow. Before running RouteFlow, an administrator needs to
devote significant amount of time in configurations. For a large
topology (typically for 100 switches), it may take many hours
to configure RouteFlow. To overcome the issue, we proposed
and implemented a framework to automatically configure
RouteFlow [15] (also discussed in Section II).

In order to perform a realistic experiment we implemented
a test harness designed to provide high volume control plane
(CP) traffic and to trigger appropriate traffic generators for data
plane (DP) traffic. This allowed a stress test of the VPS server
alone (by not enabling DP traffic) and of the whole CityFlow
stack. We were able to supply the test harness with recipes
for different traffic mixes; for example different rates of CP
traffic where we could control the duration, inter-arrival time
and magnitude of the traffic. We are also able to overlay more
than one traffic recipe and be selective about which recipes
trigger associated DP traffic.

V. RESULTS

We performed four different experiments in CityFlow: (1)
data traffic, (2) control traffic, (3) failure recovery, (4) multiple
islands. The first three experiments are performed on the
iMinds island, the fourth one is performed on multiple islands

of OFELIA. Additionally, one of the control traffic experiment
was also performed on the Amazon cloud facility.

A. Data Traffic Experiments

In order to understand how the data plane responds in
different situations, using the setup previously presented, data
traffic was rate-limited and forwarded through OpenFlow
switches dynamically configured by the VPS. In particular, this
experiment aims at emulating and analysing the performance
of typical video streaming, shaped using VPS.
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Fig. 7: Data traffic experiments
Having considered two variations of the same setup, the

first version of the experiment measures the performance of
traffic where 13.75Mbps of UDP packets, resembling a typical
HD video stream, are sent from source to destination, being
inserted into a queue configured with maximum bandwidth
rate at 10Mbps for each of 250 invocations. The route of the
flow is same as the route discovered by routing protocols in
the current Infrastructure. The chosen limit for the created
queue has around 30% less bandwidth, allowing the impact
of this queue to be noticeable throughout the experiment.
The purpose is to understand how traffic injected in both
ways (unidirectional and bidirectional), such as interactive
video between source and destination, impacts the overall
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system performance. The considered traffic pattern consisted
the injection of 250 flows with a duration of 45s per flow.
The results for measured bit rate and delay are shown in Fig.
7. Another important aspect of this experiment is creation
and installation of queues and their associated flows (TABLE
I), which imply the creation and deletion of 250 queues per
receiving site (500 queues in the bidirectional scenario).

TABLE I: Data traffic experiment results

Average Queue Average Queue Source Capacity Throttled
Installation time Removal time speed speed

48.3 ms 452ms 13.75Mbps 10Mbps 9.2Mbs

The obtained results revealed that the VPS engine was able
to cope with the amount of requested invocations, efficiently
issuing the respective queue and flow management. Moreover
the process of creating or installing queues revealed to be
quite efficient, taking on average less than 50 milliseconds.
On the other hand, the queue removal or deletion process took
unexpectedly more time (approx. 450ms, TABLE 1). After a
close analysis we were able to conclude that this was due to
internal OvS database verification for consistency, regarding
the installed flows and queues for each QoS entry. Regarding
the flow management operations there was no significant
limitation or variation, presenting a very good performance in
data traffic scenarios. These results also showed that expected
traffic shaping introduced by create queues successfully limits
the amount of transmitted data. The registered average value
is around 9.2Mbps, which is lower than the expected 10Mbps.

B. Control traffic experiments

For this experiment, a city of 1 million inhabitants was con-
sidered and assumed that the service provider has a penetration
of 20% in such a market, giving a possibility of 200,000
users. Two busy periods during the day were considered: a
mid-morning period driven by enterprise traffic and an early
evening period driven by domestic traffic (2 hours of duration
each). In the busy period, it was considered that 75% of the
users are active. We consider two cases in this experiment: (1)
baseline and (2) expansive. In the baseline case we consider
that each customer demands 1 event during the busy hour. This
baseline case equates to a requirement to handle 75,000 events
during a busy hour. In the expansive case we consider that each
customer demands 3 events during a busy hour. Therefore, it
needs to handle 225,000 events in a busy hour.

We then consider what engineering headroom is needed for
expansion. In a voice network today, service growth is low as
voice is a mature service, so the systems operate with a low
headroom, but in the Internet with the rapid arrival of new
services, growth can be quite fast. So in the expansive case
we consider a headroom factor of 2 (i.e., for 450,000 events).

We emulate the baseline case in the iMinds testbed. On
the other hand, in the Amazon cloud facility, we increase the
number of invocations and show that how many invocations
can be handled by the VPS Engine for the expansion case.

Fig. 8: 75000 Busy Hour Flow Invocations per hour

1) Experiment on the iMinds testbed: With the purpose
of assessing the VPS controller, and its associated software
stack performance, this experiment submits it to a high-load of
signalling requests (i.e., mimics a high number of users). For
this purpose a pulse generator was deployed to generate sig-
nalling pulses, in a two-hour interval (busy hour), distributed
according to a Poisson distribution and with random service
duration of between 3 minutes and 30 minutes.

The trigger request response time in Fig. 8 is the time
to trigger allocation of resources for an invocation request,
and the drop request response time is the time to delete the
resources of an invocation. The results in Fig. 8 shows the
minimum, average, and maximum value of the trigger and drop
request time. The obtained results (Fig. 8) revealed that even
under high-load, and for prolonged period, the VPS engine is
capable of handling triggers in under 400ms for the baseline
case (with the arrival of invocations in Poisson distribution).
From the results, it is concluded that the VPS Engine can
scale to a high volume of flow invocations and terminations,
to support a busy hour flow invocation (BHFI) capacity of
75000 events on mid-range servers.

Fig. 9: High Volume Invocations on Amazon
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2) Experiment on the Amazon cloud facility: The experi-
ment on the Amazon cloud documents the scalability of high
volume of invocation. In this experiment, the VPS engine
showed the capability to handle up to 4800 requests per minute
(see Fig. 9). That is, up to a total of 288000 requests in a one-
hour period that would constitute a Busy Hour, well above
the estimated 75000 requests in the baseline situation. The
results show a BHFI capacity of 288000 on one server, which
is 64% to our target of 450,000 in the expansion situation.
This number, however ultimately depends on the performance
of the associated OpenFlow controller and network hardware.

C. Failure recovery experiments

For failure recovery experiments, we implemented a frame-
work [22] with which high quality of service can also be
achieved in failure conditions. In this framework, under failure
conditions, the controller reroutes traffic to a failure-free path
gained through BGP. Regarding the implementation, we did
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Fig. 10: Failure Recovery Experiment Results
not focus on fast failure recovery [23], but instead, we focus on
scenarios in which high-priority should be provided to high-
priority over best-effort users. We conducted emulations on
the iMinds islands with different rate of traffic and one of
the links between aggregation and core networks is failed (or
made down). With results (Fig. 10), we were able to conclude
that when there is enough bandwidth of the failure recovery
path, neither high-priority nor best-effort traffic gets affected
after re-routing traffic to a failure-free path. On the other hand,
when there is limited available bandwidth, best-effort traffic
experiences packet loss in order to meet the requirements
of high-priority traffic. Finally, when the total amount of
bandwidth is insufficient even for high-priority traffic, despite
registering some losses it still maintains its priority above best-
effort traffic, which causes no interference.

D. Multiple island Experiment

We performed experiments for the multiple island scenarios
described in Section IV.

For this, we calculated response time (time taken to response
a user request), CPU usage, and memory usage of VPS. All the
tests used the ETHZ island as the source, having the services
triggered by the test harness from a user machine installed on
the aforementioned island. To validate the experiments, two

tests were performed: (1) triggers originating from the ETHZ
island were performed, having the Dublin island as destination
during 1 hour duration; (2) triggers originating from the ETHZ
island were performed, having the TUB island as destination
during 1 hour.

TABLE II: VPS machine CPU usage and memory usage

Indicator Dublin island TUB island ETH Zurich
(Average) (Average) (Average)

CPU usage 33% 40% 35%
Memory usage 21% 15% 41%

TABLE II presents the CPU usage and memory usage of
the VPS machine during the span of experiments.
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Fig. 11: Response time
Fig. 11 shows the response time in different islands. It shows

that the response time in these islands is significantly longer
than the iMinds islands (see results in previous subsections).
Due to the fact that the machines present on these OFELIA
islands, as well as the Dublin island, are underpowered (i.e.,
virtualized) when compared with the machines on iMinds
island could justify the increase in response time. Additionally,
the results obtained against TUB and ETH islands show a
small difference between them.

VI. CONCLUSION

In this paper we have presented the CityFlow project’s pro-
posal of dynamic OpenFlow-capable public networks, capable
of addressing the challenge of the current and future Internet
data-traffic growth. Large-scale experiments for a city of one
million inhabitants were performed in order to demonstrate
the feasibility of this proposal, considering scenarios involving
multiple autonomous systems. These experiments were under-
taken on multiple islands of the OFELIA testbed emulating
different technology networks.

Based on the obtained results, we have confirmed that an
OpenFlow network with VPS coordination between multiple
autonomous systems is feasible and is able to achieve all
of the proposed objectives. These results motivate future
research (e.g., on other testbeds such as FIRE [24]), upgrading
the used network emulation platform, based on OpenFlow
software-switches, into a a production network for validating
the proposed architecture with OpenFlow-enabled hardware
switches. Moreover, this conclusion further reveals that sup-
port of quality of service queues on commercial OpenFlow
switches would be required in the future.
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