
Software-Defined Traffic Load Balancing for Cost-
Effective Data Center Interconnection Service

Young-Jin Kim
Bell Labs, Nokia

Murray Hill, NJ, USA
young.kim@nokia.com

Jesse E. Simsarian
Bell Labs, Nokia

Crawford Hill, NJ, USA
jesse.simsarian@nokia.com

Marina Thottan
Bell Labs, Nokia

Murray Hill, NJ, USA
marina.thottan@nokia.com

Abstract — For interconnection between geographically-
separated data centers, network carriers typically implement
multiple optical paths in a wide-area network. For example,
when transmission wavelengths have 100 Gb/s granularity,
three 100 Gb/s wavelength paths are provisioned to satisfy a
customer demand of 300 Gb/s. Over the multiple provisioned
paths, interconnection traffic is typically distributed using
per-flow hashing, which results in an uneven distribution of
traffic caused by hash collisions. For a relatively-few number
of high-bandwidth traffic flows (> 1 Gb/s) between data center
locations, per-flow hashing can perform poorly in terms of
bandwidth utilization and availability.

We propose new software-defined traffic load balancer,
SD-TLB, that performs measurement-based flow distribution
over multiple optical paths, with an implicit impairment
detection method using per-port statistics on available paths
and a flow redistributor that is immediately adjusted to the
current network state. While our approach does not provide
the same level of protection as 1+1 optical protection, it can
provide the necessary redundancy for data center inter-
connection at a lower cost. We experimentally implement the
SD-TLB using ASIC-based switches and open virtual switches
interconnected by wavelength-division multiplexed transport
network test-bed. The experimental results show that SD-TLB
outperforms today’s hashing–based alternatives in balancing,
throughput, and restoration in the presence of outages and
impairments and as a result achieves improved cost-efficiency.

Keywords — Data Center Optical-Interconnect, Traffic
Load Balancing, Outage and Impairment Protection.

I. INTRODUCTION
Extra-large enterprise networks and cloud providers

operating multiple data centers are increasingly exchanging
high-volumes of data between their data center (DC) sites
for data caching and replication, storage backup, and load
balancing. DC interconnects (DCIs) [1] are often connected
via metro-optical connections (up to 500 km). As shown in
Fig. 1, a single DCI is provisioned on multiple wavelengths
(i.e., optical-circuits) over optical transport network (OTN)
or a dense wavelength-division multiplex (DWDM) [2].

Network carriers as DCI providers do not typically
expose optical path diversity information to their customer
DCI users (i.e., DC operators) since they offer DCIs as a
service, e.g., 300G bidirectional link service. As described
in [3], for a pair of DCs, interconnection traffic is usually
distributed over multiple optical-circuit paths using a traffic
load balancer (TLB) that relies on per-flow hashing such as
hash-threshold [5]. It is known that no per-flow hashing
scheme, where a packet arriving at a network's ingress node
is sent over a path decided by a hashing calculation based
on its header information, avoids collisions that occur when

Ingress/Egress
Node

Three 100G optical circuits (i.e., 3 wave-lengths)

Carrier Network (Metro/WAN)DC A

ROADM

ROADM

ROADM

ROADM
OTN or

MPLS/DWDM

DC B

300G bidirectional DCI link

Fig. 1. An example inter-DC connection over a carrier network.

different traffic flows between a given source-destination
pair are assigned the same path. With relatively-few high-
bandwidth flows between two DC sites [1], per-flow
hashing schemes can incur uneven traffic distribution over
multiple optical paths resulting in lower bandwidth
availability. For a circuit-switched optical path, outage or
impairments can cause service degradation (or disruption)
when there are no designated protection optical paths. To
meet service-level agreements (SLAs) for customers who
need high bandwidth availability, network carriers as DCI
providers typically provision redundant optical paths for
path protection. For example, for a 300G DCI and 100G
wavelength granularities, a network carrier establishes six
100G optical paths, three as active paths and three as
protection paths, called 1+1 protection. For stringent SLAs,
protection paths are exclusively dedicated to the DCI. As a
result, customer DCI users pay a high cost for using high-
availability DCIs, even though the utilization of DCIs
typically does not exceed 50%1 and high availability of
DCIs is not always required.

Motivated by this, we address the problem of building
cost-effective DCIs that have the necessary availability for
a DCI service at a lower cost. As a solution, we propose a
new software-defined traffic load balancer SD-TLB that
consists of 1) a round-robin based flow scheduler and 2) a
fast self-restoration scheme against outage and impairments,
based on measured per-port statistics. SD-TLB was built on
the CPU of physical (i.e., ASIC-based forwarding) SDN
switches [8], as well as on open virtual switches [9].

Our major contributions are as follows. First, we show
through experiments with multiple 10G optical paths that
link aggregation group (LAG) [4] (today’s TLB industry
practice) and OpenFlow group tables [10] (an available

1 According to [6-7], the DC operators on an average utilize only 20-30%
of the DCIs that are over provisioned due to a high peak-to-mean traffic
ratio. When network carriers have protection paths to protect the DCIs, the
utilization from the view point of carriers can decrease to 10-15%.

978-3-901882-89-0 @2017 IFIP 255

2

SDN-based TLB) that rely on per-flow hashing are limited
in providing high bandwidth availability where each flow
on average demands more than 1G bandwidth. In addition,
since SD-TLD has awareness of Multipath TCP (MPTCP)
[11] that creates multiple TCP sub-flows per TCP
connection to allow the use of multiple paths, path collision
among MPTCP sub-flows in a TCP connection is avoided.
Therefore, we can make TCP traffic flows evenly
distributed over multiple optical paths. More importantly,
we provide the necessary redundancy for DCIs by
exploiting measured per-port statistics to distribute flows,
thus mitigating the need for dedicated protection paths.
Furthermore, our implementation addresses practical issues
such as the limited flow-table size and flow-setup latency
inherent to ASIC-based SDN switches [8]. Our
experimental setup evaluates SD-TLB in the face of real
outage (i.e., cable plug-out) and impairment scenarios (i.e.,
high bit error ratio (BER) on an optical path [12]) in a 30G
DCI over a 3 x 10G optical network (See Fig. 5).

II. RELATED WORK

Load balancing, a central aspect of traffic engineering
that exploits a logical aggregation group combining
multiple physical paths (or connections) for higher
bandwidth and redundancy against failures, has been the
subject of several prior studies [3-7] [10-11] [13] [21-22].
We note that this paper focuses on a new cost-effective
TLB for metro and long-haul optical networking rather than
for general data-center networking.

Most of the prior studies rely on per-flow hashing
(PFH) or per-packet round-robin (PPR) to distribute traffic
over a group of combined multiple paths. In PFH, all
packets in a flow go through the same path determined by
hashing per-packet although multiple paths are available.
However, PFH inherently incurs uneven traffic distribution
that results in service degradation, i.e., lower bandwidth
availability. It can provide statistically good aggregate
throughput when there are a large number of flows but can
show a high variance of per-flow throughput when there
are a small number of high-bandwidth flows, as shown in
Sec. 5. With PPR, where the forwarding decision is made
in a round-robin fashion, a network node evenly distributes
packets over all paths in an aggregation group regardless of
the flow a packet belongs to. All the paths are assumed to
be of equal cost such as delay and thus need be established
over the same fiber cable. 1+1 protection is required for
PPR or service disruption occurs when the fiber cable fails.

GMPLS (Generalized Multiprotocol Label Switch) load
sharing group [3], LAG [4], and OpenFlow group table
[10] use either PFH or PPR; ECMP (Equal-Cost Multi-Path
routing) [13] uses PFH; OIF (Optical Internetworking
Forum) FlexEthernet super-rate [21] uses only PPR. Note
that PPR-based schemes are not compared in the rest of this
paper since SD-TLB is effective regardless of whether all
paths in an aggregation group are of equal cost or not.
ECMP is commonly used for multi-hop packet networks
where intermediate nodes between an ingress-egress node
pair are Ethernet switches or IP routers where hashing

calculation is possible. However, it is not well aligned with
optical networking where intermediate optical nodes cannot
perform hashing computation and a connection between
two packet nodes through optical paths is viewed as a direct
link (see Fig.1). In comparison, GMPLS inherently
supports optical networking [23]; LAG is a good fit for
optical networking because it exploits multiple parallel
connections over a single packet-layer hop without hashing
at intermediate nodes; OpenFlow group table that provides
different group abstractions such as multicasting, multi-
pathing, and failover has similar behavior to LAG.
 Recent literature on load balancing shows dynamic flow
scheduling [6-7] [22] that addresses problems caused by the
static hashing of PFH and is implemented using SDN
concepts. Large DC operators [6-7], who tried to improve
utilization of expensive DCI links (given by network
carriers) to slow down the increase of DCI capital
expenditure, introduced SDN-enabled ECMP TLBs for
inter-DC networking where multiple DC locations are
connected to each other through long-haul networks. Recall
that network carriers do not expose optical path diversity
information to their customers and have their own TLBs
(exploiting optical path diversity) for high bandwidth
availability of DCI link services (see Fig.1). Thus, their
SDN-controlled TLBs have no direct interaction with
carriers that provide the DCI links and as a result work over
overlay-network graphs that have DC sites as a set of
vertices and DCI links as a set of edges. In those works, a
centralized global SDN controller, which can monitor the
utilization of all DCI links among all DC sites and estimate
flow demand, proactively computes a set of rules for
ECMP-based flow distribution over multiple DCI links per-
site, and installs the rule set to corresponding DC sites that
will perform flow distribution. Hedera [22] is a SDN-based
dynamic flow scheduler for traffic load balancing in multi-
rooted trees such as FatTree [24], a typical DC network
topology. Similar to [6-7], it is implemented by a DC-wide
global SDN controller that can detect large-size flows and
estimate flow demand.

However, prior work [6-7] [22] leveraged by a global
SDN controller is limited in support for real-time
restoration against failures due to non-negligible delay
caused by the physical distances between a global
controller and all nodes in a long-haul network, or a high
number of nodes in a network. In contrast, for cost-
effective DCI traffic distribution where the required
availability for DCI links is preserved at a lower cost
without 1+1 protection, SD-TLB-enabled nodes supports
faster restoration through immediate failure detection and
routing-rule computation independent of global SDN
controllers. SD-TLB built for TLB in a DCI link (an
aggregate of multiple optical paths in a long-haul network)
complements the solutions in Refs. [6-7] that describe TLB
over multiple DCI links per-DC site with no awareness of
the underlying transport-network topology. Compared to
Refs. [6-7] [22], our SD-TLB is a localized approach for
rule computation and a non-hashing approach for traffic
distribution whereby upon the arrival of a new flow, a SD-

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)256

3

TLB enabled node computes rules locally using optical
path information (previously given by a global controller
[14]) and taking into consideration the current node state.

Multipath TCP [11] is anew experimental connection-
oriented layer-4 protocol that exploits IP address diversity
between two end hosts rather than physical path diversity in
networks. MPTCP resiliency can be improved by SD-TLB.
MPTCP alone cannot overcome limitations inherited from
today’s TLB practices and therefore works well together
with SD-TLB, as shown in Sec. 5. Binder [15] uses a
middle-box approach that relies on MPTCP and logical
path diversity rather than physical path diversity. In Binder,
all messages are intercepted by a Binder middle box and
forwarded to a MPTCP protocol stack before being sent to
a counter-Binder middle box by an IP source routing
scheme. This approach can be used for low-rate wireless
networking, but is not suitable for high-bit rate networking.

III. DESIGN OF SD-TLB

SD-TLB is embedded into ingress nodes in carrier
networks. Architecturally, SD-TLB interacts with three
other components in the case of ASIC-based SDN
switches: the internal open virtual switch (OVS), the
physical ASIC forwarding table, and a global network
controller [14] as shown in Fig. 2. SD-TLB performs two
functions: (1) per-flow scheduling that in a round-robin
manner searches for candidate paths with the consideration
of current switch states, and (2) outage/impairments
detection and recovery.

PCIe

Path setup
Path restoration

CPU

OVS

Global network
controller, e.g., ONOS

Impairment
Detection and Recovery

B/W hungry elephant traffic flows

Default path
for flows

10/40G
port

PFS
IDR

SD-TLB

Switch Fabric
w/ TCAM

Per-Flow Scheduler

10/40G
port

Fig. 2. System architecture of an ASIC SD-TLB enabled switch.

Upon the arrival of a new TCP flow that has no existing
routing rule at a SD-TLB switch, a per-flow scheduler
(PFS) selects one of N per-destination paths. We assume
that there are no anonymous TCP flows at the DCI. The N
paths were previously provided to the switch by a global
network controller. PFS writes a rule into the flow table of
the internal OVS. PFS can evenly distribute TCP flows
across N per-destination paths. In the event of a network
state change (e.g. a change in the number of available
paths), the global controller updates the path information.
Further, SD-TLB has MPTCP awareness with additional
data structures for MPTCP flows that tracks the last chosen
MPTCP flow path. Thus, we can ensure collision-free
behavior among M MPTCP sub-flows per user traffic flow
when M ≤ N.

SD-TLB protects in-service flows from impairments or
outages in the order of 100 ms without requiring expensive
dedicated protection paths or time-consuming action by the
global network controller. As shown in Fig. 4, our scheme
is purely local: if the number of packets received (or sent)
in path p during the current time window is substantially
less than the average number of packets received or sent in
p during k last consecutive time windows (parameters such
as k and C can be adjusted through the global controller),
an ingress node infers that p has failed or is impaired and
takes action by re-routing the flow. It relies on the property
of acknowledgement-based TCP congestion control scheme.
Outage: if path p from ingress node A to egress node B has
failed, B never receives any packet through path p.
Simultaneously, either A never gets an acknowledgement or
it consecutively receives duplicate acknowledgements in
the case that the flow’s forward path is physically different
from its backward path. It follows that all TCP flows that
traverse p immediately reduce their congestion window
size to zero such that A will not send any packets on path p.
Impairment: if path p from node A to node B is severely
impaired, B will receive a fraction of all packets injected
into p by A as packets in transit are dropped by CRC check
failures inside the network. As a result, senders will receive
a high number of duplicate acknowledgements. It follows
that all TCP flows that traverse p immediately reduce their
congestion window size. A will observe a much-smaller
number of packets to p, compared to an average number of
packets observed in the past.

Fig. 3. Pseudo code of per-flow scheduler (PFS).

Fig. 4. Pseudo code of impairment detection and recovery (IDR).

C := statistics collection interval. # e.g., 100 ms
tc := current time
tc-1 := tc - C
Wc := the time window from tc -1 to tc
Rc[p]: the number of received packets in path p during Wc

Rh[p]: the average number of received packets in path p
during the last k consecutive windows Wc-1, Wc-2 ,…,Wc-k
Tc[p]: the number of sent packets in path p during Wc

Th[p]: the average number of sent packets in path p during the
k last consecutive windows Wc-1, Wc-2 ,…,Wc-k
For p in a set of active paths
 If Rc[p] > Rh[p] * threshold1 or Tc[p] > Th[p] * threshold1
 Revoke p to the set of active paths
 Migrate all flows in the bucket of path p
 If Rc[p] < Rh[p] * threshold2 or Tc[p] < Th[p] * threshold2
 Remove p from the set of active paths
 Restore migrated flows back to the bucket of path p

P := a set of active paths to destination site D
 N := a number of active paths to destination site D
 I := the last used path index in P

 Fp := a set of flows walking over a path p in P
 h := an identifier per Multipath TCP flow toward D
 MLh := the last used path index by a Multipath TCP flow h
 f := a new flow forwarded for SD-TLB switch
If f is going to walk toward D
 p = P [(I +1) mod N]
 If f is a new Multipath TCP flow with an identifier h
 MLh = (I +1) mod N
 elif f is a subsequent Multipath TCP flow with identifier h
 p = P [(MLh +1) mod N]

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 257

4

IV. IMPLEMENTATION AND NETWORK TEST BED

SD-TLB forwards high-bandwidth flows in ingress
switches in a carrier network. Thus, for implementation and
experiments, we use open architecture switch platforms
with powerful CPUs and multiple 10G ports, as shown in
table 1. We implement SD-TLB with about 1,500 lines of
Python code that can execute on the CPU of ASIC-based
SDN [8] or on open virtual switches [9].

A. Control plane

SD-TLB has a localized and reactive scheme. Thus, as
shown in Fig. 3, SD-TLB intercepts TCP messages (SYN
only or both SYN and ACK) toward the destinations of
interest (i.e. other DCs) whose addresses and routes have
been previously provided by a global network controller.
For an ASIC SDN switch, all unmatched traffic flows are
sent to the internal OVS, as shown in Fig. 2. If the flow is a
new TCP flow, it is intercepted 2 by SD-TLB PFS. To
implement this, we write rules into OVS flow table before
the new flow arrives, e.g., tcp, 10.20.10.1/24, actions=To-
PFS. For TCP SYN-only messages, SD-TLB PFS stores the
TCP information into its data structure without flow rule
generation and then sends it back to the OVS. For TCP
SYN and ACK messages, it decides paths (see Fig. 3),
creates flow rules, and installs the rules to the OVS that
will perform routing using the rules. SD-TLB checks TCP
option fields in SYN messages to check whether flows are
conventional TCP or MPTCP, and also the associations
among sub-flows per Multipath TCP flow. The long delay
(i.e., in the order of 10 ms to seconds) for writing into
physical flow tables [8] is avoided by writing flow rules
into the OVS whose writing delay is known to be small.
Elephant flows are later moved to a physical flow table for
being handled in a switch ASIC.

B. Data plane

As shown in Fig. 2, flows matched in a physical flow
table are routed by the ASIC-based switch and the rest of
the flows are sent to an internal OVS. In the OVS, all
matched flows are tagged to be routed to their destinations.
Unmatched flows (including UDP and ICMP) other than
new TCP flows (see Sec. 4.1) can be routed by the internal
OVS with no involvement of PFS since OVS supports the
feature specified as normal action in OpenFlow [10]. A key
advantage of this approach is that such a hierarchical data
plane can address the limited physical ASIC flow-table size
(e.g. 4K flow entries) because OVSes can store large
forwarding tables, proportional to the CPU’s available
random-access memory.

Note that each path is represented by a VLAN [16]
identifier in our implementation. Thus, all traffic flows are
tagged in an ingress node and untagged in an egress node.

2 Intercepting TCP SYN messages in SDT-TLB enabled nodes introduces
non-negligible additional TCP handshake delay (see Table II). Note that
snooping TCP SYN messages can avoid the delay, e.g., tcp 10.20.10.1/24,
actions = To-default-path & To-PFS. However, it is not implemented since
it requires multicast ability that the switches used by us cannot support yet.

In principle, VLAN tags can be replaced with MPLS labels.
One benefits of using VLAN tags is interoperability with
OTN with only Ethernet awareness in client ports [2].
VLAN tags are also necessary to support large scale flow
aggregations, although this may require some coordination
with the global controller [14].

C. Network test bed

Fig. 5 shows our transport-network test bed where an
ingress node and egress node are connected through carrier-
grade MPLS routers, wavelength-division multiplexing
(WDM) optical transport shelves, and three 10G paths. The
ingress/egress nodes employ SD-TLB or two alternatives,
1) LAG when ASIC-based SDN switches are used as the
ingress/egress nodes and 2) OpenFlow multipath group
(OFMG) when software switches are used as the
ingress/egress nodes. Note that the ASIC-based SDN
switches [8] could not be connected to the MPLS/WDM
network elements since LAG supported by them cannot be
used with the MPLS routers and also they do not have
OpenFlow multipath group ability that is specified in
OpenFlow 1.1+ (see table 1). Therefore, in the case of
ASIC-based SDN switches, our experiments are done using
three 10G back-to-back connections between two ASIC-
based switches. As shown in Fig. 5, two end-point PCs
running Linux Kernel 3.8.20 and equipped with a 2 x 10G
dual-port Ethernet card generate and receive TCP traffic
flows using Iperf [17].

We keep total throughputs from the ingress node to the
egress node below 20 Gb/s although the total bandwidth in
the network is 30 Gb/s. This is inspired by the low average
link utilization (i.e.., 20-30%) typically employed by DC
operators [6-7] and by network capacity (i.e., bandwidth)
over-provisioned by network carriers.

TABLE I. SWITCHES USED IN IMPLEMENTATION AND
EXPERIMENTS

 Software Switch [9] ASIC-based Switch [8]

CPU
 Intel Xeon E5-2670

2.6GHz
Intel Core i3 2.0GHz

Memory 64GB RAM 2GB RAM
OS Linux Kernel 3.8.19 Linux Kernel 2.6.34

Ports 5x10G ports 48x10G ports, 4x40G ports

Switch ASIC None Yes with 4K-entries TCAM

OpenFlow version 1.3+ version 1.0 only

SDN Switch (Ingress)

10G One DCI link service

10G

Source DC Destination
DC

10G

10G2x10G one-hop optical paths
and 10G two-hop optical path

path 1

path 2

path 3

SDN Switch (egress)

MPLS/DWDM
Optical Transport

Fig. 5. Network test bed with 3 x 10G paths.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)258

5

Cable
plug-out

Cable
plug-in

SD-TLB_TCP
LAG_TCP

Fig. 6. Per-port aggregate throughput with 4 TCP flows/port using

LAG and SD-TLB.

Cable
plug-out

Cable
plug-in

LAG_MPTCP
SD-TLB_MPTCP

Fig. 7. Per-port aggregate throughput with 4 MPTCP flows/port using

LAG and SD-TLB.

V. EXPERIMENTAL RESULTS

In the experiments, we measure the following metrics:
aggregate throughput, balancing among in-service flows
and availability during outages or impairments. With cable
plug-out and plug-in at the ingress node (i.e. the outage
case) or optical-layer impairments, we have compared how
SD-TLB and the alternatives (LAG or OFMG) impact
conventional TCP [18] traffic and Multipath TCP [19]
traffic. The MPTCP was set to create two TCP sub-flows
per user flow using the ndiffports option [20]. Note that few
experimental results with MPTCP are shown in this paper
due to space constraints. To create impairments, we use a
fast semiconductor optical amplifier that periodically
extinguishes the optical signal for an adjustable time [12]
on path 2 before the optical receiver (Fig. 5). To measure
per-flow throughputs among competing flows, a source PC
simultaneously generates 3 or 4 flows per 10G port. Thus,
we have 6 or 8 flows over the 2 ports for conventional TCP.

 For the SD-TLB impairment detection recovery, per-
port statistics are collected every 200 ms. For checking if
end users can experience service degradation for cable
plug-out or optical-layer impairments, we measured per-
port throughput and per-flow throughput at 2x10G Ethernet
card of a destination PC (see Fig. 5).

Cable
plug-out

Cable
plug-in

Fig. 8. Per-flow throughput with 4 TCP flows/port using LAG.

Cable
plug-out

Cable
plug-in

SD-TLB_TCP_flow1
SD-TLB_TCP_flow2
SD-TLB_TCP_flow3
SD-TLB_TCP_flow4

Fig. 9. Per-flow throughput of 4 TCP flows/port using SD-TLB.

A. Outage with ASIC-based SDN switches

Using two ASIC SDN switches described in Table 1,
we compared SD-TLB and LAG. ECMP was not compared
in this paper since it assumes one IP address per-path (by
contrast SD-TLB, LAG and OFMG all need single IP
address for all multiple paths), and as a result needs at least
three nodes to implement multiple paths between two nodes.
In addition, we could not use OFMG with the ASIC-based
SDN switches that presently support only OpenFlow 1.0.
Fig. 6 shows 19 Gb/s TCP traffic (9.5 Gb/s per-port)
transmitted between two ASIC-based SDN switches
interconnected with 3 x 10G back-to-back connections.

At ~41 sec, we have unplugged one of the optical
interconnection cables. Almost no throughout reduction is
observed with SD-TLB since it quickly redistributes traffic
flows on the failed path to other paths. In comparison, LAG
has a considerable throughput reduction, even though 20G
of 30G network capacity remains. Similar results also are
observed in experiments using MPTCP, as shown in Fig. 7.
In addition, LAG shows fluctuations in per-flow throughput
during the outage due to competition among flows caused
by uneven distribution during outage, as shown in Fig. 8. In
contrast, SD-TLB quickly responds to the outage with no
instability in per-flow throughputs (Fig. 9).

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 259

6

Cable
plug-out Cable

plug-in

SD-TLB_TCP
OFMG_TCP

Fig. 10. Per-port aggregate throughput with 3 TCP flows/port using

OFMG and SD-TLB.

SD-TLB_MPTCP
OFMG_MPTCP

Cable
plug-out

Cable
plug-in

Fig. 11. Per-port aggregate throughput with 3 MPTCP flows/port

using OFMG and SD-TLB.

B. Outage with the network test bed

In the network test bed, we use OVS ingress/egress
nodes [9] that are interconnected by 3 x 10G paths in the
packet over WDM transport network (see Fig. 5). Note that
OVSes cause more throughput variability compared to
ASIC-based switches. Since the OVS nodes support OFMG,
which can be carried over the transport network, we
compare OFMG and SD-TLB. Fig. 10 and 11 show outage
effect via the per-port aggregate throughput with 3 TCP
flows/port and with 3 MPTCP flows/port respectively.

In the case of OFMG, the port aggregate throughput
drops by ~50% whereas the SD-TLB throughput remains
nearly constant. In Fig. 12 and 13 showing the per-flow
throughput of TCP flows, we can see if traffic distribution
among flows is balanced for OFMG and SD-TLB. SD-TLB
has more balanced traffic distributions, especially when the
cable is unplugged. An observation different to Sec. 5.1 is
that TCP flows in a failed path are service disrupted with
OFMG during outage, as shown in Fig. 12. The two nodes
used for Fig. 6-9 simultaneously detect outages in a
directly-connected link and avoid such a service disruption.
In this test where two nodes are connected through a
network, failures in either of nodes or inside the network
cannot be detected and thus either or both of nodes using

Cable
plug-out

Cable
plug-in

Fig. 12. Per-flow throughput with 3 TCP flows/port for OFMG.

Cable
plug-out Cable

plug-in

SD-TLB_TCP_flow1
SD-TLB_TCP_flow2
SD-TLB_TCP_flow3

Fig. 13. Per-flow throughput of 3 TCP flows/port for SD-TLB.

OFMG do not move flows to different paths. In comparison,
SD-TLB can effectively deal with these cases (Fig. 13).

C. Impairment with the network test bed

We also compare the performance of OFMG and SD-
TLB for the case of an impaired link when the OVS ingress
/egress nodes are interconnected by the transport network.
During the impairment, the optical link has a post forward-
error correction BER of ~10-6, causing the throughput of
flows on the errored path to drop by over 90%. In this case,
SD-TLB can sense the drop in throughput with its per-port
statistics monitoring capability, and moves flows away
from the impaired path.

We observe from Fig. 14 that for TCP flows, SD-TLB
shows a steady per-port aggregate throughput and recovery
from service degradation caused by impairments, and by
contrast OFMG does not recover from drop in throughput
during the impairment period. In addition, we have
observed highly-unbalanced per-flow traffic distribution in
the case of OFMG (see Fig.15) and well-balanced per-flow
traffic distribution for SD-TLB (see Fig. 16).

D. Overhead of SD-TLB

SD-TLB introduces an additional TCP handshake delay
since for each new flow SD-TLB performs TCP intercepts

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)260

7

twice, PFS twice, and a rule insertion. As shown in Table 2,
we have measured the TCP handshake delay at a source PC.
Round trip times (RTTs) are about 1 ms in our test bed (see
Fig. 5) and about 0.2 ms through two ASIC-based switches
connected back-to-back. From Table 2, we see that it takes
about 10 ms to write a rule into a ASIC-based switch flow
table. A detailed study of rule insertion was described in
Ref. [8]. Compared to other SDN-enabled approaches [6-7]
[22], our SD-TLB has no delay caused by communication
between SDN switches and external global SDN controllers
for flow rule setup as SD-TLB is a local controller
collocated with a SDN switch.

We also have the possibility to reduce delays by
implementation with the C/C++, a compiled language that
is known to be generally one to two orders of magnitude
faster than Python, an interpreted scripting language that
we used for implementing SD-TLB. However, the delay
reduction effort may be constrained by lower-power CPUs
typically used for ASIC-based switches. The reduced delay
may still introduce non-negligible overhead for short-lived
flows. The high TCP handshake delay mostly stems from
the interception of TCP SYN messages for SD-TLB PFS
(described in Sec. IV.A). As described in footnote 2, if SD-
TLB enabled nodes do not intercept but snoop TCP SYN
messages, we can keep the messages from being delayed by
the completion of SD-TLB PFR processing. That is, an
incoming TCP SYN message is forwarded over a default
path with no delay even while SD-TLB PFR is performed.
As a result, with TCP SYN snooping, SD-TLB may show a
comparable TCP handshake delay against alternatives.

TABLE II. TCP HANDSHAKE DELAY

 Without SD-TLB With SD-TLB

Test-bed 1.3 ms 100~150 ms
Back-to-back

connection
0.25 ms

70 ms for writes to a RAM table
84 ms for write to a TCAM

TABLE III. CPU LOAD FOR 100MS STATISTICS COLLECTION

AND 8 FLOWS/S

VI. CONCLUSION

In this work, we have demonstrated a software-defined
traffic load balancing that delivers high quality DCI service
in the face of outages and impairments without expensive
optical protection. The cost advantage is obtained through
the awareness of optical path diversity and better traffic
load distribution. Improved bandwidth availability of SD-
TLB is achieved by leveraging the intrinsic behavior of
TCP. We remark that the SD-TLB approach is stateless and
therefore scales well and can be deployed over existing
carrier networks. In addition, the SD-TLB based DCI
implementation fits well with the future evolution of carrier
networks to large-scale distributed DC networks.

Impairment
period

SD-TLB_TCP
OFMG_TCP

Fig. 14. Per-port aggregate throughput with 3 TCP flows/port for

OFMG and SD-TLB.

Impairment
period

 Fig. 15. Per-flow throughput in the presence of impairments for

OFMG.

Impairment
period

SD-TLB_TCP_flow1
SD-TLB_TCP_flow2
SD-TLB_TCP_flow3

Fig. 16. Per-flow throughput in the presence of impairments for SD-

TLB.

 Software Switch [9] ASIC-based Switch [8]
CPU

Usage
Less than 3% Less than 5%

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 261

8

REFERENCES

[1] A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer, P.
Magill, E. Mavrogiorgis, J. Pastor, S. L. Woodward, and J.
Yates, Bandwidth on Demand for Inter-Data Center
Communication, ACM HotNets-X, November 2011.

[2] Juniper Networks, Converged Packet Transport: Evolution of
Core Network: from Circuit to Packet, white paper, 2013.

[3] E. Mannie, Generalized Multi-Protocol Label Switching
(GMPLS) Architecture, IETF RFC 3945, October 2004.

[4] Link Aggregation, IEEE 802.1AX - 2008, November 2008.
[5] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm,

IETF RFC 2992, November 2000.
[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A.

Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U.
Hölzle, S. Stuart, and A. Vahdat, B4: Experience with a
Globally-Deployed Software-Defined WAN, ACM
SIGCOMM 2013, August 2013.

[7] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M.
Nanduri, and R. Wattenhofer, Achieving High Utilization
with Software-Driven WAN, ACM SIGCOMM 2013,
August 2013.

[8] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A.
Akella, L. E.Li, and M. Thottan, Measuring Control Plane
Latency in SDN-Enabled Switches, ACM/USENIX
SOSR2015, June 2015.

[9] Open Virtual Switch, http://openvswitch.org/.
[10] Open Networking Foundation (ONF), OpenFlow Switch

Specification Version 1.3.1, September 2012.
[11] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP

Extensions for Multipath Operation with Multiple Addresses,
IETF RFC 6824, January 2013.

[12] J.E. Simsarian, G. Atkinson, K. Carduck, K. Guan, Y.-J. Kim,
M. Thottan, and P.Winzer, Cross-Layer Aware Software
Defined Networking in an IP Over Optical Transport
Network, OSA Photonic Networks and Devices, July 2014.

[13] Virtual Bridged Local Area Networks - Amendment: Equal
Cost Multiple Paths (ECMP), IEEE 802.1Qbp - 2014, April
2014.

[14] B. Lantz, B. O'Connor, J. Hart, P. Berde, P. Radoslavov, M.
Kobayashi, T. Koide, Y. Higuchi, M. Gerola, W. Snow, and
G. Parulkar, ONOS: Towards an Open, Distributed SDN OS,
ACM HotSDN2014, August 2014.

[15] L. Boccassi, Binder: a System to Aggregate Multiple Internet
Gateways in Community Networks, ACM MobiCom
Workshop LCDNet, September 2013.

[16] Media Access Control (MAC) Bridges and Virtual Bridged
Local Area Networks, IEEE 802.1Q - 2011, August 2011.

[17] Iperf, https://github.com/esnet/iperf.
[18] H. Sangtae, I. Rhee, and L. Xu, CUBIC: a New TCP-friendly

High-Speed TCP variant, ACM SIGOPS Operating Systems
Review, Vol. 42, No. 5, 2008.

[19] Q. Peng, A. Walid, J.H. Hwang, and S. Low, Multipath TCP
Algorithms: Theory, Design and Implementation,
IEEE/ACM Transactions on Networking, January 2016.

[20] Multi-Path TCP Linux Kernel Implementation Version 0.90,
http://www.multipath-tcp.org.

[21] Optical Internetworking Forum (OIF), Flex Ethernet
Implementation Agreement 1.0, March 2016.

[22] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, Hedera: dynamic flow scheduling for data center
networks, Proceedings of USENIX conference on Networked
Systems Design and Implementation, April, 2010.

[23] Zhaoming Li, Design and Deployment of a GMPLS Control
Plane in IP Optical Networks, The City University of New
York Ph.D dissertation, 2007.

[24] M. Al-Fares, A. Loukissas, and A. Vahdat, A Scalable,
Commodity Data Center Network Arrchitecture, ACM
SIGCOMM 2008, August, 2008.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)262

