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Abstract — For interconnection between geographically-
separated data centers, network carriers typically implement 
multiple optical paths in a wide-area network. For example, 
when transmission wavelengths have 100 Gb/s granularity, 
three 100 Gb/s wavelength paths are provisioned to satisfy a 
customer demand of 300 Gb/s. Over the multiple provisioned 
paths, interconnection traffic is typically distributed using 
per-flow hashing, which results in an uneven distribution of 
traffic caused by hash collisions. For a relatively-few number 
of high-bandwidth traffic flows (> 1 Gb/s) between data center 
locations, per-flow hashing can perform poorly in terms of 
bandwidth utilization and availability. 

We propose new software-defined traffic load balancer, 
SD-TLB, that performs measurement-based flow distribution 
over multiple optical paths, with an implicit impairment 
detection method using per-port statistics on available paths 
and a flow redistributor that is immediately adjusted to the 
current network state. While our approach does not provide 
the same level of protection as 1+1 optical protection, it can 
provide the necessary redundancy for data center inter-
connection at a lower cost. We experimentally implement the 
SD-TLB using ASIC-based switches and open virtual switches 
interconnected by wavelength-division multiplexed transport 
network test-bed. The experimental results show that SD-TLB 
outperforms today’s hashing–based alternatives in balancing, 
throughput, and restoration in the presence of outages and 
impairments and as a result achieves improved cost-efficiency. 

Keywords — Data Center Optical-Interconnect, Traffic 
Load Balancing, Outage and Impairment Protection.  

I. INTRODUCTION 
Extra-large enterprise networks and cloud providers 

operating multiple data centers are increasingly exchanging 
high-volumes of data between their data center (DC) sites 
for data caching and replication, storage backup, and load 
balancing. DC interconnects (DCIs) [1] are often connected 
via metro-optical connections (up to 500 km). As shown in 
Fig. 1, a single DCI is provisioned on multiple wavelengths 
(i.e., optical-circuits) over optical transport network (OTN) 
or a dense wavelength-division multiplex (DWDM) [2].  

Network carriers as DCI providers do not typically 
expose optical path diversity information to their customer 
DCI users (i.e., DC operators) since they offer DCIs as a 
service, e.g., 300G bidirectional link service. As described 
in [3], for a pair of DCs, interconnection traffic is usually 
distributed over multiple optical-circuit paths using a traffic 
load balancer (TLB) that relies on per-flow hashing such as 
hash-threshold [5]. It is known that no per-flow hashing 
scheme, where a packet arriving at a network's ingress node 
is sent over a path decided by a hashing calculation based 
on its header information, avoids collisions that occur when 
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Fig. 1. An example inter-DC connection over a carrier network.  

different traffic flows between a given source-destination 
pair are assigned the same path. With relatively-few high-
bandwidth flows between two DC sites [1], per-flow 
hashing schemes can incur uneven traffic distribution over 
multiple optical paths resulting in lower bandwidth 
availability. For a circuit-switched optical path, outage or 
impairments can cause service degradation (or disruption) 
when there are no designated protection optical paths. To 
meet service-level agreements (SLAs) for customers who 
need high bandwidth availability, network carriers as DCI 
providers typically provision redundant optical paths for 
path protection. For example, for a 300G DCI and 100G 
wavelength granularities, a network carrier establishes six 
100G optical paths, three as active paths and three as 
protection paths, called 1+1 protection. For stringent SLAs, 
protection paths are exclusively dedicated to the DCI. As a 
result, customer DCI users pay a high cost for using high-
availability DCIs, even though the utilization of DCIs 
typically does not exceed 50%1 and high availability of 
DCIs is not always required. 

Motivated by this, we address the problem of building 
cost-effective DCIs that have the necessary availability for 
a DCI service at a lower cost. As a solution, we propose a 
new software-defined traffic load balancer SD-TLB that 
consists of 1) a round-robin based flow scheduler and 2) a 
fast self-restoration scheme against outage and impairments, 
based on measured per-port statistics. SD-TLB was built on 
the CPU of physical (i.e., ASIC-based forwarding) SDN 
switches [8], as well as on open virtual switches [9].  

Our major contributions are as follows. First, we show 
through experiments with multiple 10G optical paths that 
link aggregation group (LAG) [4] (today’s TLB industry 
practice) and OpenFlow group tables [10] (an available 
                                                                 
1 According to [6-7], the DC operators on an average utilize only 20-30% 
of the DCIs that are over provisioned due to a high peak-to-mean traffic 
ratio. When network carriers have protection paths to protect the DCIs, the 
utilization from the view point of carriers can decrease to 10-15%. 
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SDN-based TLB) that rely on per-flow hashing are limited 
in providing high bandwidth availability where each flow 
on average demands more than 1G bandwidth. In addition, 
since SD-TLD has awareness of Multipath TCP (MPTCP) 
[11] that creates multiple TCP sub-flows per TCP 
connection to allow the use of multiple paths, path collision 
among MPTCP sub-flows in a TCP connection is avoided. 
Therefore, we can make TCP traffic flows evenly 
distributed over multiple optical paths. More importantly, 
we provide the necessary redundancy for DCIs by 
exploiting measured per-port statistics to distribute flows, 
thus mitigating the need for dedicated protection paths. 
Furthermore, our implementation addresses practical issues 
such as the limited flow-table size and flow-setup latency 
inherent to ASIC-based SDN switches [8]. Our 
experimental setup evaluates SD-TLB in the face of real 
outage (i.e., cable plug-out) and impairment scenarios (i.e., 
high bit error ratio (BER) on an optical path [12]) in a 30G 
DCI over a 3 x 10G optical network (See Fig. 5). 

II.  RELATED WORK 

Load balancing, a central aspect of traffic engineering 
that exploits a logical aggregation group combining 
multiple physical paths (or connections) for higher 
bandwidth and redundancy against failures, has been the 
subject of several prior studies [3-7] [10-11] [13] [21-22]. 
We note that this paper focuses on a new cost-effective 
TLB for metro and long-haul optical networking rather than 
for general data-center networking. 

Most of the prior studies rely on per-flow hashing 
(PFH) or per-packet round-robin (PPR) to distribute traffic 
over a group of combined multiple paths. In PFH, all 
packets in a flow go through the same path determined by 
hashing per-packet although multiple paths are available. 
However, PFH inherently incurs uneven traffic distribution 
that results in service degradation, i.e., lower bandwidth 
availability. It can provide statistically good aggregate 
throughput when there are a large number of flows but can 
show a high variance of per-flow throughput when there 
are a small number of high-bandwidth flows, as shown in 
Sec. 5. With PPR, where the forwarding decision is made 
in a round-robin fashion, a network node evenly distributes 
packets over all paths in an aggregation group regardless of 
the flow a packet belongs to. All the paths are assumed to 
be of equal cost such as delay and thus need be established 
over the same fiber cable. 1+1 protection is required for 
PPR or service disruption occurs when the fiber cable fails.  

GMPLS (Generalized Multiprotocol Label Switch) load 
sharing group [3], LAG [4], and OpenFlow group table 
[10] use either PFH or PPR; ECMP (Equal-Cost Multi-Path 
routing) [13] uses PFH; OIF (Optical Internetworking 
Forum) FlexEthernet super-rate [21] uses only PPR. Note 
that PPR-based schemes are not compared in the rest of this 
paper since SD-TLB is effective regardless of whether all 
paths in an aggregation group are of equal cost or not. 
ECMP is commonly used for multi-hop packet networks 
where intermediate nodes between an ingress-egress node 
pair are Ethernet switches or IP routers where hashing 

calculation is possible. However, it is not well aligned with 
optical networking where intermediate optical nodes cannot 
perform hashing computation and a connection between 
two packet nodes through optical paths is viewed as a direct 
link (see Fig.1). In comparison, GMPLS inherently 
supports optical networking [23]; LAG is a good fit for 
optical networking because it exploits multiple parallel 
connections over a single packet-layer hop without hashing 
at intermediate nodes; OpenFlow group table that provides 
different group abstractions such as multicasting, multi-
pathing, and failover has similar behavior to LAG.  
     Recent literature on load balancing shows dynamic flow 
scheduling [6-7] [22] that addresses problems caused by the 
static hashing of PFH and is implemented using SDN 
concepts. Large DC operators [6-7], who tried to improve 
utilization of expensive DCI links (given by network 
carriers) to slow down the increase of DCI capital 
expenditure, introduced SDN-enabled ECMP TLBs for 
inter-DC networking where multiple DC locations are 
connected to each other through long-haul networks. Recall 
that network carriers do not expose optical path diversity 
information to their customers and have their own TLBs 
(exploiting optical path diversity) for high bandwidth 
availability of DCI link services (see Fig.1). Thus, their 
SDN-controlled TLBs have no direct interaction with 
carriers that provide the DCI links and as a result work over 
overlay-network graphs that have DC sites as a set of 
vertices and DCI links as a set of edges. In those works, a 
centralized global SDN controller, which can monitor the 
utilization of all DCI links among all DC sites and estimate 
flow demand, proactively computes a set of rules for 
ECMP-based flow distribution over multiple DCI links per-
site, and installs the rule set to corresponding DC sites that 
will perform flow distribution. Hedera [22] is a SDN-based 
dynamic flow scheduler for traffic load balancing in multi-
rooted trees such as FatTree [24], a typical DC network 
topology. Similar to [6-7], it is implemented by a DC-wide 
global SDN controller that can detect large-size flows and 
estimate flow demand.  

However, prior work [6-7] [22] leveraged by a global 
SDN controller is limited in support for real-time 
restoration against failures due to non-negligible delay 
caused by the physical distances between a global 
controller and all nodes in a long-haul network, or a high 
number of nodes in a network. In contrast, for cost-
effective DCI traffic distribution where the required 
availability for DCI links is preserved at a lower cost 
without 1+1 protection, SD-TLB-enabled nodes supports 
faster restoration through immediate failure detection and 
routing-rule computation independent of global SDN 
controllers. SD-TLB built for TLB in a DCI link (an 
aggregate of multiple optical paths in a long-haul network) 
complements the solutions in Refs. [6-7] that describe TLB 
over multiple DCI links per-DC site with no awareness of 
the underlying transport-network topology. Compared to 
Refs. [6-7] [22], our SD-TLB is a localized approach for 
rule computation and a non-hashing approach for traffic 
distribution whereby upon the arrival of a new flow, a SD-
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TLB enabled node computes rules locally using optical 
path information (previously given by a global controller 
[14]) and taking into consideration the current node state.  

Multipath TCP [11] is anew experimental connection-
oriented layer-4 protocol that exploits IP address diversity 
between two end hosts rather than physical path diversity in 
networks. MPTCP resiliency can be improved by SD-TLB. 
MPTCP alone cannot overcome limitations inherited from 
today’s TLB practices and therefore works well together 
with SD-TLB, as shown in Sec. 5. Binder [15] uses a 
middle-box approach that relies on MPTCP and logical 
path diversity rather than physical path diversity. In Binder, 
all messages are intercepted by a Binder middle box and 
forwarded to a MPTCP protocol stack before being sent to 
a counter-Binder middle box by an IP source routing 
scheme. This approach can be used for low-rate wireless 
networking, but is not suitable for high-bit rate networking. 

III. DESIGN OF SD-TLB 

SD-TLB is embedded into ingress nodes in carrier 
networks. Architecturally, SD-TLB interacts with three 
other components in the case of ASIC-based SDN 
switches: the internal open virtual switch (OVS), the 
physical ASIC forwarding table, and a global network 
controller [14] as shown in Fig. 2. SD-TLB performs two 
functions: (1) per-flow scheduling that in a round-robin 
manner searches for candidate paths with the consideration 
of current switch states, and (2) outage/impairments 
detection and recovery.  
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Fig. 2. System architecture of an ASIC SD-TLB enabled switch. 
 

Upon the arrival of a new TCP flow that has no existing 
routing rule at a SD-TLB switch, a per-flow scheduler 
(PFS) selects one of N per-destination paths. We assume 
that there are no anonymous TCP flows at the DCI. The N 
paths were previously provided to the switch by a global 
network controller. PFS writes a rule into the flow table of 
the internal OVS. PFS can evenly distribute TCP flows 
across N per-destination paths. In the event of a network 
state change (e.g. a change in the number of available 
paths), the global controller updates the path information. 
Further, SD-TLB has MPTCP awareness with additional 
data structures for MPTCP flows that tracks the last chosen 
MPTCP flow path. Thus, we can ensure collision-free 
behavior among M MPTCP sub-flows per user traffic flow 
when M ≤ N. 

SD-TLB protects in-service flows from impairments or 
outages in the order of 100 ms without requiring expensive 
dedicated protection paths or time-consuming action by the 
global network controller. As shown in Fig. 4, our scheme 
is purely local: if the number of packets received (or sent) 
in path p during the current time window is substantially 
less than the average number of packets received or sent in 
p during k last consecutive time windows (parameters such 
as k and C can be adjusted through the global controller), 
an ingress node infers that p has failed or is impaired and 
takes action by re-routing the flow. It relies on the property 
of acknowledgement-based TCP congestion control scheme. 
Outage: if path p from ingress node A to egress node B has 
failed, B never receives any packet through path p. 
Simultaneously, either A never gets an acknowledgement or 
it consecutively receives duplicate acknowledgements in 
the case that the flow’s forward path is physically different 
from its backward path. It follows that all TCP flows that 
traverse p immediately reduce their congestion window 
size to zero such that A will not send any packets on path p.  
Impairment: if path p from node A to node B is severely 
impaired, B will receive a fraction of all packets injected 
into p by A as packets in transit are dropped by CRC check 
failures inside the network. As a result, senders will receive 
a high number of duplicate acknowledgements. It follows 
that all TCP flows that traverse p immediately reduce their 
congestion window size. A will observe a much-smaller 
number of packets to p, compared to an average number of 
packets observed in the past. 

Fig. 3. Pseudo code of per-flow scheduler (PFS). 

Fig. 4. Pseudo code of impairment detection and recovery (IDR). 

C := statistics collection interval.    # e.g., 100 ms
tc := current time  
tc-1 := tc - C 
Wc := the time window from tc -1 to tc  
Rc[p]: the number of received packets in path p during Wc 

Rh[p]: the average number of received packets in path p 
during the last k consecutive windows Wc-1, Wc-2 ,…,Wc-k  
Tc[p]: the number of sent packets in path p during Wc 

Th[p]: the average number of sent packets in path p during the 
k last consecutive windows Wc-1, Wc-2 ,…,Wc-k  
For p in a set of active paths 
    If Rc[p] > Rh[p] * threshold1 or Tc[p] > Th[p] * threshold1   
        Revoke p to the set of active paths 
        Migrate all flows in the bucket of path p 
    If Rc[p] < Rh[p] * threshold2 or Tc[p] < Th[p] * threshold2   
        Remove p from the set of active paths 
       Restore migrated flows back to the bucket of path p

P := a set of active paths to destination site D
 N := a number of active paths to destination site D 
 I   := the last used path index in P 

 Fp := a set of flows walking over a path p in P 
 h   := an identifier per Multipath TCP flow toward D 
 MLh := the last used path index by a Multipath TCP flow h 
 f   := a new flow forwarded for SD-TLB switch 
If f is going to walk toward D 
    p = P [(I +1) mod N ]  
    If f is a new Multipath TCP flow with an identifier h 
         MLh = (I +1) mod N 
    elif f is a subsequent Multipath TCP flow with identifier h 
         p = P [(MLh +1) mod N ]  
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IV.  IMPLEMENTATION AND NETWORK TEST BED  

SD-TLB forwards high-bandwidth flows in ingress 
switches in a carrier network. Thus, for implementation and 
experiments, we use open architecture switch platforms 
with powerful CPUs and multiple 10G ports, as shown in 
table 1. We implement SD-TLB with about 1,500 lines of 
Python code that can execute on the CPU of ASIC-based 
SDN [8] or on open virtual switches [9].  

A. Control plane 

SD-TLB has a localized and reactive scheme. Thus, as 
shown in Fig. 3, SD-TLB intercepts TCP messages (SYN 
only or both SYN and ACK) toward the destinations of 
interest (i.e. other DCs) whose addresses and routes have 
been previously provided by a global network controller. 
For an ASIC SDN switch, all unmatched traffic flows are 
sent to the internal OVS, as shown in Fig. 2. If the flow is a 
new TCP flow, it is intercepted 2 by SD-TLB PFS. To 
implement this, we write rules into OVS flow table before 
the new flow arrives, e.g., tcp, 10.20.10.1/24, actions=To-
PFS. For TCP SYN-only messages, SD-TLB PFS stores the 
TCP information into its data structure without flow rule 
generation and then sends it back to the OVS. For TCP 
SYN and ACK messages, it decides paths (see Fig. 3), 
creates flow rules, and installs the rules to the OVS that 
will perform routing using the rules. SD-TLB checks TCP 
option fields in SYN messages to check whether flows are 
conventional TCP or MPTCP, and also the associations 
among sub-flows per Multipath TCP flow. The long delay 
(i.e., in the order of 10 ms to seconds) for writing into 
physical flow tables [8] is avoided by writing flow rules 
into the OVS whose writing delay is known to be small. 
Elephant flows are later moved to a physical flow table for 
being handled in a switch ASIC. 

B. Data plane 

As shown in Fig. 2, flows matched in a physical flow 
table are routed by the ASIC-based switch and the rest of 
the flows are sent to an internal OVS. In the OVS, all 
matched flows are tagged to be routed to their destinations. 
Unmatched flows (including UDP and ICMP) other than 
new TCP flows (see Sec. 4.1) can be routed by the internal 
OVS with no involvement of PFS since OVS supports the 
feature specified as normal action in OpenFlow [10]. A key 
advantage of this approach is that such a hierarchical data 
plane can address the limited physical ASIC flow-table size 
(e.g. 4K flow entries) because OVSes can store large 
forwarding tables, proportional to the CPU’s available 
random-access memory.  

Note that each path is represented by a VLAN [16] 
identifier in our implementation. Thus, all traffic flows are 
tagged in an ingress node and untagged in an egress node. 

                                                                 
2 Intercepting TCP SYN messages in SDT-TLB enabled nodes introduces 
non-negligible additional TCP handshake delay (see Table II). Note that 
snooping TCP SYN messages can avoid the delay, e.g., tcp 10.20.10.1/24, 
actions = To-default-path & To-PFS. However, it is not implemented since 
it requires multicast ability that the switches used by us cannot support yet. 

In principle, VLAN tags can be replaced with MPLS labels. 
One benefits of using VLAN tags is interoperability with 
OTN with only Ethernet awareness in client ports [2]. 
VLAN tags are also necessary to support large scale flow 
aggregations, although this may require some coordination 
with the global controller [14]. 

C. Network test bed 

Fig. 5 shows our transport-network test bed where an 
ingress node and egress node are connected through carrier-
grade MPLS routers, wavelength-division multiplexing 
(WDM) optical transport shelves, and three 10G paths. The 
ingress/egress nodes employ SD-TLB or two alternatives, 
1) LAG when ASIC-based SDN switches are used as the 
ingress/egress nodes and 2) OpenFlow multipath group 
(OFMG) when software switches are used as the 
ingress/egress nodes. Note that the ASIC-based SDN 
switches [8] could not be connected to the MPLS/WDM 
network elements since LAG supported by them cannot be 
used with the MPLS routers and also they do not have 
OpenFlow multipath group ability that is specified in 
OpenFlow 1.1+ (see table 1). Therefore, in the case of 
ASIC-based SDN switches, our experiments are done using 
three 10G back-to-back connections between two ASIC-
based switches. As shown in Fig. 5, two end-point PCs 
running Linux Kernel 3.8.20 and equipped with a 2 x 10G 
dual-port Ethernet card generate and receive TCP traffic 
flows using Iperf [17]. 

We keep total throughputs from the ingress node to the 
egress node below 20 Gb/s although the total bandwidth in 
the network is 30 Gb/s. This is inspired by the low average 
link utilization (i.e.., 20-30%) typically employed by DC 
operators [6-7] and by network capacity (i.e., bandwidth) 
over-provisioned by network carriers. 

 

TABLE I.  SWITCHES USED IN IMPLEMENTATION AND 
EXPERIMENTS 

 Software Switch [9]  ASIC-based Switch [8] 

CPU  
 Intel Xeon E5-2670 

2.6GHz  
Intel Core i3 2.0GHz 

Memory 64GB RAM 2GB RAM 
OS Linux Kernel 3.8.19 Linux Kernel 2.6.34 

Ports 5x10G ports 48x10G ports, 4x40G ports 

Switch ASIC None Yes with 4K-entries TCAM 

OpenFlow version 1.3+ version 1.0 only 
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Fig. 5. Network test bed with 3 x 10G paths. 
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Fig. 6. Per-port aggregate throughput with 4 TCP flows/port using 

LAG and SD-TLB.  
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Fig. 7. Per-port aggregate throughput with 4 MPTCP flows/port using 

LAG and SD-TLB. 

V. EXPERIMENTAL RESULTS 

In the experiments, we measure the following metrics: 
aggregate throughput, balancing among in-service flows 
and availability during outages or impairments. With cable 
plug-out and plug-in at the ingress node (i.e. the outage 
case) or optical-layer impairments, we have compared how 
SD-TLB and the alternatives (LAG or OFMG) impact 
conventional TCP [18] traffic and Multipath TCP [19] 
traffic. The MPTCP was set to create two TCP sub-flows 
per user flow using the ndiffports option [20]. Note that few 
experimental results with MPTCP are shown in this paper 
due to space constraints. To create impairments, we use a 
fast semiconductor optical amplifier that periodically 
extinguishes the optical signal for an adjustable time [12] 
on path 2 before the optical receiver (Fig. 5). To measure 
per-flow throughputs among competing flows, a source PC 
simultaneously generates 3 or 4 flows per 10G port. Thus, 
we have 6 or 8 flows over the 2 ports for conventional TCP. 

 For the SD-TLB impairment detection recovery, per-
port statistics are collected every 200 ms. For checking if 
end users can experience service degradation for cable 
plug-out or optical-layer impairments, we measured per-
port throughput and per-flow throughput at 2x10G Ethernet 
card of a destination PC (see Fig. 5). 

Cable 
plug-out

Cable 
plug-in

 
Fig. 8. Per-flow throughput with 4 TCP flows/port using LAG. 
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SD-TLB_TCP_flow1
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SD-TLB_TCP_flow3
SD-TLB_TCP_flow4

 
Fig. 9. Per-flow throughput of 4 TCP flows/port using SD-TLB. 

 

A. Outage with ASIC-based SDN switches 

Using two ASIC SDN switches described in Table 1, 
we compared SD-TLB and LAG. ECMP was not compared 
in this paper since it assumes one IP address per-path (by 
contrast SD-TLB, LAG and OFMG all need single IP 
address for all multiple paths), and as a result needs at least 
three nodes to implement multiple paths between two nodes. 
In addition, we could not use OFMG with the ASIC-based 
SDN switches that presently support only OpenFlow 1.0. 
Fig. 6 shows 19 Gb/s TCP traffic (9.5 Gb/s per-port) 
transmitted between two ASIC-based SDN switches 
interconnected with 3 x 10G back-to-back connections.  

At ~41 sec, we have unplugged one of the optical 
interconnection cables. Almost no throughout reduction is 
observed with SD-TLB since it quickly redistributes traffic 
flows on the failed path to other paths. In comparison, LAG 
has a considerable throughput reduction, even though 20G 
of 30G network capacity remains. Similar results also are 
observed in experiments using MPTCP, as shown in Fig. 7. 
In addition, LAG shows fluctuations in per-flow throughput 
during the outage due to competition among flows caused 
by uneven distribution during outage, as shown in Fig. 8. In 
contrast, SD-TLB quickly responds to the outage with no 
instability in per-flow throughputs (Fig. 9).  
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Fig. 10. Per-port aggregate throughput with 3 TCP flows/port using 

OFMG and SD-TLB.  
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Fig. 11. Per-port aggregate throughput with 3 MPTCP flows/port 

using OFMG and SD-TLB.  
 

B. Outage with the network test bed 

In the network test bed, we use OVS ingress/egress 
nodes [9] that are interconnected by 3 x 10G paths in the 
packet over WDM transport network (see Fig. 5). Note that 
OVSes cause more throughput variability compared to 
ASIC-based switches. Since the OVS nodes support OFMG, 
which can be carried over the transport network, we 
compare OFMG and SD-TLB. Fig. 10 and 11 show outage 
effect via the per-port aggregate throughput with 3 TCP 
flows/port and with 3 MPTCP flows/port respectively. 

In the case of OFMG, the port aggregate throughput 
drops by ~50% whereas the SD-TLB throughput remains 
nearly constant. In Fig. 12 and 13 showing the per-flow 
throughput of TCP flows, we can see if traffic distribution 
among flows is balanced for OFMG and SD-TLB. SD-TLB 
has more balanced traffic distributions, especially when the 
cable is unplugged. An observation different to Sec. 5.1 is 
that TCP flows in a failed path are service disrupted with 
OFMG during outage, as shown in Fig. 12. The two nodes 
used for Fig. 6-9 simultaneously detect outages in a 
directly-connected link and avoid such a service disruption. 
In this test where two nodes are connected through a 
network, failures in either of nodes or inside the network 
cannot be detected and thus either or both of nodes using 
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Fig. 12. Per-flow throughput with 3 TCP flows/port for OFMG.  
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Fig. 13. Per-flow throughput of 3 TCP flows/port for SD-TLB.  

 

 
OFMG do not move flows to different paths. In comparison, 
SD-TLB can effectively deal with these cases (Fig. 13). 

C. Impairment with the network test bed 

We also compare the performance of OFMG and SD- 
TLB for the case of an impaired link when the OVS ingress 
/egress nodes are interconnected by the transport network. 
During the impairment, the optical link has a post forward-
error correction BER of ~10-6, causing the throughput of 
flows on the errored path to drop by over 90%. In this case, 
SD-TLB can sense the drop in throughput with its per-port 
statistics monitoring capability, and moves flows away 
from the impaired path.  

We observe from Fig. 14 that for TCP flows, SD-TLB 
shows a steady per-port aggregate throughput and recovery 
from service degradation caused by impairments, and by 
contrast OFMG does not recover from drop in throughput 
during the impairment period. In addition, we have 
observed highly-unbalanced per-flow traffic distribution in 
the case of OFMG (see Fig.15) and well-balanced per-flow 
traffic distribution for SD-TLB (see Fig. 16). 

D. Overhead of SD-TLB 

SD-TLB introduces an additional TCP handshake delay 
since for each new flow SD-TLB performs TCP intercepts 
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twice, PFS twice, and a rule insertion. As shown in Table 2, 
we have measured the TCP handshake delay at a source PC. 
Round trip times (RTTs) are about 1 ms in our test bed (see 
Fig. 5) and about 0.2 ms through two ASIC-based switches 
connected back-to-back. From Table 2, we see that it takes 
about 10 ms to write a rule into a ASIC-based switch flow 
table. A detailed study of rule insertion was described in 
Ref. [8]. Compared to other SDN-enabled approaches [6-7] 
[22], our SD-TLB has no delay caused by communication 
between SDN switches and external global SDN controllers 
for flow rule setup as SD-TLB is a local controller 
collocated with a SDN switch.  

We also have the possibility to reduce delays by 
implementation with the C/C++, a compiled language that 
is known to be generally one to two orders of magnitude 
faster than Python, an interpreted scripting language that 
we used for implementing SD-TLB. However, the delay 
reduction effort may be constrained by lower-power CPUs 
typically used for ASIC-based switches. The reduced delay 
may still introduce non-negligible overhead for short-lived 
flows. The high TCP handshake delay mostly stems from 
the interception of TCP SYN messages for SD-TLB PFS 
(described in Sec. IV.A). As described in footnote 2, if SD-
TLB enabled nodes do not intercept but snoop TCP SYN 
messages, we can keep the messages from being delayed by 
the completion of SD-TLB PFR processing. That is, an 
incoming TCP SYN message is forwarded over a default 
path with no delay even while SD-TLB PFR is performed. 
As a result, with TCP SYN snooping, SD-TLB may show a 
comparable TCP handshake delay against alternatives. 

 
TABLE II.  TCP HANDSHAKE DELAY 

 Without SD-TLB With SD-TLB 

Test-bed 1.3 ms 100~150 ms 
Back-to-back 

connection 
0.25 ms 

70 ms for writes to a RAM table 
84 ms for write to a TCAM 

 

 
TABLE III.  CPU LOAD FOR 100MS STATISTICS COLLECTION 

AND 8 FLOWS/S 

VI. CONCLUSION 

In this work, we have demonstrated a software-defined 
traffic load balancing that delivers high quality DCI service 
in the face of outages and impairments without expensive 
optical protection. The cost advantage is obtained through 
the awareness of optical path diversity and better traffic 
load distribution. Improved bandwidth availability of SD-
TLB is achieved by leveraging the intrinsic behavior of 
TCP. We remark that the SD-TLB approach is stateless and 
therefore scales well and can be deployed over existing 
carrier networks. In addition, the SD-TLB based DCI 
implementation fits well with the future evolution of carrier 
networks to large-scale distributed DC networks.   

 

Impairment 
period

SD-TLB_TCP
OFMG_TCP

 
Fig. 14. Per-port aggregate throughput with 3 TCP flows/port for 

OFMG and SD-TLB. 

Impairment 
period

 
 Fig. 15. Per-flow throughput in the presence of impairments for 

OFMG. 

Impairment 
period

SD-TLB_TCP_flow1
SD-TLB_TCP_flow2
SD-TLB_TCP_flow3

 
Fig. 16. Per-flow throughput in the presence of impairments for SD-

TLB. 

 
 

 Software Switch [9] ASIC-based Switch [8] 
CPU 

Usage  
Less than 3%  Less than 5% 
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