
A Link Failure Recovery Algorithm For Virtual
Network Function Chaining

Oussama Soualah, Marouen Mechtri, Chaima Ghribi and Djamal Zeghlache
Institut Mines-Telecom, Telecom SudParis, CNRS UMR 5157 and Universit Paris Saclay, France

Email: {oussama.soualah, marouen.mechtri, chaima.ghribi, djamal.zeghlache}@telecom-sudparis.eu

Abstract—This paper addresses Virtual Network Functions
(VNFs) placement and chaining in the presence of physical link
failures. A decision tree approach to the NP-Hard VNF placement
and chaining problem is used to minimize the penalties induced
by service interruptions due to link outages. Formulating the
problem as decision tree reduces the complexity significantly
and leads to a new reliable algorithm, named R-SFC-MCTS,
that builds incrementally the decision tree to efficiently search
for good placement and chaining solutions. Execution time is
improved thanks to the Monte-Carlo Tree Search strategy. The
proposed link failure recovery algorithm selects and assigns
reliable paths to prevent and avoid the negative effects of link
failures and reactively re-maps impacted virtual links in safer
physical paths once an outage occurs in the infrastructure.
The performance of R-SFC-MCTS is compared via extensive
simulations with a baseline and a reactive solution in terms of:
i) acceptance rate, ii) induced penalties iii) provider revenue loss
and iv) the final provider’s profit.

Keywords: Service Function Chaining, Network Function
Virtualization, Monte-Carlo Tree Search, Link Failure, Relia-
bility.

I. INTRODUCTION

Network Functions Virtualization (NFV) has emerged as an
innovative concept to simplify the deployment and manage-
ment of networking services using virtualization and Cloud
technologies. Deploying network services on virtual machines
reduces time and cost compared with the dedicated traditional
hardware implementations (using servers, switches, etc.). Ac-
cording to a recent SDN and NFV survey [1], the factors
driving companies interest in NFV are: reduced deployment
time, reduced OPerating EXpense (OPEX) and improved man-
agement flexibility. This survey reports also that within four
years, about 83% of IT organizations are likely to have made
significant NFV deployments in their physical infrastructures.

The NFV architecture, a European Telecommunications
Standards Institute (ETSI) coordinated initiative, is based on
the concept of Virtualized Network Functions (VNFs) rep-
resenting the software implementation of network functions.
VNFs, act as network services building blocks that can be con-
nected and chained to provide an end-to-end communication
service. In this context, the efficient placement and chaining
of VNFs (such as load balancers, firewalls, IPS/IDS, etc.)
while steering traffic across the VNFs is becoming essential.
As network function virtualization relies on virtualization for
partitioning and sharing physical cloud and network resources,
ensuring failure robustness and recovery is as important to
respect the Service Level Agreements (SLA) and contracts
established between consumers and providers. The providers
will pay penalties for SLA violations on the one hand and the
quality of service and experience of the customers will degrade
on the other hand. Statistics from [2] highlight revenue losses
due to unplanned IT outages and indicate: i) IT businesses in

North of America are collectively losing 26.5 billion USD in
revenue each year through IT downtime and data recovery; ii)
North American businesses collectively suffer from 1, 661, 321
hours of IT downtime each year. That is an average of 10

hours per company yearly. A deep study of data center failures
[3] shows that the daily mean number of links outage is
40.8. Evidently, some survivable mechanisms are mandatory
in order to guarantee a reliable service. A failure could be
caused by either a link or node failure. Link failures are very
common [3] and cause significant service interruptions while
commodity switches are more reliable. Modern data centers
typically implement node redundancy to greatly improve re-
liability. We consequently focus and consider, in this paper,
only link failures that are of more concern than node failures.

The VNFs placement and chaining problem is known to
be NP-Hard and has been addressed based on exact (i.e., for
small instances) and approximation methods (e.g., [4], [5]). In
our work, we add failure recovery to an efficient VNF chain
placement strategy to avoid SLA violation due to link failures
and to improve reliability.

We aim at providing a scalable and efficient algorithm for
VNFs placement and chaining combined with preventive and
reactive mechanisms to address physical link failures. A way
to compute the optimal embedding is to enumerate all the
candidate hosts for each virtual resource (i.e., virtual node
and/or link) within the physical network (i.e., hardware nodes
and/or paths). Clearly, this is typically computationally in-
tractable in large scale networks because of the combinatorial
explosion leading to exponential execution times. To reduce
complexity, we formulate the survivable (to link failures)
Service Function Chaining (SFC) placement as a decision tree
problem. Since building the entire decision tree is not feasible
for large infrastructures, we propose a new Reliable Service
Function Chaining (R-SFC) algorithm using the Monte-Carlo
Tree Search (MCTS) strategy [6] and name it R-SFC-MCTS.
The key advantage of MCTS is the incremental construction
of the decision tree when searching for an optimized solution.
This characteristic of MCTS fits very well our problem since
only partial tree construction is needed to make decisions.
MCTS is also known to perform well in many combinatorial
Computer Games (e.g., computer Go [7]) and complex real-
world planning and optimization problems [6].

R-SFC-MCTS algorithm uses five main steps for initial
embedding: i) Tree initialization, ii) Selection of the node
to explore during tree navigation, iii) Generation of a new
sub-branch, iv) Updating of nodes’ relevance and finally v)
Selection of the best solution among generated branches. As
already mentioned, R-SCF-MCTS continuously and gradually
builds the decision tree. At tree initialization, the root node,
which is an abstract node that represents the system status

978-3-901882-89-0 @2017 IFIP 213

before embedding any resource of the current SFC request, is
created. Starting the navigation from the root node, R-SFC-
MCTS checks at each visited node if all its children are already
developed and added to the decision tree. If this condition
is satisfied, the second stage (i.e., selection) is performed to
select the most suitable next node to continue the navigation
process.

If the condition is not satisfied, the third stage (i.e., sub-
branch generation) is started and one of the non developed
child is generated at each subsequent tree-level until arriving
to a leaf node. The generation of a new child corresponds
to the mapping of one VNF node and the directly connected
virtual link of the requested chain. A leaf node corresponds
to: i) the mapping of the entire request or ii) a blocking status
where it is not possible to further embed virtual resource(s)
due to a lack of available physical resources. These stages
are repeated until a computational budget limit, used to stop
the execution of R-SFC-MCTS, is reached. Finally, the branch
providing the best embedding is selected based on mapping
quality. The selected branch has maximum computed path
reliability. This information is directly found in the leaf node
and avoids parsing all the tree branches. By selecting the most
reliable physical links during embedding we minimize the
impact of link failures. In addition to this preventive approach,
we reactively re-embed impacted virtual links in safer paths.
Performance evaluation based on extensive simulations show
that R-SFC-MCTS achieves good performance in terms of i)
acceptance rate, ii) induced penalties iii) provider revenue loss
and iv) final provider revenue.

Section II of this paper presents related work and Section
III describes the system model. Section IV provides details on
our link failure management approach. Section V reports the
results of performance evaluation.

II. RELATED WORK

There have been recent work on VNF placement and
chaining which is gaining more and more attention in the
literature. In [8], authors proposed an eigendecomposition
based approach for joint VNFs placement and traffic steering
of their associated forwarding paths and graphs. A heuristic
based on a greedy algorithm is also presented to solve the
problem iteratively. The Greedy solution is based on bipartite
graph construction and matching techniques and solves the
problem in two steps (mapping VNFs then steering traffic
between them). In [9], authors formulated a Genetic Pro-
gramming based approach to solve the VM allocation and
network management problem. Authors in [10] solved the
problem of network service chaining using an ILP and a
heuristic algorithm. Their proposed heuristic is based on a
decomposition selection with backtracking phase and on a
mapping phase. In [5], authors proposed an ILP and a heuristic
for VNF placement and chaining based on a transformation
of the problem by adding new virtual switches. The idea is
to model the problem as a Multi-Stage directed graph and
to run the Viterbi algorithm [11] on it. All this prior art
addresses VNF placement and chaining does not consider
resource failures and there have been no attempts to handle
failure recovery automatically.

Failure recovery for the Virtual Network Embedding (VNE)
problem received more attention and some survivable algo-
rithms for VNE have been proposed in [12], [13], [14], etc.
The proposed strategies be classified using: i) centralized

or distributed, ii) proactive or reactive, iii) the type of the
protected resource (i.e., router and/or link, geographic region)
iv) backup use, v) curative or preventive, vi) batch or on-
line principles. In [15], authors proposed a new Survivable
Virtual Network Embedding algorithm denoted by SVNE.
First, SVNE proactively computes a set of possible backup
detours for each substrate link. Then, SVNE embeds each new
Virtual Network (VN) request by calling the VN embedding
strategy D-ViNE [16]. Finally, when a link failure occurs, a
reactive mechanism is invoked to re-embed the affected virtual
link on the backup detours computed in the first step. The
authors formulated the problem of re-mapping the virtual links
as a linear program. The main objective is to minimize the
bandwidth consumption and the penalties due to link failures.

In [17], the authors proposed a new algorithm, named
RMap, dealing with the mapping of VNs by considering
failures of substrate links. To ensure some levels of reliability,
RMap allocates backup links. Indeed, once a link stress is
higher than a predefined threshold, RMap computes its backup
detour based on Loop Free Alternate resilience approach.
When a link failure occurs, virtual links transiting over this
substrate link will migrate to the backup links. However, RMap
ensures protection only for stressed links. In other terms, if a
failure occurs within a non-stressed link, all clients will be
impacted.

However, these approaches are not applicable in the NFV
context and especially VNF chain placement as claimed in
[18], [4], [19] because of some dissimilarities. For instance,
in the VNE context, requests are modeled by simple undirected
graphs, whereas VNF chains are more complex components
that contain both the VNFs to place and the traffic flows to
steer between end points. Besides, the sharing of VNFs among
several clients is not supported in the VNE environment.
Hence, any comparison with the survivable algorithms pro-
posed in the VNE context will neither be fair nor meaningful.

In the NFV context, authors in [20] addressed the problem
of a VNF (node) failure. The proposed solution selects an
alternative VNF, in a greedy manner, to replace the failed
one then ensures the communication by allocating a path
between the new VNF and its neighbor(s). As claimed by the
authors, their solution is temporary and sub-optimal. The work
is mostly experimental and does not propose a mathematical
model we can compare our proposal with.

In this work, we formalize the VNF placement as a tree
decision problem and we propose a reliable algorithm for VNF
placement and chaining which deals with link failure recovery.
To the best of our knowledge, this is the first work that solves
the VNF placement and chaining problem using a Monte-Carlo
Tree Search strategy and that seeks to optimize link failure
recovery.

III. PROBLEM FORMALIZATION

This section formalizes the reliable service function chain-
ing problem and presents the physical network and VNF chain
request models.

A. Substrate and virtual networks models
The substrate or physical network, defined by the ETSI

[21] NFV Infrastructure (NFV-I), is modeled as an undirected
weighted graph, denoted by G = (V (G) , E (G)) where E (G)
is the set of the physical links and V (G) is the set of the physi-
cal nodes. Each substrate node, w 2 V (G), is characterized by

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)214

Fig. 1: The SFC and NFV-I topologies
its i) available processing power (i.e., CPU) denoted by C (w),
and ii) type T (w): switch, server or physical network function
(PNF) [22], where PNF are traditional dedicated physical
hardware that implement network functions. The physical
links, e 2 E (G), are characterized by their i) available
bandwidth B (e) and ii) reliability at time t.

As in [23], we formulate the Mean Time Between Failures
(MTBF) for the physical links as a Weibull distribution.
Accordingly, it is possible to estimate and predict the equip-
ment’s reliability at any time t. Consequently, the Cumulative
Distribution Function (CDF) of the MTBF is expressed as:

F (x) = 1� exp(�
⇣x
a

⌘
b

), x � 0 (III.1)

where a and b are the parameters of the Weibull distribution.
We assume heterogeneous physical links in the physical net-
work (i.e., links have different failure probability). To do so,
each physical link e 2 E (G) has its own initial age denoted by
A (e). Accordingly, we classify the links within the substrate
network into three groups: i) young, ii) adult and iii) old.
Formally, the probability to fail at a time t of a substrate link
e is equal to P

r

(e, t) = F (A (e) + t). It is worth pointing out
that the substrate links’ reliability is inversely proportional to
its initial age.

The client request (i.e., requested service function chain) is
modeled as a directed graph, denoted by D = (V (D) , E (D))

where V (D) is the set of the virtual nodes and E (D) is
the set the virtual links. Each virtual nodes, v 2 V (D), is
characterized by its i) required processing power C (v) and ii)
its type T (v): switch (i.e., ingress or egress) and VNF. Each
virtual link d 2 E (D) is described by its required bandwidth
B (d). Figure 1 depicts the SFC and the NFV-I topologies. The
virtual topology is a chain of VNFs and switches. Examples
of VNFs are: firewalls, DPIs, IDSs, load balancers, NATs, etc.,
as described in IETF [24] specifications. Regarding the NFV-I
depicted in Figure 1, we note the existence of two PNFs and
some interconnected servers beside the two switches serving
the ingress and/or egress flows in the SFC topology.

B. SFC optimization problem

We now summarize the main constraints related to the
service function chaining optimization problem. Each virtual
node v 2 V (D) may be embedded in a substrate node,
w 2 V (G), that has enough physical resources and for which
C (w) � C (v). Note that a virtual switch is mapped only onto
a physical switch, and a VNF may be embedded in a PNF or
a physical server based on the ETSI recommendations [21].
This simplifies the identification for each virtual node type,
v 2 V (D), a set of physical candidate hosts Cand(v) ⇢
V (G). Each virtual link, d 2 E (D), should be mapped to
one physical path P that meets the required bandwidth. In

Fig. 2: The decision Tree of the SFC optimization problem
other terms, each physical link e 2 E (G) forming the path
P should have enough remaining bandwidth to serve the
required bandwidth. Formally, 8e 2 P,B (e) � B (d). Note
that splittable link mapping is not considered in this paper.

In order to reduce complexity by avoiding time consuming
and unnecessary exhaustive search, we model the reliable SFC
mapping problem as a decision tree denoted by T . Each tree-
node represents the embedding of one virtual node, v 2 V (D),
in one of its physical candidate hosting node w 2 Cand(v).
The connection between two tree-nodes n1 and n2 (i.e., the
father and its child) describes a valid embedding of the virtual
node v1 2 V (D) and its successor v2 2 V (D) as well as the
mapping of the virtual link between them within a physical
path. Accordingly, generating a new child n2 in the decision
tree T from the father tree-node n1, that matches with the
embedding of a virtual node v1, requires a valid mapping
of i) the virtual node v2 (i.e., the successor virtual node of
v1 in the SFC), and ii) the connection link. The tree root
node is defined as an abstract node that reflects the state of
the NFV-I before handling the current request. A tree leaf
node corresponds to a placement outcome that can be either:
i) the successful mapping of the entire SFC request or ii) the
rejection of the request due to a lack of available physical
resources. A branch in the decision tree T corresponds to the
mapping of the SFC virtual resources.

An example of a portion of the decision tree T is illustrated
in Figure 2. Each tree level corresponds to the mapping of one
virtual node except level 0 that contains and defines only the
“abstract” root node. In level 1 of this example, the ingress
node must be mapped only in switch1 due to geographic
constraints. The DPI may be mapped in any of the three servers
or PNF1 according to available computing resources and the
optimization criteria. The NAT function should be mapped
into a server or PNF2 while meeting the requested computing
resource. At the last level, the egress point should be embedded
only on switch2 to respect also geographic constraints.

This example highlights the combinatorial complexity and
the need to devise judicious strategies that can incrementally
build the decision tree T when searching an optimized map-
ping. In Section IV, we will describe the proposed Monte-
Carlo Tree Search to meet these objectives.

IV. PROPOSAL: R-SFC-MCTS STRATEGY

This section presents our proposal named Reliable Service
Function Chaining based on the Monte-Carlo Tree Search

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 215

Algorithm 1: R-SFC-MCTS psuedo-code
1 Inputs: NFV-I, SFC
2 Output: B

b

3 Initialization (T)
4 while Computational Budget do
5 n Selection-Node-Explore(T)
6 B SubBranch-Generation(T , n, NFV-I, SFC)
7 T T [B
8 Update-Relevance(T)
9 B

b

 Selection-Best-Solution(T)
10 return B

b

strategy (R-SFC-MCTS) to address VNF chain placement
including reactions to link failures. Since we formulate the
SFC placement or embedding problem as a decision tree
model, we present the main decision tree search approaches
from the literature and justify the adoption of the MCTS
strategy. We also describe our SFC-MCTS algorithm steps
serving as a basis to address failures via the R-SFC-MCTS
extension.

A. Tree search optimization algorithms

One of the most challenging issues in decision tree search
is scalability since the problem becomes computationally in-
tractable for large size trees. Some approaches were introduced
to reduce search complexity such as Best-First-Search [25],
Branch&Bound [26], A* [27], etc. These strategies assume
that the decision tree is already entirely built and the remaining
task consists in finding the best solution in the complete or full
tree. They consequently continue to suffer from combinatorial
explosion and experience unacceptable execution time with
increasing problem size. In our case the decision tree is
not entirely generated, and the construction is dynamic and
incremental and this reduces significantly complexity.

Our proposal R-SFC-MCTS mainly relies on the Monte-
Carlo Tree Search [6] (MCTS) strategy. In fact, MCTS has
one key advantage that allows coupling i) incremental tree
building with ii) an efficient search mechanism. This fits well
the SFC problem because the decision tree is not already built.
MCTS has in addition good performance in the Computer
Game area such as computer Go [7] as well as some other
optimization problems [6]. Recently, MCTS was successfully
applied to solve the batch virtual network embedding problem
[28]. Taking all these elements into consideration, we adopt
the MCTS strategy to efficiently guide the decision policy. The
suitable game category that best fits our problem description
is the Single Player game [29] where there is no opponent. In
fact, the objective is to maximize the single player’s payoff that
matches well the objective of enhancing the provider revenue.
We present next, the different stages of our proposal.

B. R-SFC-MCTS description

R-SFC-MCTS incrementally builds the decision tree T and
in parallel searches for the best mapping. R-SFC-MCTS is
devised around five main stages: i) Tree initialization, ii)
Selection of the node to explore during the tree navigation,
iii) Generation of a new sub-branch, iv) Update of nodes’
relevance (i.e., back propagation) and finally v) Selection of
the best solution. We summarize our proposal in Algorithm 1.

1) Tree initialization: At this step, the root of the decision
tree T is initialized and created. The root node is an abstract
node that represents the system status before embedding any
resource of the current SFC request.

2) Selection of the node to explore: This stage is mandatory
for the exploration process. Once arrived to a tree-node (i.e.,
starting from the abstract root node) one child should be se-
lected, among its children, to continue the navigation. In order
to select one child, R-SFC-MCTS ensures balance between i)
exploitation of promoted branches and ii) exploration dealing
with less promising ones to avoid local optima. For this aim,
we define for each tree-node n 2 T a relevance tree-function,
�
n

, that indicates the relative importance of tree-nodes, n,
candidate for selection:

�
n

=

¯R
n

+ ↵ ·

s
ln(

ˆV
n

)

V
n

+

sP
l

Rl

n

2 � ˆV
n

· (¯R
n

)

2
+ �

V
n

(IV.2)
where i) ¯R

n

is the average revenue generated by all the
branches crossing the tree-node n, ii) V

n

is the number of
visits to n, iii) ˆV

n

is the number of visits of n’s parent (i.e.,
predecessor in the tree), iv) Rl

n

is the revenue generated by
the branch B

l

transiting over n.
Regarding ↵ and �, they are calibration constants. Note

that Rl

n

is computed once the leaf node is generated (i.e., an
entire branch is built). In fact, Rl

n

quantifies the quality of the
mapping corresponding to the generated branch. It is defined
based on the offered reliability of the selected physical links to
embed the different virtual links of the client request. In order
to quantify Rl

n

, we first define a substrate path P reliability
Rel(P, t) as follow:

Rel(P, t) =

P
e

1
Pr(e,t)

len(P)

, e 2 P (IV.3)

where len(P) is the path P length in term of hops and t is
the arrival time of the current request. By doing so, Rel(P, t)
describes a reliability average of the current path. Formally,
Rl

n

is defined as follow:

Rl

n

=

X

i

Rel(P
i

, t) (IV.4)

where P
i

is the selected path to embed the i-th virtual link.
We should highlight that the third term in the equation IV.2
quantifies a possible search deviation of node n [29]. Indeed,
it includes the sum of the squared revenues Rl

n

corrected
by the expected revenues ˆV

n

· (¯R
n

)

2. The � constant is
useful to push for the exploration of rarely visited nodes. The
above equation IV.2 allows R-SFC-MCTS to control balancing
between the exploitation of promising nodes and exploration of
rarely visited nodes. By doing so, R-SFC-MCTS tries to avoid
local optima. We should highlight that the selection stage is
applied only when all the children of the visited tree-node
are already generated. Otherwise, the next stage is processed.

3) Generation of a new sub-branch: Arriving to one tree-
node that has at least one child not already developed in T , R-
SFC-MCTS generates one new tree-node, at each subsequent
level, until reaching a leaf node. At each level, one candidate,
from the Cand(v

i

) set, is choosen to host the corresponding
virtual node v

i

(i.e., VNF, Ingress/Egress), then the attached
virtual link is embedded as well in a substrate path. This phys-
ical path is the one that maximizes the reliability among the

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)216

Algorithm 2: SubBranch-Generation
1 Inputs: T , n, NFV-I, SFC
2 Output: New sub-branch B
3 Initialization (B)
4 while isLeafNode(n) = False do
5 n Compute-Child-Node(n)
6 B B + n

7 return B

paths connecting the two extremities. Algorithm 2 summarizes
the sub-branch generation stage. We recall that the generation
of a new tree-node requires the embedding of the next virtual
node (i.e., the following node in the SFC chain) as well as
the mapping of the virtual link connecting both of them. The
process of new node generation at each level will end by
creating a leaf node based on two cases:

• Mapping all the virtual nodes and links of the SFC, or
• Blocking due to a lack of physical resource. In other

terms, it is impossible to embed further virtual node(s)
and/or link(s) because of hardware resource shortage.

At the end of this stage, a new sub-branch B is generated.
Accordingly, the decision tree T is enhanced by adding the
new sub-branch B. Formally, T T [B.

4) Update of nodes’ relevance: Once the decision tree T is
enhanced by the new sub-branch B, R-SFC-MCTS computes
the mapping quality at the leaf node n (i.e., Rl

n

) then it updates
the parameters of the selection function (i.e., �

n

i), defined
in equation IV.2, for any tree-node ni belonging to B. More
precisely for all nodes n 2 B, i) ¯R

n

and Rl

n

are updated with
respect to the cumulative revenue induced by B and ii) the
visit frequency register V

n

is incremented.
5) Selection of final solution: R-SFC-MCTS repeats steps

2, 3 and 4 until the expiration of a computational budget
denoted by �. Note that � can be based on i) a time period
or ii) the maximum number of loops or iii) any other metrics
fitting the problem definition and the execution environment.In
a large scale scenario, R-SFC-MCTS will end without building
the entire decision tree but hopefully the generated branches
will include an optimized solution thanks to the previous
stages. Once the � period is expired, our proposal searches
for the best branch B

b

in the decision tree T . This search
process is optimized by R-SFC-MCTS because during the
tree T building process we save the information related to
the relevance of the branch (i.e., mapping quality) at the leaf
nodes. Looking for the best solution is equivalent to finding
the leaf node with the best mapping quality. The selected leaf
tree-nodes denoted by n

b

have to satisfy this equality:

�
nb

= max

n2LeafNodes(T)
(Rl

n

) (IV.5)

Then, B
b

is the best sequence in T containing n
b

. Note that
B
b

is unique since each node in the tree is attached to one
and only one parent thanks to the tree topology. Finally, a
bottom-up navigation computes the best branch B

b

.

C. Reliability support

Our proposal deals with survivability using two stages.
First, during the embedding process, our algorithm priviledges
the use of reliable physical links to minimize the impact of
physical link failures, as long as the bandwidth availability
constraint is respected. This is achieved via the preventive

Fig. 3: The Recovery Process
mechanism from the payoff function Rl

n

(i.e., equation IV.4)
defined for the decision tree search to initially embed the
service function chain. In fact, the selected branch that matches
with computed initial mapping is the one that maximizes the
reliability based on the equation IV.5. Consequently, R-SFC-
MCTS prevents the service interruption by avoiding the use
of the non-reliable physical links.

Second, once a link failure impacts some virtual links, R-
SFC-MCTS tries to re-embed the affected virtual links in safer
physical paths while respecting the bandwidth requirement.
We make use of the same initial mapping process, as described
previously (i.e., Algorithm 1), to compute the new paths.
This re-embedding mechanism is fast since the majority of
the virtual resources are already mapped. Hence, the tree
search process will be optimized since some candidates are
already predetermined. We should highlight that this recovery
mechanism can be defined based on different variants of our
algorithm considering backups or not. For the first variant,
in each physical link a backup proportion of its bandwidth
capacity is dedicated for the recovery mechanism. Hence,
the initial mapping will be performed only within the first
proportion of each selected substrate link, and the remaining
(i.e., second) proportion will host only the recovered virtual
links after a substrate link outage. In the solution variant,
without backup resources, the initial embedding as well as the
recovery mechanism will use the residual bandwidth of the
entire link without any separation. For the sake of clarity, we
introduce Fig. 3 to illustrate the recovery result. In this figure,
we note that the initial provisioning (virtual link 1) used the
physical link connecting switch1 and server1. During the client
service, an outage occurs on this physical link. Hence our
algorithm re-embeds the virtual link 1 on the new computed
path: switch1!switch3!server1.

The complexity of our proposal, R-SFC-MCTS, is: O(I⇥ |
Cand(v) | ⇥ | V (D) | ⇥ | V (G) |2), where | Cand(v) |
is the size of the candidates set of a virtual node v (i.e.,
VNF or Ingress/Egress). The computational budget, B

b

, is
defined here as the maximum number of loops and denoted
by I . The complexity of our proposal, R-SFC-MCTS, is hence
polynomial thanks to the use of the MCTS approach.

V. PERFORMANCE EVALUATION

In this section, we assess the performance of our proposal
R-SFC-MCTS based on extensive simulations. We describe
the simulation settings and the used performance metrics to
conduct a comparison of the solutions with and without back
up resources to address the link failures for reliable and failure
tolerant VNF chain placement.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 217

Fig. 4: Weibull CDF and Initial Ages
A. Simulation Environment

To evaluate our approach, we run simulations using realistic
topologies and parameters. We used the same conditions and
settings of simulation scenarios in the literature to obtain
meaningful comparisons [5], [30]. Requests arrive according
to a Poisson process with an average rate of 5 requests per
100 time units and each resource request has an exponential
lifetime with a mean of 500 time units. These settings load
gradually the NFV-I that becomes fully loaded with increasing
simulation time. Performance results are averaged over all
simulation experiments and each reported value is an average
of 100 instances ensuring a confidence interval of 95%.

The considered NFV-I sizes vary between 100 and 2000

nodes with connectivity of 50%. The available CPU capacity
per physical node and available bandwidth capacity per link
are randomly drawn [150, 160] units and [100, 110] units,
respectively. The SFC chains are randomly generated with a
number of virtual nodes per request in the range of [10, 100].
The requested CPU capacity of each VNF was generated based
on the data provided in [31], [24]. The CPU is drawn randomly
in [10, 15] with random requested bandwidths in the [10, 12]
interval.

Physical links failure probabilities are set using the param-
eters a and b of the Weibull distribution (see equation (III.1))
to obtain a lifetime for each physical equipment (⇡ 6 ⇥ 10

5

time units) roughly equal to 10 times the simulation duration
(⇡ 6 ⇥ 10

4 time units). Furthermore, the proportion of adult
links in the NFV-I is fixed to 20%. In our simulations, we
vary the proportion of young links and consequently the old
proportion to assess performance with variable infrastructure
reliability. The initial age of physical links follows a uniform
distribution based on defined bounds of its group (i.e., young,
adult or old). Fig. 4 illustrates these bounds and the CDF
modeling the Mean Time Between failure. In fact, this figure
describes the initial ages of the three link types as well as the
corresponding initial (i.e., simulation start) failure probability.
As a result of these Weibull settings, we highlight in Fig. 5 the
cumulative number of failed physical links while varying the
proportion of young links from 10% to 70%. The number of
occurring failures is lower when the majority of the network
links are young (i.e., young rate = 50% or 70%). The number
of link outages or failures is very high when most of the links
are old (when the proportion of young links = 10%). These
failures events serve as input to our simulation scenarios.

B. Performance Metrics

We first define the performance evaluation metrics before
we report the results of the performance assessment.

 0

 500

 1000

 1500

 2000

 0 10000 20000 30000 40000 50000 60000

N
u

m
b

e
r

o
f

F
a

ile
d

 L
in

ks

Time

Young Rate=10%
Young Rate=30%
Young Rate=50%
Young Rate=70%

Fig. 5: Outages in Physical Links
1) Q: is the rejection rate of the incoming requests dur-

ing the simulation that corresponds to the fraction of client
requests that are not accepted for physical resources shortage.

2) R: we define R(t) that measures the total revenue
generated by the embedded VNF requests at time t :

R(t) =
X

D2ARt

R (D) (V.6)

where AR
t

is the set of accepted requests until time t and
R(D) is the acquired revenue defined as in [32]:

R(D) =

0

@
X

v2V (D)

C (v)

1

A ⇤ U
C

+

0

@
X

d2E(D)

B (d)

1

A ⇤ U
B

(V.7)
where U

C

and U
B

are the revenue gained by allocating a
unit of computing resource and bandwidth respectively. The
acceptance revenue at the end of the simulation is given by
R.

3) P: describes the penalties induced by link failures and
downtime during the recovery mechanism. In our study, we
define two kinds of penalties. The first one P1 considers the
induced penalty when it is impossible to recover a virtual link.
For this case the whole virtual network will be impacted and
hence released. This penalty is proportional to the remaining
lifetime of the impacted service function chain. Formally, for
each released request denoted by D:

P1(D) =

T

d
D��T

SD
⇥ � ⇥R(D)

(V.8)

where T d

D

is the assumed departure time of the request D, �
T

is the failure instant, S
D

is the sojourn time of the request D
and � is the applied penalty. The first term in the equation
represents the fraction of time the request D is not served
compared with the expected failure free sojourn time.

The second penalty P2 is the micro interruption during suc-
cessful failure recovery of an impacted virtual link d 2 E (D).

P2(d) = �

Rec

⇥ � (V.9)

where �

Rec

is the needed time to perform the recovery of the
impacted virtual link d.

P =

P
D2F P1(D) +

P
d2Rec

P2(d) (V.10)

where F is the set of the non recovered requests and Rec is
the set of the recovered virtual links.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)218

4) L: is the revenue loss caused by link failures during
the entire simulation. It is evaluated as the ratio of induced
penalties to the acceptance generated revenue. L describes the
percentage of the penalties due to SLA violations compared
to the initial earned revenue from the acceptance process:

L =

P

R
(V.11)

5) G: is defined as the profit (final gain) the provider
earns when accounting for both acceptance generated revenue
and penalties (loss) caused by service interruptions. G is
evaluated as the subtraction of the induced penalties P from
the acceptance revenue R:

G = R� P (V.12)

C. Simulation results

We evaluate performance of our proposal by comparing
also with a baseline solution that does not implement any
recovery from failures. We define a no-backup variant and
backup solutions (that set a fraction of resources aside for
exclusive use by failure management). For the backup variants,
we vary the percentage of the dedicated backup (20%, 30%
and 40%) to check our algorithm performance behavior.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 10 20 30 40 50 60 70

R
e

je
ct

io
n

 R
a

te

Young Proportion

Backup-20
Backup-30
Backup-40

Baseline
No-Backup

Fig. 6: Rejection Rate

1) Rejection rate and acceptance revenue: The first evalu-
ation concerns rejection rate illustrated in Fig. 6. As intuitively
expected, all algorithms reject more requests when the young
population is low or when there are more unreliable links in the
infrastructure. The baseline strategy has the lowest rejection
rate but this is rather misleading since it is achieved at the
expense of quality of experience since services on failed links
are interrupted and can only resume if the consumer manages
these degradations by restarting their applications and services
themselves. This is equivalent to low infrastructure availability.

On the contrary the failure recovery approaches (R-SFC-
MCTS variants) with and without back up will find alternate
physical resources to maintain the service while minimizing as
much as possible service interruptions. They will consequently
use more physical links to construct back up paths for the
failed virtual links and will consume more resources. The
baseline, will simply violate the established SLAs and will
end up with more available resources to accept future requests
as seen in Fig. 7. The reported rejection rate and acceptance
generated revenue results need to be analyzed carefully by
realizing that the baseline will cause significant consumer
churn with detrimental effect on the provider business. All
the performance metrics have to be analyzed jointly to draw

 100000
 10 20 30 40 50 60 70

A
cc

e
p

ta
n

ce
 R

e
ve

n
u

e

Young Proportion

Backup-20
Backup-30
Backup-40

Baseline
No-Backup

Fig. 7: Acceptance Revenue

 1000

 10000

 100000

 10 20 30 40 50 60 70

In
d

u
ce

d
 P

e
n

a
lti

e
s

Young Proportion

Backup-20
Backup-30
Backup-40
No-Backup

Baseline

Fig. 8: Induced Penalties
reliable conclusions on the relative performance of all eval-
uated algorithms. Both initial gains and penalties have to be
included when evaluating the final gain or achieved profit G.

2) Induced penalties: Fig. 8 confirms the expected poor
performance of the baseline algorithm (no recovery from link
failures) in terms of induced penalties that is 100 times worst
than the failure recovery algorithms (R-SFC-MCTS variants).
The algorithm with no reserved back up resources performs
best compared to the algorithms with small amounts of back
up resources such as the backup-20 and backup-30 variants.
To outperform the no back up solutions at least 40% of the
resources need to be set aside for recovering from link failures
with lower penalties. There is hence a trade-off to find for
the variants with backup resources before the best overall
performance can be obtained.

3) Revenue loss rate: Fig. 9 sheds some light on the
required tradeoff by evaluating the revenue loss caused by
penalties. The baseline solution loses more than 20% of its
accepted requests generated initial revenue. This highlights the
mandatory need of the recovery mechanisms. The no-backup
variant outperforms the other approaches when the proportion
of young links is low indicating that it is suitable when the
substrate network is essentially old. When the majority of the
links are reliable (young links) the failure recovery algorithms
have have roughly the same performance.

4) Final revenue: Fig 10 shows the final revenue gained
by the provider (or earned profit) taking into consideration
what is earned from initial provisioning and what is lost in
penalties due to service interruptions and SLA violations.
The no-backup recovery approach achieves the best overall
performance with a final additional revenue of about 20000

monetary units comparing with the backup-20 variant when
the failures are very frequent in the substrate network. As a
conclusion, the no-backup variant is the most appropriate to
maximize revenue for the provider since it optimizes the use

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 219

 0.1

 1

 10

 100

 10 20 30 40 50 60 70

P
e

rc
e

n
ta

g
e

 o
f

R
e

ve
n

u
e

 L
o

ss

Young Proportion

Backup-20
Backup-30
Backup-40

Baseline
No-Backup

Fig. 9: Revenue Loss

 200000

 220000

 240000

 260000

 280000

 300000

 320000

 340000

 360000

 380000

 400000

 420000

 10 20 30 40 50 60 70

F
in

a
l R

e
ve

n
u

e

Young Proportion

Backup-20
Backup-30
Backup-40

Baseline
No-Backup

Fig. 10: Final Revenue
of physical resources. The variants that set aside resources
for the failure recovery exclusive use limit the search space
of possible solutions to the back-up zone only. The baseline
as expected leads to very low profit compared to the failure
recovery solutions.

5) Recovery Time: The last aspect that needs to be assessed
is the service interruption time that has direct impact on the
consumer quality of service and experience. This is evaluated
using the time needed to find alternate physical paths for
the failed virtual links. Since all our proposed R-SFC-MCTS
variants have roughly the same recovery time, Fig. 11a depicts
only one figure for all the algorithms.

20 40 60 80 100
0

5

10

15

20

SFC size

Ti
m

e
(m

s)

NFV-I=1000

(a) Varying SFC size

100 500 1,000 1,500 2,000

10

20

30

40

NFV-I size

SFC size=20

(b) Varying NFV-I size
Fig. 11: Recovery time

In Fig. 11a, the substrate infrastructure size is fixed to 1000

and the SFC size is varied from 10 to 100. This experiment
shows that our algorithm manifest “flat” recovery times (less
than 13 ms for NFV-I=1000), regardless of SFC request size.
The SFC size in Fig. 11b is fixed to 20 VNFs and we vary
the NFV-I infrastructure size in the range [100, 2000]. The
algorithms need more time to recover from link failures when
increasing the infrastructure size but the time needed to find an
alternate path does not exceed tens of milliseconds (below 45

ms for NFV-Is of size 2000). This recovery time is negligible
compared with the time required for initial SFC placement and
chaining.

Table I summarizes the ratio between the time to find
a recovery solution and the time needed to find an initial
embedding solution. Despite the sharply increasing recovery
time, the ratio remains very low (0.13%) and this emaphsizes
the efficiency of the MCTS based solution to address the link
failures problem.

TABLE I: Recovery time vs Initial embedding time
NFV-I size 100 500 1000 2000
Initial embedding time (ms) 100 2150 8430 32870
Recovery time (ms) 0.13 3.21 11.2 42.66
Ratio (Percentage) 0.13% 0.14% 0.13% 0.12%

VI. CONCLUSION

In this paper, we proposed a reliable approach to deal
with the problem of VNF placement and chaining in Cloud
environments. Our proposal makes use of the Monte-Carlo
Tree Search algorithm to place VNFs and simultaneously steer
traffic flows across them in a reasonable time. Our approach
deals with reliability using an appropriate strategy at initial
embedding and another one when link failures actually occur.
The first one is preventive. During the initial embedding, R-
SFC-MCTS favors or selects in priority reliable links to avoid
the detrimental effects of failures. Second, at link failures,
our proposal reactively re-maps the failed virtual links in
other substrate paths. To summarize, we addressed, in this
paper, the reliable SFC chaining and placement problem in the
presence of link failures. Our work shows that using MCTS
as a basis for recovering from link failures is efficient when
combined with strategies with no backup and backup resources
and generates higher provider profit. In future work, we will
enhance and extend our algorithms and strategies to deal with
physical node failures, scaling and VNF migration.

REFERENCES

[1] J. Metzler, 2016, ”The 2016 Guide to SDN and NFV”. [Online].
Available: http://www.webtorials.com/

[2] C. Technologies Inc, “The avoidable cost of downtime,” Research
Report, 2010. [Online]. Available: http://arcserve.com/

[3] G.Phillipa, J. Navendu, and N. Nachiappan, “Understanding network
failures in data centers: Measurement, analysis, and implications,”
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 350–361, Aug.
2011.

[4] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in Network and Service Management
(CNSM), Nov 2014, pp. 418–423.

[5] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions in NFV,” CoRR, vol. abs/1503.06377,
2015. [Online]. Available: http://arxiv.org/abs/1503.06377

[6] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” IEEE Transactions
on Computational Intelligence and AI in Games, 2012.

[7] K.-H. Chen, D. Du, and P. Zhang, “Monte-Carlo Tree Search and
Computer Go,” Springer - Advances in Information and Intelligent
Systems, vol. 251, 2009.

[8] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm for the
placement of service function chains,” IEEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 1 – 14, 2016.

[9] W. Rankothge, J. Ma, F. Le, A. Russo, and J. Lobo, “Towards making
network function virtualization a cloud computing service,” in Integrated
Network Management (IM), 2015 IFIP/IEEE International Symposium
on, May 2015, pp. 89–97.

[10] S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet,
and P. Demeester, “Network service chaining with optimized network
function embedding supporting service decompositions,” Computer Net-
works, vol. 93, Part 3, pp. 492 – 505, 2015.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)220

[11] G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61,
no. 3, pp. 268–278, March 1973.

[12] O. Soualah, I. Fajjari, N. Aitsaadi, and A. Mellouk, “PR-VNE: Pre-
ventive Reliable Virtual Network Embedding Algorithm in Cloud’s
Network,” IEEE Global Communications Conference (Globecom), 2013.

[13] I. Houidi, W. Louati, D. Zeghlache, P. Papadimitriou, and L. Mathy,
“Adaptive virtual network provisioning,” ACM SIGCOMM workshop on
Virtualized infrastructure systems and architectures (VISA), 2010.

[14] O. Soualah, I. Fajjari, N. Aitsaadi, and A. Mellouk, “A Reliable Virtual
Network Embedding Algorithm based on Game Theory within Clouds
backbone,” IEEE International Conference on Communications (ICC),
2014.

[15] M. Rahman and R. Boutaba, “SVNE: Survivable Virtual Network
Embedding Algorithms for Network Virtualization,” IEEE Transactions
on Network and Service Management (TNSM), 2012.

[16] M. Chowdhury, M. Rahman, and R. Boutaba, “ViNEYard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking (TON), vol. 20, 2012.

[17] W. Yan, S. zhi Chen, X. Li, and Y. Wang, “RMap: An algorithm of vir-
tual network resilience mapping,” International Conference on Wireless
Communications, Networking and Mobile Computing (WiCOM), 2011.

[18] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Cloud Networking (CloudNet), 2014
IEEE 3rd International Conference on, Oct 2014, pp. 7–13.

[19] R. Guerzoni, R. Trivisonno, I. Vaishnavi, Z. Despotovic, A. Hecker,
S. Beker, and D. Soldani, “A novel approach to virtual networks embed-
ding for SDN management and orchestration,” in 2014 IEEE Network
Operations and Management Symposium, NOMS 2014, Krakow, Poland,
May 5-9, 2014, 2014, pp. 1–7.

[20] S.-I. Lee and M.-K. Shin, “A self-recovery scheme for service function
chaining,” International Conference on Information and Communication
Technology Convergence (ICTC), pp. 108–112, 2015.

[21] ETSI GS NFV 001: ”Network Functions Virtualisation (NFV); Use
Cases”.

[22] ETSI GS NFV 003: ”Network Functions Virtualisation (NFV); Termi-
nology for Main Concepts in NFV”.

[23] A. P. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of failures in an operational
ip backbone network,” IEEE/ACM Transactions on Networking, vol. 16,
pp. 749–762, 2011.

[24] S. Kumar and et al., “Service function chaining use cases in
data centers,” Internet-Draft, January 2016. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-ietf-sfc-dc-use-cases-04.txt

[25] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2003.

[26] J. Clausen, “Branch and Bound Algorithms - Principles and Examples,”
Depart. of Computer Science, Univ. of Copenhagen, pp. 1–30, 1999.

[27] N. Huyn, R. Dechter, and J. Pearl, “Probabilistic analysis of the
complexity of A*,” Artificial Intell, vol. 15, pp. 241 –254, 1980.

[28] O. Soualah, I. Fajjari, N. Aitsaadi, and A. Mellouk, “A batch approach
for a survivable virtual network embedding based on Monte-Carlo Tree
Search,” IFIP/IEEE Integrated Network Management (IM), 2015.

[29] M. P. Schadd, M. H. Winands, M. J. Tak, and J. W. Uiterwijk, “Single-
player Monte-Carlo tree search for SameGame,” A Special Issue on
Artificial Intelligence in Computer Games: AICG, vol. 34, pp. 3–11.

[30] M. Mechtri, C. Ghribi, and D. Zeghlache, “Vnf placement and chaining
in distributed cloud,” in the 9th IEEE International Conference on Cloud
Computing, June 27 - July 2, 2016, San Francisco, USA.

[31] Q. Z. Ayyub, T. Cheng-Chun, C. Luis, M. Rui, S. Vyas, and Y. Minlan,
“Simple-fying middlebox policy enforcement using sdn,” ser. SIG-
COMM ’13. ACM, 2013, pp. 27–38.

[32] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” IEEE INFOCOM, pp. 1–12,
2006.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 221

