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Abstract—In this paper we proposed policy based security archi-
tecture for securing the communication in multiple Autonomous
System (AS) domains with Software Defined Networks (SDN). We
will present a high level overview of the architecture and detail
discussion on some of the important components for securing the
communication in multiple AS domains. A key component of the
security architecture is the specification of security policies that
are to be enforced on the SDN communications whether they
are intra or inter-domain. We will present example scenarios to
demonstrate the operation of the security architecture to enable
end-to-end secure communication within a single AS domain
and for multiple AS domains. We have justified the model using
ONOS controller.
Index Terms—Software Defined Networking(SDN) Security,
OpenFlow, Policy Control.

I. INTRODUCTION

As enterprise networks and data centres expand in size and
complexity, they pose greater administrative and management
challenges. Increasingly, current networks are highly hetero-
geneous with many different devices, from small sensors
and appliances to network devices such as routers to many
different clients and servers and peripherals. Furthermore,
these devices use different network technologies such as fixed,
wireless and mobile networks. In such a complex environment,
proprietary vendor specific software and tools for managing
network devices such as switches, routers and gateways,
the mobility of users and devices, the dynamic variation in
networks due to failure of devices and network links, as well
as dramatic increase in security attacks and shortage of skilled
professionals are posing serious challenges. Software Defined
Networks (SDN) is an emerging technology [1] that offers
a promising approach to meeting some of these challenges.
SDN is rapidly emerging as a disruptive technology, poised
to change communication networks much the same way cloud
computing is changing the compute world. It is altering the
texture of modern networking, moving away from the current
control protocols dominant in the TCP/IP Internet stack,
towards something more flexible and programmable.
It is potentially changing the way networking will be con-
ducted in the future, by enabling devices that are open and
controllable by external open software, unlike today’s propri-
etary network equipment that has protocols embedded into
them by vendors. In this sense, SDN opens up new avenues of
research to realize network capabilities that were impossible or
extremely cumbersome before, thereby helping to make future

networks more manageable and practicable. The separation
of the control plane from the data plane by SDN results in
the network switches becoming simpler forwarding devices
with the control logic implemented in software in a logically
centralized Controller. This decoupling in the SDN enables
the design of new innovative network functions and protocols.
First, it is simpler and less error-prone to modify network
policies through software, than via low-level device config-
urations. Second, a control program can automatically react
to spurious changes of the network state and thus maintain
up to date high-level policies. Third, the centralization of the
control logic in the Controller with network wide knowledge
can help to simplify the development of sophisticated network
functions. Although SDN offers several advantages to deal
with complexities in current networks, a critical issue in SDN
at present is that of security; the current state of the art in
security in SDNs is still at its infancy [2]. Securing networks
is becoming more challenging to businesses, especially with
bring your own devices (BYOD), increased cloud adoption
and the Internet of Things.
In this paper we present the design and implementation of
security architecture for end-to-end communication in SDN. A
key component of the security architecture is the specification
of security policies that are to be enforced on the SDN
communications whether they are intra or inter-domain. First
we will consider a Policy based Security Architecture for intra-
domain interactions and then we will address the inter-domain
communications enabling end to end SDN services across
multiple domains. We will present a high level overview of
the architecture and then describe each component in detail.
We have justified the model using ONOS controller.
In Section II, we describe the Policy based Security Architec-
ture for end-to-end services and detail discussion on the com-
ponents that are related to end-to-end secure communication in
multiple domains. Section III presents the implementation of
our model using ONOS SDN Controller, Mininet and Virtual
Box. Then we present some of the results for inter-domain
scenarios. Section IV considers some related work and Section
V concludes.

II. POLICY BASED SECURITY ARCHITECTURE FOR SDNS

In this section, we will present an overview of the security
application architecture for SDN Controllers and detail dis-
cussion on some of the important components that are used

978-3-901882-89-0 @2017 IFIP 195



Fig. 1: Policy based Security Architecture for SDN

for securing the end-to-end communication in multiple AS Do-
mains. Section II-A describes the network setup and presents
an overview of the security application architecture for SDN
Controller. Topology repository and Policy Repository are the
important subcomponents of the PbSA that are related to end-
to-end security in multiple AS domains. Hence Section II-B
describes the topology repository and Section II-C describes
the policy repository. We will also describe the language
based specification for security policies that is developed for
communication between the Controllers. Finally, Section II-D
considers some of the cases for conflict resolution.

A. Policy based Security Application

A distributed network typically consists of a number of
Autonomous System domains (ASs) and each domain has
packet forwarding devices such as routers, gateways and
switches, and end hosts which are connected to users. There
may be a hierarchy of SDN controllers but for simplicity,
we assume that each domain contains one SDN Controller.
End hosts are connected to the forwarding devices. For clear
specification of policies, we will assume that each AS has
a separate entry and exit gateways. These are OpenFlow
supported forwarding devices. The traffic generated by the
end hosts and forwarded by the network devices within the
network is subjected to policies specified in the Controller. The
distributed SDN environment has both intra-domain and inter-
domain communications. In an intra-domain communication,
the traffic from source to destination passes through devices
with a single SDN domain and the requested services are
provided by the servers and devices in the same domain.
In this case, the traffic and service requests are subjected to
security policies in the SDN Controller of that domain. Inter-
domain communications involving multiple domains requires
cooperation between SDN Controllers, as the communications
are subject to security policies in multiple Controllers.
First we will consider a Policy based Security Architecture for
intra-domain interactions and then we will address the inter-
domain communications enabling end to end SDN services
across multiple domains. We will present a high level overview
of the architecture and then describe some of the important
components in detail.
Figure 1 shows the Policy based Architecture for securing the
communication in a SDN domain. The Policy based Security
Architecture can either form part of the SDN Controller or can
run as a Security Application on top of the SDN Controller.
We have designed and developed the Policy based Security

Architecture as a Security Application running on top a SDN
Controller for flexibility reasons. We will refer to this Policy
based Security Application (PbSA). PbSA is implemented in
the NorthBound API interface of the Controller. As PbSA is
designed in a modular fashion, the components of PbSA can
be implemented on a single host or distributed over multiple
hosts.
We assume that each AS domain is controlled by a single
logical SDN Controller. Each Controller maintains a repository
for storing the information related to the topology and security
policies. Topology repository and Policy repository are the
important components that are used for establishing secure
end-to-end communication between the hosts in multiple AS
domains. The topology repository stores the topological infor-
mation of the neighboring domains. It also stores the Security
Labels of each SDN controller. Security Labels are statically
assigned based on SDN controller making and reputation
of that particular AS domain. Policy Repository is used for
storing the security policies for communication between the
nodes. Policies are stored in a XML repository. Each policy in
Policy Repository is termed as one Policy Expression. These
Policy Expressions control the AS domain activity as well
as the incoming packet activity in that particular domain.
A detail discussion on these repositories is presented in the
following sub Sections. The core component of PbSA is a
Policy Manager, which manages every single operation of the
security system. It is the coordinator of the whole AS policy
routing system. Policy manager makes use of Evaluation
Engine to evaluate the incoming network traffic (eg packet˙in
messages) and determine the relevant security policies for that
specific traffic. Following the evaluation, the Policy Manager
determines the flow rules which are then conveyed to the
Enforcer module. The Enforcer is used for enforcing the
policies related to the flows. A Packet Handle Creator module
creates the necessary handles for AS domains which is piggy
backed with the payload from the Policy Manager. These
handles are used to check the authenticity of the packet and
the enforcement of policies at the switches which is discussed
in detail in Section II-C2.
Now we described the Topology and Policy repositories in
detail.

B. Topology Repository

For inter-domain routing of traffic across multiple domains
requires an SDN Controller in one AS domain to have knowl-
edge of other Controllers in other AS domains. We have used
a pre-built topological map of different AS domains. We have
included an additional security attribute, a Security Label for
each AS domain SDN Controller. The intention of the Security
Label is to reflect the level of secureness that particular
Controller have. In our current architecture, this Security Label
is hard wired (static) and is specified at the time of installation
of the Controller. They are statically assigned based on device
meta data such as vendor, making, manufacturer reputation
etc. For this implementation purpose only, we have chosen
four Security Labels where, SL1 being the least and SL4
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Fig. 2: Topology Views at the Controllers

being the highest Security Label. Hence each AS domain
SDN Controller now has the ability to create the topological
information as well as the levels of security associated with
all the neighbouring AS domain Controllers in this Repository.
Consider the distributed SDN environment shown in Figure 2
and the associated Topology Repositories are shown in Tables
with in the Figure. Each hexagon in Figure 2 represents an AS
domain. We have represented the AS Gateways using Gateway
OpenFlow Switches. The OpenFlow Switches are represented
using the notation ([source AS ID]SW[destination AS ID]).
Hence the Switch connecting AS1 to AS2 will be represented
as 1SW2. In each topology table, AS ID is the identity of
a particular AS, Sec Label is the Security Label of the AS
domain, AS D represents the distance in terms of number of
ASs between the source and destination.

C. Policy Repository and Security Policy Specifications

Policy Repository is used for storing the security policies. A
key component of the security architecture is the specification
of security policies that are to be enforced on the SDN com-
munications whether they are intra or inter-domain. Policies
stored in the repository are granular and can also help in
managing the SDN network domain, such as managing QoS
of video traffic, blocking the P2P traffic for better network
performance etc.
We have adopted a simple language based approach to specify
the security policies; in particular, we have chosen the policy
based routing syntax specified in RFC1102 [3] as the basis
for our security policy specifications. Policies are rules that
specify whether packets follow a particular path or paths in
the network and the conditions under which the packets follow
these paths. In our language, we have policy terms specifying
a range of attributes associated with the flow and the entities
in the SDN. These include the following:

• Flow Attributes: Flow ID, sequence of packets associated
with the Flow, type of packets, Security Profile indicating
the set of security services that are to be associated with
the packets in the Flow

• Autonomous System Domain Attributes: AS Identities
such as Source AS and Destination AS Identities, Iden-
tities of Entry and Exit Gateway/Switch to AS, AS Type
(e.g. Commercial Domain, Government Domain) and
Security Label associated with the AS.

• Switches Attributes: Identities of the Switches and Secu-
rity Label of the Switches

• Host Attributes such as Identities of Hosts such as Source
Host ID and Destination Host ID

• Constraints such as Flow Constraints (FlowCons) and
Domain Constraints (DomCons) associated with a Flow

• Services (for which the Policy Expression applies),
• Time Validity (the period for which the Policy Expression

is valid) and
• the Path (In case of intra-domain it indicates a specific

sequence of switches and in the case of inter-domain
communications it indicates the sequence of Autonomous
Systems traversed by a Flow)

The flow constraints are conditions that apply to specific flows
or sets of flows. For instance, a constraint might specify the
flow of packets of a specific type (e.g video) should only go
through a set of switches that can provide a certain bandwidth;
or from a security point of view, a constraint could be that
a flow should only go through AS domains that are at a
particular Security Level. Domain constraints are applied to
all flows within a domain. They are used to specify domain-
wide policies. For instance, there could be a domain wide
security policy which may specify that all flows should be
protected for integrity, as part of the security profile. These
constraints are used as part of the actions associated with the
Policy Expressions.
Alternatively it is also possible to enforce specific paths by
explicitly specifying the set of switches through which a flow
must go through or a specific set of AS domains that should
be traversed.
The policy language has wild cards in its syntax enabling spec-
ification of policies that can apply to sets or groups of entities
and services. When a Policy Expression is satisfied, then the
associated action is performed which could be simple as just
allow or deny the request. Hence using these policy terms,
one is able to specify different sets of Policy Expressions to
deal with a range of scenarios in both intra-domain and inter-
domain communications in a distributed SDN environment.

1) Intra Domain Scenarios: First let us consider some
simple intra-domain scenarios in a single SDN domain.
Using the policy terms mentioned above, a simplified Policy
Expression template could be as follows:
PEi= < FlowID, SourceAS,DestAS, SourceHostIP,
DestHostIP, SourceMAC,DestMAC,User,
F lowCons,DomCons, Services, Sec− Profile,
Seq − Path >:< Actions >
where i is the Policy Expression number.
In general, we will have a number of Policy Expressions
stored in the SDN Policy Repository. Such a template will
enable us to specify a range of policies for different users,
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Fig. 3: Intra-Domain Example Scenario

from different locations, accessing different services using
different devices following different paths. We will illustrate
the use of the Policy Expression using 3 examples below.
Example 1: User Alice accessing a Service from a Specific
Device Let us assume that Alice has registered her device
with the IP address and the MAC address of the specific
device are 172.56.16.02 and 48-2C-6A-1E-59-2F respectively
(e.g. as part of BYOD policy) as shown in Figure 3. Then
the Policy Expression is as follows:
PE2 = < ∗, ∗, ∗, 172.56.16.02, ∗, 48− 2C − 6A− 1E − 59−
2F, ∗, ∗, Alice, ∗, 80, conf, ∗ >:< Allow >
This scenario is more specific to organizations where
employees try to access from their assigned access points.
According to the Policy Expression, this Policy is associated
with a user Alice. Whenever she tries to access via HTTP
traffic from the specified host machine, she will be provided
a confidentiality service by the Controller. The AS related
conditions, host traffic destinations have wild cards. Flow IDs
as well as the switch sequences for path have also got wild
cards in this scenario.
Example 2: Accessing Specific Services This scenario

considers access to specific services such as HTTP and FTP
to be allowed for any user. For example, a Hospital may
maintain a patient database in an FTP server and any doctor
can access the patient database from his or her assigned
access point. One may have additional constraints such as
the communications between the patient database server and
the access points should be protected for confidentiality and
integrity. The Policy Expression for such a scenario could be
as follows:
PE1 = < ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, (20; 21; 22; 23), {Conf, Intg},
∗ >:< Allow >
Policy Expression specifies that the FTP traffic from any
host to any destination within the hospital is protected for
confidentiality and integrity.
Example 3: Path Based Policy for Services This scenario can

specify specific paths for specific services requested from
the hosts. Consider for example, we are running HTTP and
FTP servers on two machines with IP 172.56.16.06 and
172.56.16.08 respectively. We have created a OpenFlow
switch matrix with five switches as shown in Figure 3. Two
Hosts 172.56.16.02 and 172.56.16.04, we want to guide their

flows through this switch matrix based on the services they
are trying to access. The Policy Expressions could be as
follows:
PE5=< ∗, ∗, ∗, 172.56.16.04, 172.56.16.06, 48 :
2C : 6A : 1E : 60 :
FF, ∗, ∗, ∗, ∗, 80, {Conf, Intg}, (SW1;SW5;SW4) >:<
Allow >
PE6=< ∗, ∗, ∗, 172.56.16.02, 172.56.16.08, 48 :
2C : 6A : 1E : 59 :
2F, ∗, ∗, ∗, ∗, (20; 21; 22; 23), Conf, (SW1;SW3;SW4) >:<
Allow >
First Policy Expression says that flows from host with IP
172.56.16.04 and MAC 48:2C:6A:1E:60:FF accessing the
HTTP server on IP 172.56.16.06, should be protected for
confidentiality and integrity and forwarded via OpenFlow
switch SW1->SW5->SW4.
According to the second Policy Expression, flows to the FTP
server running on IP 172.56.16.08 from host with the IP
address 172.56.16.02 and MAC address 48:2C:6A:1E:59:2F
are to be forwared via a OpenFlow switch path SW1->SW3-
>SW4. This Policy Expression also instructs the Controller
to protect the flow for confidentiality.

2) Inter Domain Scenarios: Let us now consider a
simplified Policy Expression template using the policy terms
mentioned above.
PEASk

i =< FlowID, SourceASAttributes,DestASAttributes,
SourceHostIP,DestHostIP, SourceMAC,DestMAC,User,
F lowCons,DomCons, Services, Sec − Profile, Seq −
Path >:< Actions >
where k is the AS ID and i is the Policy Expression number.
In an inter-domain scenario, the various attributes in the
Policy Expression are as follows:
Source AS Attributes include the following:

• AS Domain ID
• Source Subnet(SRCSUB) = Source Subnet address from

which the incoming packets originate.
• Source AS Controller Entry Switch (SRCENT ) = Ad-

dress of the entry OpenFlow Switch connected to the
SDN Controller of the AS domain

• Source AS Type (SRCType) = Examples include gov-
ernment domain GOV or commercial domain COM or
education domain EDU

• Security Label (SRCSL)= Security Label of Source AS
(optional)

Destination AS Attributes include the following:

• Destination Subnet (DSTSUB) = Destination Subnet
address where the packets are to be transferred.

• Destination AS Type (DSTType) = Type of the Destina-
tion AS

• Security Label (DSTSL) = Security Label of the desti-
nation AS (optional)

Source/ Destination Host specific parameters:

• Source Device IP (SRCIP ) = IP address of the host
machine from where the packet originates.
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• Source Device MAC (SRCMAC) = MAC address of the
host machine from where the packet originates.

• Destination Device IP (DST IP ) = IP Address of the
destination host machine.

• Destination Device MAC (DSTMAC) = MAC Address
of the destination host machine.

FlowCons and DomCons: As mentioned earlier, FlowCons and
DomCons represent conditions that need to be satisfied by the
path taken by the traffic in the SDN environment. The Path
(ASSEQ) is used to explicitly specify a list of AS Domains
that is to be traversed by the traffic.
Packet Type (PKTTY P ) indicates the type of the incoming
packets. In some cases, port numbers are used to indicate the
type.
Time (TPEi ) represents the duration time for which a particu-
lar Policy Expression is valid. A wild card implies the policy
is valid from the start and there is no time limit.
Actions: Each Policy Expression has an action associated with
it. The FlowCons and DomCons impose certain conditions
associated with the actions. For instance, if there is a flow
constraint which requires that this specific flow of packets
of a specific type should only go through a set of switches
that can provide a certain bandwidth, then the action requires
that appropriate flow rules be dynamically configured into a
set of switches enabling a path that satisfies this constraint.
Similarly, from a security point of view, if there is a flow
constraint that requires only AS domains that are at a par-
ticular Security Label be traversed by the specific traffic in
question, then the action will require the selection of a path
with appropriate AS domains. An action can also have some
attributes. For instance, Destination Exit Switch (DSTEXT )
attribute associated with an action indicates that the exit switch
that should be taken by the traffic when the policy is satisfied.
Example: Secure Policy based Routing in Inter-Domain
Scenarios The PbSA’s Topology Repository in each SDN
Controller of the AS domain stores information about the
neighbouring AS domain SDN controllers. Here in policy
based routing of SDN controller AS domains packets are
being guided by the policies stored in the Policy Expression
Repository.
In this section, we consider secure policy driven routing and
communications in inter-domain scenarios involving multiple
AS domains and SDN Controllers. Routing process begins
from the host that is generating the packets and the request
which is the source of the communication. This source end
host could be any client such as a mobile device. The initial
packet from the end host is sent by the switch (to which
this end host is connected) to the SDN Controller in the AS
domain. The host packet contains all the usual network and
service parameters such as the source address, the packet type.
The PbSA application in the Controller extracts the relevant
parameters from the incoming packets and uses the Policy
Repository and the Policy Manager to determine whether the
relevant Policy Expressions are satisfied. We have seen some
examples of the Policy Expressions above in the previous

section. If the Policy Expressions are valid for the incoming
packets, then PbSA will enforce the specified actions as flow
rules in the appropriate data plane devices such as switches to
transfer the packets.
With inter-domain communications, there is a need to transfer
the packets to other AS domains. For such inter-domain
scenarios, we introduce two further concepts. First is the
notion of a Handle, which the the PbSA creates and tags it
to the Packet. The Handle consists of a list of visited AS
domain IDs. The Packet + Handle is then transferred to the
next AS Domain Controller. Similar process is being repeated
as the packet goes through all the transit AS domain SDN
Controllers until the packet reaches its destination. The second
concept is that of a Policy Transfer Token. A Policy Transfer
Token contains the constraints that are transferred from the
current AS domain to the subsequent transit AS domains
which need to be satisfied as the packet is being transferred.
These constraints need to be taken account in addition to the
constraints of the transit domains. For instance, if there is a
constraint that the traffic should only pass through AS domains
of Security Label greater than a certain threshold, then this
constraint needs to be satisfied by subsequent transit domains.
Suppose an AS domain SDN Controller (with AS ID = 10)
has a constraint that packets should only be forwarded through
a path of AS domain SDN Controllers that have a Security
Label higher that say SL3. In distributed systems, in general,
it is not possible for one domain Controller to know about
policies of other domains. Hence there is a need to transfer
the policy constraints, which are communicated via Policy
Transfer Tokens. In this paper, we assume that the AS domain
Controllers are trusted and that if and only if the policies can
be satisfied in the domain, the receiving Controller will accept
the packets. In terms of notation, we denote the Handle as
HASk

i which is tagged to the packet , where i is the Handle
number for a particular communication i and k is the ID of
the AS domain SDN Controller which created the Handle.
Similarly, the Policy Transfer Token is denoted as PTTASk

i ,
where again i denotes the specific communication and k
denotes the ID of the AS domain. Hence an AS domain SDN
Controller creates the Augmented Packet using the original
Packet as well as the Handle and the Policy Transfer Token.
Let us now illustrate the above concepts using a simple inter-
domain scenario in Figure 2, which shows two domains AS1
and AS4 connected via domains AS2 and AS3. Each AS
domain has a SDN Controller and PbSA with its Policy and
Topology Repositories as described above. The Tables beside
each of the AS domains in Figure 2 represent the Topology
Repository. We have not counted the intermediary node for
hop counts between AS domain for simplicity. The Table I
shows the policies in each of these AS domains stored in the
Policy Repositories of PbSA.
In this scenario, the host machine X (with IP address 10.0.0.2)
wishes to communicate host machine Y (with IP address
205.110.46.72). As X and Y reside in two different AS
domains, communication between them occurs via transit AS
domains. At first, packets from X goes to the SDN Controller
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TABLE I: Stored Policy Expressions

AS ID Policy Expression

AS1
PEAS1

1 =< ∗, (10.0.0.0/24, EDU, SL2),
(205.110.46.70/25), 10.0.0.2, ∗, ∗, ∗,
∗, ∗, ∗, (80, 443), conf, ∗ >:< (SL2+ =) >

AS2
PEAS2

4 =< ∗, (10.0.0.0/24, EDU, SL2),
(205.110.46.70/25), 10.0.0.2, ∗, ∗, ∗, ∗, ∗, ∗,
(80, 443), conf, (AS3) >: (SL2+ =) >

AS3
PEAS3

2 =< ∗, (10.0.0.0/24, EDU, SL2),
(205.110.46.70/25), ∗, ∗, ∗, ∗, ∗, ∗, ∗,
(80, 443), conf, ∗ >: (SL2+ =) >

AS4
PEAS4

1 =< ∗, (10.0.0.0/24, EDU, SL2),
(205.110.46.70/25), 10.0.0.2, 205.110.46.72,
∗, ∗, ∗, ∗, ∗, (80, 443), conf, ∗) >:< Allow >

of AS1. As the policy expression PE1 in AS1 matches
with this particular network traffic, HTTP & HTTPS traffic
originating from 10.0.0.2 is allowed to go to Y in the subnet
205.110.46.70/25. However let us assume that there is a flow
constraint which specifies communications between X and Y
must occur only through domains which have Security Labels
greater than or equal to SL2. This will result in the traffic
routed through the AS2 domain via the OpenFlow Switch
1SW2(Connected to AS1). A similar process occur in AS2
and the traffic will be sent to Y in AS4.

D. Security Policy Conflicts and Error Handling

As discussed above, in inter-domain scenarios, each AS
domain has its own security policies within its PbSA in the
SDN Controller. When inter-domain communications occur,
the constraints attached to specific flows are transferred as
part of Policy Transfer Tokens in our architecture. This leads
to two types of mismatches. One type is the actual conflicts
between policies in different domains and the other type is
due to mismatch in capabilities available in different domains.
Conflicts in policies can occur if the policies associated with
a flow arising from one domain contradicts with policies
in another domain. There are several ways in which such
conflicts can arise. For instance, a simple case of conflict
could be that the traffic coming out of Domain I may need to
be destined to a host in Domain K, which is passing through
Domain J. However Domain J may have a policy which
blacklists Domain K and hence it will not send any traffic to
any host in Domain K. As security policies in each domain is
independent and not known to other domains, Domain I will
not be aware of the security policies of Domain J. Another
example could be that Domain J requires for all traffic being
transferred in its domain, the traffic must be signed, that is,
there must be source authentication to counteract spoofing.
However traffic from Domain I may not have such constraint,
and hence once again a policy conflict arises. Then there
is the second type, which is due to different capabilities
available in different domains. For example, there may be a
flow constraint which requires a certain minimum bandwidth
for the traffic. The transit domain, e.g. Domain J, may not
be able to satisfy this requirement. It is necessary for the
security architecture to handle both these types of policy
conflicts and mismatches in capabilities between domains.
We have customized ICMP error messages to handle these two

types of mismatches in our security architecture. These error
messages ripple back to the PbSA enhanced SDN Controller
in the source AS domain via the same path taken by the
original traffic. This can be achieved using the handle which
contains the relevant parameters about the original path taken
by the traffic. The ICMP error messages contain the hash of
the relevant parameters such as the source and destination IP
and service information belonging to the original packet for
which the mismatch occurred. This implies that domain SDN
Controllers need to store these parameters for all the packets
being transferred for a period of time. In our architecture, we
store them in the form of hashed digests. When a particular
error message comes to an AS domain SDN Controller, it
extracts the hash from the ICMP error message and identifies
the required traffic by matching it with the stored hashes. The
different types of mismatches within the error message have
the following parameters:
MismatchMessage = [Cause of Mismatch] +
[Domain where Mismatch Occurred] +
Hash(PacketHeader, ServiceInfo, Payload)

III. IMPLEMENTATION

Here, we highlight the implementation details of the SDN
network and PbSA application. In Section III-A we describe
the functional modules of PbSA application and Section
III-B illustrates implemented Policy Repository. Finally, we
represent our findings in Section III-C.
We have validated our Policy based Security Architecture
for SDN using Open Network Operating System(ONOS). We
have extended the SDN-IP application in ONOS by adding
extra modules for policy control in SDN inter-domain. We
have simulated the environment using Mininet and ONOS
running on Oracle VM BOX. For simulation, we are using
a Core i7 - 4790 @3.60 GHz CPU with 32 GB of RAM.
The setup is similar to Figure 2 . We have added bridged
mode Ethernet adapters to the VM pairs running within VM
box to make communication channels between each pair and
each ONOS VM talking to Mininet VM. We have created
ONOS and Mininet VM pairs, which acts as a single SDN
AS domains. Each AS domain SDN controller runs PbSA.
We have activated PbSA in all the ONOS SDN controllers.
Policies are installed and stored in a XML repository. We have
used Java parser to update the XML policy repository. We now
present some specific implementation details.

A. Application Modules

Figure 4 shows the different modules used in the Policy based
Security Application. We have combined our application with
SDN-IP, the ONOS built-in application which is used for
BGP listening. In particular we made use of SDN-IP features
such as BGP route selection, update, maintaining sessions for
creating & updating our topology repository. We present brief
overview of the modules related to our implementation.
SDN-IP core consists of a software router which captures best
BGP routes from BgpSessionManager. BgpSessionManager
maintains sessions, updates and selects the best BGP routes.
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Fig. 4: Software modules for the Policy based Security Appli-
cation

Fig. 5: AS4 PbSA policy repository

ArpService is used for resolving MAC addresses. ONOS
core configurations are captured by the Configuration module.
IntentService submits the requests to the ONOS controller in
the form of intents. With the help of these modules SDN-IP
listens to BGP requests and chooses the best route from them.
SDN-IP suffers from some of the traditional issues which we
have mentioned in the related section. Our target here is to
use SDN-IP to implement our proposed policy based secure
interdomain architecture.
The next phase is implementation of different modules of
our application. Here we have used an XML Repository for
storing the policies. To update, modify and read the stored
XML policies we have used JAVA DOM XML parser module.
Policy Manager is the core of the Policy based Security
Application. It maintains all the modules in the application.
Enforcer helps Policy Manager in enforcing flow rules. It also
interacts with the topological information from SDN-IP and
updates our Topological Repository. Policy Manager is aware
of the topological information. Before setting up any new
flows between the available domains, Policy Manager checks
the XML policy repository. Evaluation Engine module helps
Policy Manager in the decision making process. It checks
the policies and sends the particular action to the Enforcer,
which is conveyed by Policy Manager to the intent services.
These intent requests are captured by the ONOS controller
and appropriate action is being taken. Handle creator is used
to create the packets with policy tokens.

Fig. 6: Active ONOS applications

Fig. 7: Controller to Controller Response Time

B. Repository

Figure 5 shows policy repository of AS4 (VM Pair 4. Policy
expresses that packets originated from subnet 10.0.0.0, host
10.0.0.2 with any (*) MAC address, whose destination subnet
is 205.110.46.70/25 will be forwarded to Host Y with IP
205.110.46.72. The traffic must be HTTP/HTTPS traffic.

C. Findings

Figure 6 shows the Policy based Security Application (PbSA)
running in VM pair 2. We have activated the same applications
in all the ONOS VMs. We have extended the simulations
for increasing number of AS domains. The default AS hop
length for a vast majority of Internet path is 10 [4]. Figure
7shows the controller to controller response time. The graph
shows a comparison between the policy based approach and
normal approach of communication between the controllers
for varying number of AS domains. There is a minor increase
in the overhead with PbSA (10-20% slow response).
We have also calculated the throughput for a single ONOS

running our application. First, we have calculated the nor-
mal throughput of a ONOS instance by activating drivers,
OpenFlow and Forwarding application only. For this we have
used Cbench, it is a SDN controller benchmarking tool. After
that, we have activated other necessary apps including PbSA
and calculated the throughput for them. We represent the
throughput comparison of both the experiments in Figure 8.
We have varied the switch count and ran the experiments. Due
to PbSA, throughput reduced to 2-10% (depends on switch
size & flow rule), but we compromise it to security.
To check the CPU load incurred due to our application during

active processing time we have used JProfiler. ONOS core and
applications running over NBI, displays certain informations
at the bash shell of the host OS. These messages are called
ONOS tail-log messages. We have marked three zones (1.
ONOS normal working zone, 2. Device discovery and driver
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Fig. 8: Throughput Performance

Fig. 9: CPU usages

loading zone, and, 3. PbSA working zone.) in the graph,
based on the tail-log messages and their time stamp. In PbSA
working zone (figure 9), spikes show the processing time load
due to our application.

IV. RELATED WORK

Inter-domain routing is the main backbone in today’s network
infrastructure. There are approximately 50000 autonomous
domains. As SDN is getting popular day by day the need
for changing the existing networking world technologies is
becoming inevitable. Policy based control in inter-domain
SDN is a new area. Here we categorize our discussion into
three groups: i) Policy based routing in legacy network,
ii) Need and state of inter-domain policy based routing in
SDN, and iii) Current state of policy enforcement in SDN
intra-domain.
i) Policy based routing in legacy network: Policy based
routing for legacy network was first introduced by D. Clark in
RFC1102[3] during 1989. This paper discusses how policies
can be used to route packets in Autonomous Domains. D.
Clark proposed a simple policy syntax which is able to control
the Autonomous Domains. However this approach does not
consider the security policies between the Autonomous
domains and lacks specification of policies at fine granular
level.
Tsudik et al. [5] introduced security into Clark policy based
routing theme. He introduced n(n − 1) symmetric key
distribution in the work for encrypting polices. However
this techniques distributes all the domains related policies
between the AS domains.
Our research work is based on D. Clark[3] RFC, but we

focus on the security aspects in SDN controlled Autonomous
Domains. Our policies are much more granular and XML
based policy storage makes the matching operation much
faster. Compared to Tsudik, our work only distributes policies
related to specific flows between the AS domain SDN
Controllers which incurs less overhead. This aspect of our
work is novel from Tsudiks work.
ii) Need and state of inter-domain policy routing in SDN
networks: You et al. in [6] has used SDN to conduct
multipath routing of flows in inter-domain. This approach
does not consider security issues either in SDN nor in
inter-domain flow communication. Machado et at. in [7] have
mentioned about a Policy Authoring Framework for SDN.
This framework deals with only QoS of the network services.
In current state of art many SDN controllers do not have
support for BGP. Peter et al. in [8] discusses briefly about
Broader Gateway Protocol (BGP) based routing weaknesses
in legacy network. He also mentions why BGP is not suitable
for SDN. Finally, they have proposed an application based
routing architecture. Another approach [9] uses Routing
Control Platform (RCP) for the SDNs. RCP is a logically
centralized BGP route selector and speaker, which is separate
from the IP forwarding plane. This work does not focus on
the security policy control of the Autonomous Domains.
Recently developed controllers such as OpenDaylight and
Open Network Operating System (ONOS) SDN controllers
has some limited features to establish communication
between Autonomous Domain SDN controllers using BGP.
OpenDaylight uses SDNi protocol[10], which only exchanges
state information between Autonomous Domain controllers.
On the other hand, ONOS uses SDN-IP[11] to communicate
with other Autonomous Domain SDN controllers. Though
this application mimics BGP protocol, it lags many of the
core features of BGP[11].
iii) Current state of intra-domain policy enforcement in SDN
controllers: Some important works regarding intra-domain
policy control is found in [12], [13], [14], [15], [16], [17].
They have different weakness like granular control, security
and complexity in specifying the Policy Expression.
From above discussion it is evident that there is need for work
related to secure communication between the Autonomous
Domain SDN controllers. Our work proposed a security
architecture for end-to-end servers in multiple AS domains.

V. CONCLUSION

In this paper we presented the design and implementation
of security architecture for end-to-end services in SDN. A
key component of the security architecture is the specification
of security policies that are to be enforced on the SDN
communications whether they are intra or inter-domain. We
have presented Policy based Security Architecture for securing
communications in single AS SDN domain and then extended
the architecture for securing communication in multiple AS
SDN domains. We have also discussed how our model can
handle errors and conflicts that can occur in inter-domain
environment.
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