
INSpIRE: Integrated NFV-baSed Intent Refinement
Environment

Eder J. Scheid, Cristian C. Machado, Muriel F. Franco, Ricardo L. dos Santos, Ricardo P. Pfitscher,
Alberto E. Schaeffer-Filho, Lisandro Z. Granville

Institute of Informatics - Federal University of Rio Grande do Sul
Porto Alegre, RS, Brazil

{ejscheid, ccmachado, mffranco, rlsantos, rjpfitscher, alberto, granville}@inf.ufrgs.br

Abstract—Many aspects of the management of computer
networks, such as quality of service and security, must be
taken into consideration to ensure that the network meets the
users and clients demands. Fortunately, management solutions
were developed to address these aspects, such as Intent-Based
Networking (IBN). IBN is a novel networking paradigm that
abstracts network configurations by allowing administrators to
specify how the network should behave and not what it should do.
In this paper, we introduce an IBN solution called INSpIRE (In-
tegrated NFV-based Intent Refinement Environment). INSpIRE
implements a refinement technique to translate intents into a
set of configurations to perform a desired service chain in
both homogeneous environments (VNFs only) and heterogeneous
environments (VNFs and physical middleboxes). Our solution
is capable of (i) determining the specific VNFs required to
fulfill an intent, (ii) chaining these VNFs according to their
dependencies, and (iii) presenting enough low-level information
to network devices for posterior traffic steering. Finally, to assess
the feasibility of our solution we detail a case study that reflects
real-world management situations and evaluate the scalability of
the refinement process.

I. INTRODUCTION

Many aspects of the management of computer networks,
such as quality of service and security, must be taken into
consideration to ensure that the network meets the users and
clients demands. In order to achieve the desired behavior, the
devices composing the network must be individually config-
ured, requiring time and effort from network administrators
[1]. This activity typically involves the interruption of the
network and results on rules that highly depend on the physical
network topology. Fortunately, many approaches have been
developed to tackle these issues, including well-known and
widely employed solutions such as Simple Network Man-
agement Protocol (SNMP) [2] and Policy-Based Networking
(PBNM) [3] [4], as well as more recent techniques based on
Intent-Based Networking (IBN) [5].

IBN is a novel networking paradigm that abstracts network
configurations by allowing administrators to specify how the
network should behave and not what it should do. For example,
in IBN solutions, one must write an intent “All outgoing
network traffic is encrypted” and not an instruction “If a packet
is destined to outside the network then encrypt it using SHA3”.
Intent brings context and is not vendor-specific, which means
that the underlying mechanisms must be capable of translating
this intent to low-level configurations and maintaining the

desired state through the entire network operation. Given
the dynamicity involved in IBN, the underlying technologies
must be flexible enough to cope with an ever-changing net-
work environment, scaling and moving accordingly. Novel
technologies arise as alternatives to provide this flexibility,
such as Software-Defined Networking (SDN) [6] and Network
Functions Virtualization (NFV) [7].

NFV introduces the possibility to instantiate and terminate
network functions dynamically in the infrastructure. Addition-
ally, NFV combined with SDN provides a paradigm shift from
earlier technologies, as now different traffic flows can be dy-
namically steered through any sequence of network functions
to provide specialized network services. This act of specifying
the sequence of network functions is known as service function
chaining [8]. However, the management of network functions,
service chains, and other network resources becomes challeng-
ing as the dynamicity of the network increases. Therefore,
the employment of intents and IBN in the service chaining
context is appropriate. Moreover, intents can be used to
decouple management strategies from implementation details,
reducing the amount of specific knowledge from system-level
administrators when configuring low-level settings, e.g., the
chaining of Virtual Network Functions (VNFs).

Even though IBN is a novel networking paradigm, intents
can still be considered high-level abstract policies. In addition,
intents do not hold specific requirements nor configurations,
e.g., OpenFlow rules [9]. Thus, IBN solutions must be able
to translate these high-level policies into lower-level specific
configurations e.g., IPTables rules or routing tables. This
translation process is referred to as policy refinement and it
has been investigated for several years [10] [11] in the PBNM
context. However, to the best of our knowledge, refinement
techniques alongside with IBN and NFV were not exploited
in any other solution. Therefore, there is an opportunity to
investigate refinement techniques in the IBN context.

In this paper, we introduce an IBN solution called
INSpIRE (Integrated NFV-based Intent Refinement Environ-
ment). INSpIRE implements a refinement technique to trans-
late intents (constrained by a Controlled Natural Language -
CNL [12]) into a set of configurations to perform a desired
service chain in both homogeneous environments (VNFs only)
and heterogeneous environments (VNFs and physical mid-
dleboxes). Our solution applies a refinement process, based



on non-functional requirements and softgoals, to decompose
intents and to calculate values that are utilized as selection
criteria for the choice of middleboxes that will compose
the service chain; ultimately, satisfying the desired intent.
INSpIRE is capable of (i) determining the specific VNFs
required to fulfill an intent, (ii) chaining these VNFs according
to their dependencies, and (iii) presenting enough low-level
information to network devices for posterior traffic steering.
Further, we extend the descriptor of VNFs defined in the ETSI
Management and Orchestration (MANO) framework [13] to
contain meta-data to aid in the ordering of VNFs. Finally, we
describe a case study and conduct experiments to demonstrate
the scalability of the refinement elements and to evaluate the
feasibility of our solution in real-world scenarios.

This paper is structured as follows. In Section II, we review
related work. Section III provides a brief description of the
main concepts used in our solution, presents INSpIRE, and
describes a case study. In Section IV, the experiments, and
results are described. Finally, in Section V, we finish this paper
with conclusions and future work.

II. RELATED WORK

Early work on policy refinement in the context of PBNM
has achieved promising results. Bandara et al. [14] proposed to
decompose high-level policies into low-level concrete policies
based on goal mapping. Given a formal representation of a
system, based on Event Calculus (EC), the proposed solution
can derive the sequence of operations that will allow a system
to achieve the desired goal. The goals can be accomplished
by reaching one or more of the underlying goals that were
previously derived. Rubio-Loyola et al. [15] used linear tem-
poral logic and reactive systems analysis to provide a solu-
tion for goal-based policy refinement. Leveraging the KaOS
methodology to goal elaboration, the solution can derive goals
into low-level policies in the Ponder specification language
[16]. Also, the authors present their solution in a DiffServ
QoS management scenario. Craven et al. [11] described a
method for the refinement of authorization and obligation
policies. In the work, the domains are represented in UML
diagrams, which are used as inputs to the refinement process,
alongside with a policy and decomposition rules. After the
decomposition, operationalization and re-refinement stages the
policy is ready for deployment.

More recently, the use of high-level abstractions for con-
figuring and managing SDN-based infrastructures has been
investigated. A novel language for programming OpenFlow
networks was proposed by Foster et al. called Frenetic [17].
Frenetic provides a high-level language for handling network
traffic and a reactive library to compose packet-forwarding
policies. This language aims to ease the work of network
operators when developing SDN controllers. Machado et al.
[18] presented a formalism based on EC to represent high-
level Service-Level Agreements (SLA) policies and then apply
logical reasoning to refine these SLAs into low-level rules to
manage an SDN. The authors advocate that some aspects of
SDN, such as the ease to gather information about the network

(e.g., jitter and delay) by OpenFlow controllers, enhances the
policy refinement process in such environments.

All these works address the refinement of high-level into
low-level policies. However, intents are abstract and subjective,
changing from domain to domain. Therefore, we need to
consider this subjectiveness when refining intents. Further-
more, the scope of most refinement techniques is restricted to
specific domains, such as QoS management in conventional
IP networks or access control systems, which limits their
employment in the refinement of intents. Moreover, a single
intent can alter the configuration of many elements in the
network. Thus, the modeled domains used for the refinement
process must accurately reflect the elements and configurations
of the whole network and not just a single scope.

III. INTEGRATED NFV-BASED INTENT REFINEMENT
ENVIRONMENT

In this section, we present INSpIRE to address the re-
finement of intents, which are defined as high-level abstract
policies, into a set of network functions and information that
satisfy a specific intent. Our refinement technique is composed
of three steps. The first step relates to the modeling of the
domain in which the intent is being applied, including opera-
tions performed by network functions (e.g., L2 inspection and
packet filtering) and non-functional requirements (e.g., security
and performance). We detail this model and requirements in
Section III-A and Section III-B. The second step includes the
quantitative calculation of the non-functional requirements of
a VNF based on the modeled domain, resulting in numerical
values for those requirements. Finally, the third step includes
the parsing of the intent and the clustering of VNFs based on
the resultant values from the quantitative calculation.

A. Non-Functional Requirements (NFR) Framework

When designing a software, it is crucial that software
engineers consider both functional requirements and non-
functional requirements. The former dictates what the soft-
ware is expected to do (e.g., store employees data and ex-
change email), the latter defines the qualities of the software
(e.g., store data securely and exchange email quickly). Non-
Functional Requirements (NFRs) are, usually, informally spec-
ified during the software development process, being based on
empirical observation from stakeholders, and thus are hard to
model. Therefore, one of the main challenges is to define how
one can model the qualities of a system [19].

To model NFRs, we rely on the NFR Framework [20].
In which softgoals and operationalizations represent the re-
quirements in a Softgoal Interdependency Graph (SIG). An
example of a SIG is depicted in Figure 1. One softgoal
(cloud shape) can have different types of contributions and
relationships towards other softgoals, such as BREAK (--),
HELP (+), HURT (-), and MAKE (++). While MAKE and
HELP contribute positively to satisfice1 an upper softgoal,

1According to the Oxford Dictionary satisfice is defined as “Accept an
available option as satisfactory”. Therefore we utilize this word instead of
satisfy in this context.



BREAK and HURT contribute negatively. To satisfice these
softgoals, one must first identify possible techniques that must
be implemented in the system, named operationalizations
(bold cloud shape). These operationalizations are the external
nodes of the SIG.

We formally define a SIG with the set below:

SIG = (V, E)
V ∈ {SG,LSG,OP}

where
• SG: represents the primary set of softgoals, which are

the root-node of the graph.
• LSG: is the set of refined leaf-softgoals from the primary

softgoal.
• OP : contains the set of operationalizations that con-

tributes to satisfice the LSG or the SG.
and

E ∈ {↑++, ↑+, ↑−−, ↑−,∧}

where
• ↑++ (MAKE): Denotes a strong positive contribution

towards a softgoal. One single MAKE contribution fully
satisfices a parent softgoal if the offspring is satisficed.

• ↑+ (HELP): Denotes a positive contribution. Which
means that a child softgoal partially contributes to sat-
isfice a parent softgoal.

• ↑−− (BREAK): Denotes a strong negative contribution.
If a softgoal is satisficed then the parent softgoal is
automatically denied.

• ↑− (HURT): Denotes a negative contribution. Which
means that a child softgoal partially contributes nega-
tively to satisfice a parent softgoal.

• ∧ (AND): This contribution relates to a group of softgoals
to their parent. If all child softgoals are satisficed then the
parent is also satisficed.

Fig. 1: SIG Example

B. SIG Modeling

In software engineering, the modeling of the SIG follows a
top-down approach, starting with a high-level softgoal being
refined into other softgoals until the operationalizations are
defined and selected. However, in our solution, we assume the
SIG is already pre-defined, and each VNF is submitted through
a bottom-up process in the SIG to quantify its initial softgoal
score, i.e., attributing a numerical value for the primary non-
functional requirement. In order to model this pre-defined SIG,
we first identify the domain in which the SIG is going to
be applied, in our case, middleboxes. Then, we select the
non-functional requirements that we want to measure, such
as security or performance.

Let us consider the SIG depicted in Figure 2. We have
extracted the NFRs to compose this SIG from the work Guide
to Intrusion Detection and Prevention Systems (IDPS) by
Scarfone and Mell [21]. In the work, the authors provide an
overview of Intrusion Detection Systems (IDSes) and Intrusion
Prevention Systems (IPSes) to help organizations understand
such systems. We use this work as a guideline to model a
pre-defined SIG, which is then used for evaluating VNFs. To
cope with the subjectiveness of the intents and requirements,
one can alter the SIG at any time to reflect its domain,
middleboxes, and network.

To simplify and provide a more straightforward example,
we only address the refinement and modeling of one non-
functional requirement, which is Security. Therefore, follow-
ing the traditional SIG modeling approach, we start with an
initial softgoal (Security). This softgoal is then refined into
four leaf-softgoals: Information Gathering, Logging, Detec-
tion, and Prevention. These refined softgoals are common
security capabilities that, accordingly to Scarfone and Mell,
most IDPS technologies provide. For each refined softgoal,
we attribute a weight corresponding to the importance of this
softgoal in satisficing the initial softgoal. These weights are
arbitrary and can be altered by the network operator according
to his needs. As operationalizations are techniques that con-
tribute to satisfice softgoals, a single operationalization can
have an impact on one or more softgoals. For example, the
operationalization Blacklist and Whitelist Support contributes
to both Detection and Prevention softgoals, while the oper-
ationalization Identify Applications contributes to only one
softgoal (Information Gathering). These contributions have
numerical values attributed to them (similar to the softgoal
weight) which reflects the impact to satisfice softgoals. The
bold red values inside the clouds are calculated by INSpIRE
following the steps presented in the next section.

C. Quantitative Calculation of NFRs

To accurately quantify the non-functional requirements of
a VNF, we leverage the extension of the NFR Framework
proposed by Affleck and Krishna [22]. This extension provides
a lightweight quantitative support for the NFR Framework,
defining a mathematical base for the calculation of scores
and weights for softgoals and operationalizations. Given the
formalization of the SIG presented in Section III-A and the



Fig. 2: Pre-defined SIG for Middlebox Security

TABLE I: Quantitative Contribuitions from Affleck and Kr-
ishna [22]

Symbol Name Contribution

↑++ MAKE 1

↑+ HELP [0,1]

↑−− BREAK -1

↑− HURT [-1,0]

∧ AND 1
numChilds

SIG modeled in Section III-B, we adapt this extension to our
objectives.

Leaf-Softgoal weights are defined as

∀LSG ∈ V, (0.0 ≤ LSGweight ≤ 1.0)

where lower values (closer to 0.0) denote a non-critical
softgoal, while higher values (closer to 1.0) represent critical
softgoals. The relationships between softgoals and opera-
tionalizations are defined following the contributions depicted
in Table I and are referred to as impactLSGXOP .

Operationalization scores are calculated from top to bottom
following Equation 1. Therefore, if the network operator
decides to add operationalizations and softgoals to the graph,
he only includes in the SIG the values of LSGweight and
impactLSG×OP .

OPscore =
∑
LSG

LSGweight × impactLSG×OP (1)

Given the SIG depicted in Figure 2, let us calculate the
“Blacklist and Whitelist Support” operationalization’s score.
This operationalization contributes positively to two leaf-
softgoals (Detection and Prevention). Therefore, we have as
the result from Equation 1, the score of 0.85, which means a
positive contribution to the system. The steps are shown below.

OPscore = (0.8× 0.8) + (0.3× 0.7)

= 0.64 + 0.21

= 0.85

The next step proposed by Affleck and Krishna [22] is the
selection of operationalizations based on the scores previously
calculated. However, in our approach, this step occurs when a
network operator inserts a VNF or middlebox in the system.
The operator must select which operations the VNF is capable
of performing (e.g., identify which flows are harmful or detect
attacks). Considering the SIG in Figure 2, if a network operator
specifies that a VNF does not store logs on a centralized
server (Logging [Middlebox]), the impactLSG×OP of that
operationalization is going to be zero. Consequently, the
OPscore is going to be also zero (OPscore = 0.5 × 0) and
score of the leaf-softgoal will decrease.

To calculate leaf-softgoal scores, we employ the same
equation as Affleck and Krishna [22]. The only difference
is that we consider all operationalizations and not only the
accepted ones. Equation 2 shows that the LSGscore is the sum
of the impact (even zero impact) of every operationalization
that contributes to the leaf-softgoal. This score is limited to
[−1.0, 1.0] by max and min functions, where -1.0 means that
the softgoal was not satisficed and 1.0 means that the softgoal
was 100% satisficed. Below Equation 2 is depicted the steps
for the calculation of the Detection[Middlebox] score.

LSGscore = max(min(
∑
OP

impactLSG×OP , 1),−1) (2)

LSGscore = max(min(0.8 + 0.2 + 0.8, 1),−1)
= max(min(1.8, 1),−1)
= 1

Once the operationalizations and leaf-softgoals scores are
computed, the initial softgoal (Security[Middlebox]) score can



be calculated. This score ultimately represents how much
(percentage) the softgoal has been satisficed. To simplify
our system, we only address AND (∧) contributions from
the initial softgoal towards leaf-softgoals. Thus, Equation 3
considers the sum of leaf-softgoal scores divided by the
number of children of that softgoal, so every leaf-softgoal
contributes with a percentage of its score to satisfice the initial
softgoal.

SGscore = max(min(

∑
LSG LSGscore

SGnumChilds
, 1),−1) (3)

Finally, as our intention is not to calculate how secure
a middlebox is, but rather how much security a middlebox
can provide to a specific flow passing through it, this score
of 0.825 (calculated below) means that the middlebox or
VNF can provide 82.5% of security. This value is relative
to the SIG that was modeled by network operators and may
vary from organization to organization. Therefore, as now
we have a numerical value for the security softgoal of the
VNF, we can use this value to cluster the available VNFs
into groups with different levels of security. It is important
that network operators, administrators and, business partners
discuss and model this SIG exhaustively so that the defined
weights can faithfully reflect the domain. This is due to the
weights influence in future service chaining decisions.

SGscore =
0.5 + 1 + 1 + 0.8

4
= 0.825

D. Refinement of Intents and Clustering of VNFs
INSpIRE needs to posses knowledge about the environ-

ment to properly refine intents. Therefore, a network oper-
ator has to insert the middleboxes or VNFs present in the
infrastructure into a database for later selection. This insertion
process consists of uploading in the system a descriptor
(vnfd in the case of a VNF), filling in information about the
middlebox (e.g., IP address, switch port, and type of network
function), and selecting the operations performed by this
network function. These operations are the operationalizations
defined in the SIG and are necessary for the calculation of
softgoals. Once this data is informed, INSpIRE computes
the softgoal score of the target VNF using the Equations in
Section III-C and stores it.

The refinement process is depicted in Figure 3 and includes
elements such as a traffic classifier and a service chaining
identifier. The former translates part of the intent into traffic
objects (e.g., traffic type, source, and destination) that will
be used for posterior traffic steering and matching by an
external component (illustrated by a dashed line box). The
latter retrieves the context (security) and level (high) of the
written intent and forwards this context to the component
responsible for constructing the related chaining. The Service
Chain Graph Builder component retrieves the VNFs that were
inserted by the network operator and cluster the VNFs in
different sets of VNFs with similar softgoals scores.

Fig. 3: INSpIRE Intent Refinement Flow

1) Clustering: To cluster the VNFs in sets with similar
scores, we employ the k-means clustering algorithm [23]. This
algorithm was proposed to classify n values into a defined k
number of clusters sharing similar scores. In our case, we set
k = 3, representing the levels of the contexts supported by
the CNL (low, medium, and high), and n is the number of
available VNFs. The dimensionality (i.e., number of features)
of the plot depends on the number of softgoals specified in the
intent. For example, one can write an intent addressing more
than one softgoal, e.g., “FTP traffic from teachers to teachers
have medium security, detection, and log support”. Thus,
the resulting graph (Figure 4) will have three axes (security,
detection, and log support) and so forth for more softgoals.

2) VNF Selection: After the k-means algorithm is executed,
and the estimation of the clusters is completed, we must select
the VNFs that will compose the service chain. To select from
which cluster we will retrieve the VNFs, we leverage the
level of the context that was defined by the network operator
in the intent. In the past intent example, one defined as the
level being “medium”, therefore, we only select the VNFs
that are inside the middle cluster, represented as squares in
Figure 4. We select x random VNFs from the cluster, where
x = 3 in a first moment. However, this number can be
adjusted if the network operator desires. To attempt to utilize
the full capacity of the VNFs in the infrastructure and not to
impact on the overall chaining performance, we employed a
selection algorithm. This algorithm prioritizes the selection of
VNFs that are already deployed and are not under CPU stress
(V NFCPUload ≤ α, where α = 0.8, defined by empirical



observation but customizable). If all the deployed VNFs are
under CPU stress, then the algorithm selects the undeployed
VNFs and the NFV orchestrator takes care of the placement
of those VNFs. Bear in mind that is not the scope of this work
the placement of VNFs.
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Fig. 4: VNF Clustering Example

3) VNF Dependency Ordering: Many VNFs often depend
on other deployment units (i.e., virtual machines) to be de-
ployed/initiated before an orchestrator can deploy them. The
information about this dependency is stored, accordingly to the
ETSI NFV-MANO [13], in the element dependency inside
the vnfd of the VNF. Therefore, if a VNF is selected and is
not deployed, INSpIRE attempts to resolve this dependency
by searching for a VNFD Virtual Deployment Unit vnfd:vdu
that fulfills this dependency. First, it seeks if one of the
selected VNFs produced by the selection procedure contains
the vnfd:vdu specified in the dependency element. If there
is no match, then it searches all the deployed VNFs for a
match and then informs the orchestrator to address this issue.
Note that this dependency process relates to the deployment
and placement of VNFs, and thus we do not delve into details.

Moreover, when designing service chains, it is important
to consider the logical order of the network functions. This
ordering process is not a trivial process, mainly because of the
hidden and subjective dependencies across the many network
functions. For example, there is no explicit definition that
a firewall must come first in the chaining order and then
be followed by a DPI. This ordering is based on empirical
observation and the logic behind the operations performed
by the functions. It is illogical to put a DPI in front of a
firewall, because the DPI will have to inspect every single
incoming packet, causing performance degradation. Whereas
if the firewall is set in front of the DPI, then the firewall will
only forward filtered packets, reducing the number of packets
to be processed by the DPI, and thus, not impacting on the
overall service chain performance.

To address this ordering issue, we propose to include
in the VNF Descriptor two new elements: vnf type and

preference list. The former describes what is the type
of the VNF, e.g., DPI, IPS, Firewall, Video-cache, NAT, and so
on. The latter describes the list of VNF ordering preferences.
For example, a DPI, in theory, is more complex than a firewall.
Therefore, the DPI has a preference to be included after the
firewall in the chain, i.e., the flow will pass through the firewall
first, then go through the DPI. If there is no preference, the
order is not important for the VNF. This preference will be
specified in the element preference list with a list of
types. Thus, we utilize this preference list to order the chain.
The network operator can re-order the service chain after the
chain is saved into the database. If a loop is encountered in the
chain, the network operator is notified to address this issue.

E. Case Study

Let us describe the interaction of users with INSpIRE.
This interaction is composed of three distinct stages: (i) SIG
modeling, (ii) VNF insertion, and (iii) intent creation.

In a first moment, without the intervention of INSpIRE,
network operators along with business partners assemble a
team to identify the non-functional requirements (initial soft-
goal and leaf-softgoals) that are important for the proper
operation of the enterprise. If the enterprise is concerned about
the privacy of their data, the team identifies the initial softgoal
as Privacy and two requirements (leaf-softgoals) that must
contribute to it, such as Encryption, and Traffic Anonymization.
These requirements are satisficed by the operationalizations,
which must also be identified and outlined by the team, either
by reviewing the common functions realized by middleboxes
or by empirical knowledge. In the privacy context, the team
outlines functions such as Tor-based anonymizer, SSL traffic
encryptor, and SHA-1 encryptor. Next, the team attributes the
weights of all leaf-softgoals and the impact of each opera-
tionalizations in these leaf-softgoals. The attributed impacts
of the mentioned operationalizations are described in Table
II. As the team identified two leaf-softgoals they attributed
equal weights to both of them, e.g., 0.5.

TABLE II: Impact of Operationalizations towards Leaf-
Softgoals

Operationalization Contribution Leaf-softgoal Impact
Tor-based anonymizer MAKE Traffic Anonymization 1
SSL traffic encryptor HELP Encryption 0.7

SHA-1 encryptor HELP Encryption 0.5

The modeled SIG can be represented in YAML (YAML
Ain’t Markup Language), XML (eXtensible Markup Lan-
guage), or JSON format and then imported to INSpIRE as
well as exported from it for posterior edition. An example
of exported SIG in YAML format is depicted in Figure 5.
We adopted the YAML format due to its readability. In the
YAML file, nodes of the SIG are described after the node:
tag (line 27) in the node:{atributes:value} format.
For example, the node Traffic Anonymization (line 36) is rep-
resented as Traffic Anonymization:{lsg: true,
w: 0.5}, which means it is a leaf-softgoal (lsg: true)



with a weight of 0.5 (w: 0.5). Edges are described after the
adj: tag (line 2) in the sourceNode: format. New lines
with indentation describe the destination nodes and attributes
in the destinationNode:{attribute:value} for-
mat. For example, there is an edge from node SSL Traffic
Encryptor: (line 15) to node Encryption: {impact:
0.7} (line 16), meaning that the node SSL Traffic Encryptor
impacts on 70% to satisfice the node Encryption.

Fig. 5: Example of a SIG in YAML Format

After the SIG is modeled and imported to INSpIRE, the
network operator can start to add the VNFs and middle-
boxes that are available in the infrastructure. To perform this
addition, he/she utilizes a Graphical User Interface (GUI)
provided by INSpIRE, which contains a form with the
necessary fields to be filled by the network operator with
information about the middlebox. Such fields include IP
address, switch port, type of network function, VNFD file
(VNF only), description and name. Within this GUI, a list of
operationalizations in a tree view format, separated by leaf-
softgoal and softgoal, is presented for the network operator
to select the functions that the VNF support. For example,
if the VNF is a firewall, the network operator will select
operations such as Blacklist and Whitelist Support and Alert
Support and submit the form. The operationalizations list is
composed of nodes of the SIG and may change if the SIG is
altered. Once the form is submitted, INSpIRE automatically

calculates the scores following the equations described in
Section III-C and stores the scores in a database along with
the information about the middlebox previously informed.
One example of entry in the scores database is the tuple
<vnfId,[Security:0.825,...,Detection:1]>.

Next step is to write intents. This process in based on
previously work [12], where we have defined a controlled
language for the writing of high-level policies. We utilize
this language for the composition of intents in INSpIRE.
The intents that are going be written in INSpIRE are in
the format “trafficType from source to destination
have contextLevel contextsList”. For example, let
us assume that a board of directors described an SLA speci-
fying that all email traffic from the Finance Department must
have high security and privacy. Therefore, a network operator
would translate this SLA into two intents: (i) “SMTP traffic
from finance department to * (any) have high security and
privacy”, and (ii) “IMAP traffic from finance department to
* have high security and privacy”. Then, INSpIRE refines
these two intents (one at a time) into objects to be used
for traffic classification and service chain construction pur-
poses. As INSpIRE only address service chain construction,
the refined elements utilized are: contextLevel: high
and contextList:[security,privacy]. Therefore,
INSpIRE retrieves all the entries of the score database in
order to utilize these scores to cluster the VNFs. In the
example above, the cluster will have two dimensions (security
and privacy) and INSpIRE will plot every VNF based on its
score of these two softgoals.

Once the entries are plotted, INSpIRE discover the three
clusters and retrieves only the entries that belong to the context
level defined in the intent, e.g., (high). Next, INSpIRE orders
the retrieved VNFs following the process described in Section
III-D3 and informs the traffic steering element of the service
chain related to the traffic classification objects and the intent.
Finally, packets originated from IPs in the 192.168.1.5\24
range (i.e., finance department) and classified as STMP (port
25) are steered through the chain related to these objects.

IV. EVALUATION

As INSpIRE is composed of different stages, such as
clustering and NFR scores calculation, we performed a series
of scalability simulations for these stages. The simulations
were designed to stress the components (isolated) in order
to discover the behavior of INSpIRE in different types of
scenarios, varying from small (a couple of elements) to huge
scenarios (thousand of elements). The tests were performed in
a Dell XPS 8900 with an Intel Core i7-6700 CPU at 4GHz
processor and 16GiB of RAM. The algorithms, equations, and
simulations were implemented in Python utilizing well-know
graph (NetworkX [24]) and clustering (SciPy [25]) libraries.

A. Score Calculation Evaluation

To evaluate this component, we simulated different SIGs
with the number of leaf-softgoals and operationalizations
varying from 2 to 64 in a logarithmic scale. For example, we



created a SIG with 2 leaf-softgoals with 2 operationalizations
each, then a SIG with the same number of leaf-softgoals (2) but
with 4 operationalizations each and so son until we reached a
SIG with 64 leaf-softgoals with 64 operationalizations each.
Due to the simplicity of the equation to calculate the score of
the initial-softgoals, which is only a division, the number of
initial-softgoals in the experiments was fixed to 1.

For every SIG configuration, we ran the calculations of the
scores 30 times. The results of this simulation are depicted
in Figure 6. The error bars expose the standard deviation.
The x-axis characterizes the number of leaf-softgoals and the
different lines characterize the number of operationalizations
of each leaf-softgoal. The time to calculate all the equations
(in seconds) related to softgoals scores, leaf-softgoals scores
and operationalizations scores are depicted in the y-axis in
a logarithmic scale. As we can notice, the execution time
increases as we increase the number of operationalizations
for each leaf-softgoal. This execution time stays below 1
second until the number of leaf-softgoals reaches 64 and the
number of operationalizations attached to them reaches 64
as well. With this SIG configuration, the time to calculate
the scores of the total amount of nodes (64 × 64 = 4096)
reaches approximately 3 seconds. In INSpIRE, we consider
an acceptable execution time of less than 1 second. Therefore,
the number of nodes in a SIG scale up to 2048 nodes without
affecting the overall INSpIRE performance.

Fig. 6: Time to calculate the scores in different SIGs

B. Clustering Evaluation

This component of INSpIRE is implemented utilizing the
k-means algorithm. The simulations were ran 30 times to pro-
vide enough significance level. We simulated different types
of environments varying the number of elements (n) to be
clustered and the number of dimensions of the elements. The
number of dimensions represented the number of requirements
specified in the intent and the number of elements represented
the number of VNFs and middleboxes in the database. The
score of each requirement was randomly attributed varying
from 0 to 1. The number of clusters (k) for the algorithm to

estimate was set to 3. Figure 7 exposes the Execution Time
(in seconds) for each set of VNFs varying the number of
Dimensions. The number of VNFs varied from 10 VNFs up to
1 million VNFs, and the number of dimensions ranged from 1
to 16. We notice that the k-means execution time is relatively
insignificant up to 10.000 VNFs with 16 dimensions. Even for
a million of VNFs with four (4) dimensions (square dashed
line) the algorithm took 5 seconds to execute. Therefore,
INSpIRE can cluster up to 10000 (ten thousand) VNFs and
middleboxes with 16 dimensions in less than 1 second.

Fig. 7: Time to discover 3 clusters in different scenarios

V. CONCLUSION AND FUTURE WORK

In this paper, we presented INSpIRE. INSpIRE is an
IBN solution that refines intents into service chains of VNFs
by employing a technique based on Softgoal Interdependency
Graphs (SIGs) and clustering. INSpIRE is able to automat-
ically calculate and attribute scores for the non-functional
requirements of a VNF. Also, it utilizes these scores to cluster
and select the appropriate VNFs to fulfill a defined intent. In
addition, we proposed the insertion of two elements in the
descriptor of VNFs specified in the ETSI NFV MANO. These
elements aid INSpIRE to order the VNFs in the service chain
based on the VNF’s ordering preferences. Thus, INSpIRE
provides an approach to solve the refinement of intents into
service chains issue.

We provided a case study and simulations of the components
of INSpIRE to validate its feasibility. The case study details
the interaction of users (stakeholders and network operators)
with the different stages of INSpIRE (SIG modeling, in-
sertion of VNFs, intent writing, and refinement). The imple-
mented simulations of the components showed that INSpIRE
is able to work in small scenarios (hundred of VNFs and SIGs
with 128 nodes) and large scenarios (ten thousands of VNFs
and SIGs with 2048 nodes) as well.

To extend INSpIRE, future work proposals include: (i)
integrate INSpIRE with a consolidated NFV framework, (ii)
model a complete SIG to represent other non-functional re-
quirements such as Integrity and Availability, and (iii) conduct
a qualitative evaluation of INSpIRE.
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