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Abstract—Today’s cloud infrastructure is often overwhelmed
by inputs from multiple users and administrators for enforcing
the policies on which to run cloud services, and infrastructure
administrators need to configure policies on different resource
types such as compute, network, etc. Such complex policy
enforcement decisions from multiple users could result in errors
and conflicts. To mitigate such complexities in managing cloud
infrastructure, there is a strong push towards decoupling high
level intents (“what” should be done) from the underlying
infrastructure implementations (“how” to do it). Unlike existing
solutions which resolve conflicts at low level during run-time,
intent-based systems aim to resolve potential conflicts at the
intent specification level. To efficiently handle large scale cloud
environments, we propose a Label Management Service (LMS)
which provides meaningful abstractions and their relationships
by analyzing target cloud infrastructure. It helps the cloud
administrators to model their policy requirements efficiently by
decoupling the intents from underlying specifics. LMS scales to
large dynamic cloud environments and manages the life cycle of
label-based intent and enforcement.

I. INTRODUCTION

Today’s cloud environments are unbelievably complex pro-

visioning millions of compute nodes ‘or’virtual machines

(VMs) to users on a day-to-day basis [1]. For each of the

compute nodes, hundreds of operational and policy related

attributes are maintained in the cloud, leading to billions

of such attributes maintained at complete data center level.

Managing the cloud environments in the presence of such

large number of operational attributes is a challenging task.

Also, the dynamicity in the cloud environment due to the

mobility of virtual machines (VM) and the resource scaling

further complicates the management of cloud infrastructure.

Therefore, to effectively reduce the management complex-

ity, the cloud management systems (CMSs) are effectively de-

vising abstraction techniques to hide the low level details (i.e.,

IP, MAC, memory, CPU, security status, mobility of VMs and

so on) from the cloud users or administrators. It is currently

believed that the intent-based cloud management systems will

be able to alleviate the pain of the users in administering

the cloud environments by separating out “what” to do from

“how” to do it [2]–[5]. This necessitates a need to provide

an interface that can naturally express the human intents and
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systemically translates them down to the infrastructure rules.

Also, it is expected that SDN (Software Defined Networks)

and NFV (Network Functions Virtualization) based applica-

tions used in the cloud infrastructure highlights the need of

such intent interface [2], [6], [7] for efficiently managing the

cloud networks.
Therefore, ideally an intent interface must be simple and in-

tuitive enough to accommodate the users intentions effectively,

and portable by decoupling itself from low level infrastructure

details [8]. Also, this decoupling is important to let the same

intent specifications to be reused for deployment of same

services/policies on multiple different cloud sites. Currently,

these intents are designed as “subject-verb-object” after human

language or as graph node indicating group of entities (VMs,

network ports, etc.) over which the intents are targeted.
To decouple the intents from underlying specifics and to

make our approach scalable, such a group of entities can

be defined with logical labels, representing diverse attributes

of entities, instead of listing all entity IDs (or specifics)

in the group. That is, the labels are directly used in the

context of intent specification to capture the properties of the

infrastructure elements in the cloud. These labels are simple

key-value pair designed to capture the basic properties (and

their values) of the cloud entities e.g. compute (memory, cpu),

network (interface, speed), security (patched, infected) and so

on. In addition, values may dynamically change over the life

cycle of an entity. For example, CPU utilization or memory

consumption is dynamic. The existing label based frameworks

fall short in satisfying the intent-based cloud management

system as they lack the capability to capture the complex

relation that the cloud infrastructure possesses. Hence, there is

a strong need to enhance the capabilities of label management

framework to support the scalable cloud infrastructure.
In this paper, we present a Label Management Service

(LMS) that,

• Defines a label naming syntax and namespace,

• Automatically constructs the label namespace by extracting

entity attributes from various cloud data sources,

• Captures relationship between labels for enabling proactive

analysis and composition of label-based intents and

• Dynamically maps the entities with entity groups satisfying

their membership predicates defined by Boolean operation
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Congress

ID Results Time

VM1 Infected 01:13:56

VM2 Clean 18:23:05

VM3 Infected 07:13:09

VM4 Clean 20:21:17

Net Router Ports

Pete Finance 30

Tim Engineering 32

Martin Finance 33

Pierre Sales 31

VM Memory CPU

VM1 32GB 4

VM2 64GB 8

VM3 32GB 12

VM4 128GB 8

Network
(neutron)

Compute
(nova)

Security / Identity
(keystone)

Fig. 1: Congress: Policy management service for OpenStack [12].

of labels.

The LMS architecture is built to handle the complex cloud

infrastructure and capture the relation between different en-

tities inside the cloud using an hierarchical label-tree based

architecture, while the existing Docker/Kubernetes based in-

frastructures use simple key-value pair to specify the reusable

policies [9], [10]. To illustrate the benefits of our framework,

we have implemented the LMS on top of OpenStack [11] and

Congress [12] modules to build a label namespace and enforce

high-level policy intents to VMs (entities). We estimate the

time required to build the label name space and label-entity

mapping and evaluate its memory consumption on the data

set with thousands of entities and entity groups. We show that

our LMS sends similar time for mapping entities over different

sizes of label trees.

In the rest of the paper, we present the motivation behind the

label-based cloud management system in §II and §III, and the

details of LMS architecture and techniques used to build the

label namespace using the cloud data sources in §IV. Then we

present the preliminary performance results in §V, followed by

discussion on the state-of-the-art work related to LMS in §VI.

II. BACKGROUND

In this section, we describe the Cloud Management System

(OpenStack) and the specific policy engine used (Congress).

Later, we introduce the terms used in this paper, followed by

the notions of label and label trees.

A. High level details of Cloud Management System

The Cloud Management System (e.g. OpenStack) pro-

vides a mechanism to manage the cloud services based on

policies specified by the user/administrator. In OpenStack,

Congress [12] is a policy enforcement framework that actively

interfaces with diverse cloud services (e.g., application, net-

work, compute and storage), for enforcing the policy intents

specified by the user. Congress uses a variant of Datalog [13]

as a policy language to specify the policies. Figure 1 shows

examples of data sources available in OpenStack that inter-

faces with cloud services [14] (e.g. Neutron, Nova, etc).

Congress continuously monitors to check if the system abides

the policies implemented by users. Figure 2 represents an

example policy of Datalog, the original policy states to report

an error if the VM is connected to Internet without being a

part of the existing security group secure_private_VM.

In this paper, we use Congress for managing OpenStack-

based cloud and generate Datalog from simple label and label

Policy (User Intent): Have an error, if VM that is connected to Internet is not 
using the security group called ”secure_private_VM”.

error_secure(vm) :
nova:servers(vm, name, host, status, tenant_id, user_id, image_id, flavor_id),
connected_to_internet(vm, port)
not port_security_group(port, "secure_private_VMs\”)

Equivalent Congress policy 
specification

Fig. 2: User intent and equivalent Congress policy specification

tree definition automatically. However, LMS is not limited to

Congress and Datalog but applicable to any kind of CMSs.

B. Terminology

We use the following terms through out this paper:

• Entity: A smallest unit for policy enforcement (e.g., VM,

container, network port, device).

• Entity Group (EG): A set of entities that satisfy a mem-

bership predicate (Boolean expression) defined over the

labels. For example, an EG defined as “Tenant:Tom &

Location:Zone-1” meant as a set of VMs owned by tenant

‘Tom’and placed in location ‘Zone-1’if an endpoint is a VM.

• Label: A membership predicate, a Boolean valued function

representing an entity attribute (owner, placement location,

security status, etc.). An attribute can either be static (e.g.,

VM ownership) or dynamic (e.g., security status).

• Label Tree: Captures the hierarchical relations between

labels of the same kind (e.g. Location tree, Tenant tree, etc.)

• Label Tree Definition: Represents a metadata which define

parent-child relationship between labels which is used for

building a label tree.

• Label Namespace: Complete set of label trees that captures

the relations between all the entities of same kind inside the

cloud infrastructure.

C. Labels and Label Trees

A more detailed view of label and label tree is presented.

Label: Similar to label definitions used in Docker [15] and

Kubernetes [16] infrastructures, we represent the label as a

combination of key and value pair to represent any specific

entity inside the cloud infrastructure i.e., in (key:value),

a key defines the type of the entity attribute and value
defines the actual value (dynamic or static) the attribute carries.

For example, a key and value pair used to represent the

location of the hosts in the cloud infrastructure is represented

as “Location:AZ1”. In this example, the Location attribute

represents the key and AZ1 represents the value that Location
attribute carries.

Label Tree: In addition to existing capabilities, we intro-

duce “label trees” for effectively capturing the hierarchical

relations between labels (values) of the same kind. For ex-

ample, the complex relation between different locations and

the hosts/servers present in that location is captured using

following “Location” based label tree, which in our case is

automatically derived from the cloud data sources using LMS.
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(a) Label tree examples

(b) Label mapping

Tenant:Employees @ Location:Campus
Tenant:Apps @ Location:Cloud

Fig. 3: Automatically generated label tree (Location) using LMS.

Figure 3 illustrates an example of label tree for Location which

LMS automatically generates from a cloud cloud management

service (Openstack) with two availability zones and four

hosts. Host1 and Host2 are located in AZ1, Host3 and Host4
are located in AZ2. Following are the definitions of sub-

components of a label tree.

• Root node: Root node of the tree is considered as the key
attribute, which defines the name/identity of the label tree.

A name of root node is unique in the label namespace.

Location in Figure 3 represents the root node of the hosts

location tree..

• Non-root node: are value attributes of the tree root. All

nodes except a root node (Location in Figure 3) are non-root

nodes. Non-root nodes are categorized into two sub types:

– Leaf node: Leaf nodes are basic elements and member-

ship predicates assigned to entities of the cloud infras-

tructure. Host1, Host2, Host3, and Host4 are leaf nodes.

– Non-leaf node: A non-leaf node is a composite predicate,

i.e., “Boolean OR”, of all of its descendant leaf labels.

For example, AZ1 is a composite predicate which encom-

passes entities of Host1 and Host2.

• Overlap: A pair of labels with parent-child relationship can

overlap. From Figure 3, AZ1 and Host1 has parent-child

relationship and are overlapped because entities of Host1 is

a subset of entities of AZ1. If there is any policy intent for

AZ1, it must be applied to Host1 even.

• Disjoint: Any labels that do not have a parent-child rela-

tionship (i.e. sibling labels) are mutually exclusive, cannot

be simultaneously “true” for any entity i.e., AZ1 and AZ2
in Location label tree are mutually exclusive and it means

no child entity (e.g. Host3 can exist in simultaneously in

multiple parent entities (i.e., both in AZ1 and AZ2).

III. MOTIVATION

In this section, we discuss the limitations of existing in-

frastructure and the motivation for developing an LMS to

handle the intent-based cloud management system. This paper

focuses on the following three important aspects for effectively

managing the cloud, by proposing label based management

system to dynamically handle the cloud infrastructure at scale

Label Management: Labels must be systemically defined and
managed by extracting relevant information from various data
sources. The use of labels in portable policy specification

is analogous to using variables/parameters to write portable

computer programs, instead of using fixed constant values. As

variables and variable namespace need to be clearly defined

to correctly write and execute a program in any computer

languages, the policy labels and label namespace should be

managed. Otherwise, every user may create arbitrary labels

without clear rules, and the randomly generated labels can

easily overlap/conflict and create another chaos and manage-

ment problems. In often cases, diverse entity attributes are

defined/assigned/managed outside of the policy management

system, e.g., each compute/storage/network resource controller

or a separate security monitoring service. Manually creating

each label for each and every entity attribute is not scalable.

Proactive Policy Specification and Analysis: There must
be an automated system that extracts such relations from
existing data sources and constructs label tree and generates
a mapping data structure, since doing so manually would
be error-prone and a huge burden for human operators. By

using logical labels instead of specific entity identifiers, a

policy can be proactively specified without actual entities in

the system. However, this makes proactive policy analysis

challenging. Analyzing/composing policies and ensuring that

individual policy intents are satisfied prior to deployment,

i.e., proactively, is highly desirable. Proactive composition can

greatly reduce the number of conflicts/errors that a runtime

system has to handle, and reduce the chance of system

misbehavior compared to lazy runtime composition. In the

worst case, proactive composition without actual entities in

the system can lead to exponential state explosion because in

the worst case, every combination of input policies should be

considered. Thus, PGA [4] defines label trees and inter-tree

label mappings, which capture [overlap vs. disjoint] relations

between labels within a tree or across trees, enabling proactive

and scalable composition policies.

Dynamicity and Scalability: The management system must
be scalable as the complexity of label tree construction and
mapping can multiplicatively increase up to O(nk) where n
is the number of entities and k is the number of labels in
the system. Entities can be assigned with labels dynamically

at runtime, causing them capably move from one EG to

another. Real-time tracking, management of the entity-to-

EG memberships is critical for timely applying the policies

to dynamically joining/leaving/changing entities or to detect

policy violations.

IV. SOLUTION: LABEL MANAGEMENT SERVICE

In this section, we discuss how LMS constructs a label

namespace automatically and maps entities and EGs. First,

we present the LMS architecture and describe how LMS

works with intent-based management system (IMS). Later,

we present a method to automatically generate the label

namespace and describe about how the label namespace can be

used for intent description and composition. Finally, we show

how LMS dynamically maintains mapping between entities

and EGs in terms of scalability with three basic algorithms.

A. Overall Architecture

LMS is interacting with other external systems as shown in

Figure 4. LMS provides northbound interfaces for managing
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Fig. 4: LMS architecture and overall process

labels, label trees, and EGs to Intent-based cloud manage-

ment system and southbound interfaces for obtaining cloud

system data from a CMS. Similarly, LMS receives label

tree definitions from its south-bound IMS and takes intents

from users in the northbound applications (Fault Management,

Security Management and so on). The Label Namespace

Builder extracts system states from the underlying cloud

services via CMS and constructs label namespace to present

automatically generated labels and label trees which presents

meaning abstraction allowing the user to express the policy

intents. The Label-EP Mapper takes global intents which could

be enforced on to the underlying infrastructure by dynamically

tracking the low level entities satisfying the attributes (label

predicates).

In the next section, we present how to automatically gener-

ate a label namespace and map EG and label in detail.

B. Automatic generation of label namespace

The Congress is considered as a suitable platform for

enforcing the policies in the cloud. But, creating policy rules

manually for cloud scale infrastructure using Datalog is a

highly complex job considering both its scale and dynamicity,

which could be easily prone to errors. Hence, this highlights

the need for automatic generation of Datalog rules in accor-

dance with the given user intent. As described in Section IV-A,

LMS takes two different inputs from cloud administrator (or

domain expert) and IMS. Initially, the cloud administrator

creates label definitions which describe how to collect the

related data from specific data sources. Then, IMS can use

the label definition in order to define a label tree without

any specific knowledge about the target cloud. For example,

cloud administrator knows where to get available hosts from,

whereas IMS just wants to create a label tree using the

available hosts without knowing the specifics of data sources.

In the following sub-section, we introduce a label definition

which the administrator can use to identify the entities, then

we present a label tree definition based on the label definition

for deriving the relation between the entities.

1) Label definition in EBNF: A label is defined with a key

and value pair, which specifies how to capture data from the

given data sources under the conditions. Here, we define the

grammar for a label key definition in a Extended Backus-Naur

Form (EBNF) as shown in Listing 1. We define multiple keys

(e.g. Location, User, Tenant) and associate the keys to values.

〈label key〉 |= 〈keys〉 | 〈key〉
〈keys〉 |= 〈keys〉,〈key〉
〈key〉 |= key name

Listing 1: A grammar for label key definition

The grammar in Listing 2 defines a label value. The label

value definition is composed of 6 key properties: NAME,
KEY, VALUE, DATA SOURCE, CONDITION and REF. (a)

NAME is considered as identity value name of the label,

(b) KEY is the name which is used for identifying the

label tree, (c) DATA SOURCE specifies the details of cloud

data sources (e.g. keystone, nova and data tables provided

by these sources) for building the label trees, (d) VALUE
specifies one of attributes in the data sources, (e) CONDITION
specifies the necessary conditions to extract the specific results

using the given data source tables and attributes specified in

DATA SOURCE and (f) REF is used to refer to other data

sources for deriving values from multiple data sources. For

example, when we define the label AVAILABILITY ZONE, we

use nova:hosts(zone) as a reference data source because the

availability zone name is used in that data source as well (as

illustrated in Figure 5). Figure 5 shows an example of three

different keys and four values using data sources and tables

available from OpenStack Congress. In the example for HOST
key, we can get the all hosts attributes (host name) from the

hosts table in the nova data source.

〈label value〉 |= 〈values〉 | 〈value〉
〈values〉 |= 〈values〉,〈value〉
〈value〉 |= 〈name〉〈key〉〈ds〉〈val〉〈cond〉〈ref〉
〈name〉 |= NAME: value name

〈key〉 |= KEY: key name

〈ds〉 |= DATA SOURCES:〈data sources〉
〈val〉 |= VALUE:attribute

〈cond〉 |= CONDITION:〈conditions〉
〈ref〉 |= REF:〈data sources〉 | λ

〈data sources〉 |= 〈data sources〉,〈data source〉
〈data source〉 |= datasource name:table name(〈attrs〉)

〈attrs〉 |= 〈attrs〉,attribute | attribute

〈conditions〉 |= 〈condition〉 | λ

〈conditions〉 |= 〈conditions〉,〈condition〉
〈condition〉 |= attribute〈operator〉attribute

〈operator〉 |= == | != | > | < | <= | >=

Listing 2: A grammar for label value definition
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KEY: [USER, TENANT, LOCATION]
{ NAME: USER_NAME,

KEY: USER,  DATA_SOURCE: keystone:users(name),
VALUE: name, CONDITION: },

{ NAME: GROUP_NAME,
KEY: USER,  DATA_SOURCE: keystone:groups(name),
VALUE: name, CONDITION: },

{NAME: TENANT_NAME,
KEY: TENANT, DATA_SOURCE: keystone:tenants(name), 
VALUE: name, CONDITION: },

{NAME: AVAILABILITY_ZONE, 
KEY: LOCATION, DATA_SOURCE:  nova:availability_zones(zoneName), 
VALUE: zoneName, CONDITION:, REF: nova:hosts(zone) },

{NAME: HOST, 
KEY: LOCATION, DATA_SOURCE: nova:hosts(host_name, service),
VALUE: host_name, CONDITION: service == "compute“ } ]

Fig. 5: Label key-value examples

ID AZ Status

1 AZ1 Available

2 AZ2 Available

3 AZ3 Not Available

4 AZ4 Available

Compute (nova)
ID Host Zone Service

1 Host1 AZ1 Compute

2 Host2 AZ1 Compute

3 Host3 AZ2 Compute

4 Host4 AZ3 Compute

Congress

zone host_name status time_t

AZ1 Host1 Available 2015-09-09 01:05:17

AZ1 Host2 Available 2015-09-09 01:05:17

AZ2 Host3 Available 2015-09-09 01:05:17

AZ3 Host4 Not Available 2015-09-09 01:05:17

LOCATION
LOCATION

AZ1 AZ2 AZ3

Host1 Host2 Host3 Host4

LOCATION(zone,host_name,status, time_t):-
nova:hosts(host_name=host_name, zone=zone, service=“compute”),
Nova:availability_zones(zoneName=zone, zoneStatus=status), now(time_t)

LOCATION@AVAILABILITY_ZONE,HOST

Fig. 6: Example of label namespace construction

2) Label tree definition: After cloud administrator creates

label keys and values, we can use them for defining hierarchi-

cal order for each label tree. Instead of using low-level details,

we can easily specify the label trees using tree definition,

which LMS uses to extract the tree attributes by automatically

converting the label tree definition in to Datalog. Listing 3

shows an example of label tree definitions for OpenStack.

USER:GROUP NAME,USER NAME

TENANT:TENANT NAME

LOCATION:AVAILABILITY ZONE,HOST

Listing 3: An example of label tree definitions

For example, we can define a label tree LOCATION using a

value AVAILABILITY ZONE and HOST and a label tree USER
using a value GROUP NAME and USER NAME which have

a parent-child relationship, respectively.

As shown in Figure 6, LMS generates Datalog using label

definitions of AVAILABILITY ZONE and HOST. However, our

LMS is not limited to the given label tree definition including

hierarchical relations. Because each value has its key name

in the label definition, the hierarchical relationship (or other

types of relationships) between all values which have a same

key name can be automatically inferred, but this is not in the

scope of this paper.

Figure 6 shows an example of how LMS constructs a

label tree for LOCATION based on key, value, and label tree

definition. As we defined the label tree, it is a hierarchy

of availability zone and host. Based on the definition, LMS

automatically generates a Datalog as shown in the top of

Figure 6 in accordance with the given label relationship

definition. In our label definition (key, value), we use all

attributes (zone, zoneStatus, time t) and data sources which

Congress is using for Datalog definition. Here, we can directly

convert them to Datalog without inference. This is stored to

Congress, which keeps the tables up-to-date based on data

source changes. Then, Congress starts to monitor the data from

the data source and stores the data to LOCATION table. Our

LMS builds a whole label tree using the currently supported

tables maintained by Congress.

C. Label-based intent composition

Based on the generated label trees, we can write our high-

level intents using the logical labels instead of using any low-

level entity such as VM id, IP, or MAC address. In addition,

intents can be expressed in the scope of each writer’s interest.

From the example label tree in Figure 6, there can be two

policy managers: 1) host manager and 2) zone manager. First,

a host manager wants to allow only SSH and PING from one

compute node in AZ2 and the other compute node in AZ1.

The host manager does not care about zone labels. Second, a

zone manager wants to allow HTTP traffic from AZ2 to AZ1

regardless any of compute node. Basically, a zone manager

wants to assign AZ1 to run web servers accessed by clients in

AZ1. We can express these policies using any high-level policy

management framework such as PGA [4] using logical labels.

Because the label tree has a hierarchical relationship between

labels, PGA can use it for resolving possible conflicts and

composing the intents Using the label tree in Figure 6, when

a zone manager writes a policy AZ2 → [HTTP] → AZ1 and

wants to compose through LMS, it can be directly normalized

to Host3 → [HTTP] → Host1 and Host3 → [HTTP] → Host2
during the composition. More details of composition process

using the labels can be found in our previous work PGA [4],

which can use the label trees automatically generated by LMS.

D. Automatic mapping label and cloud resources

In the cloud infrastructure, entities can be assigned by labels

dynamically at runtime, causing them to move from one EG

to another. For example, a server that was assigned the label

NORMAL could subsequently be relabeled QUARANTINED
when a network monitor detects the server issuing a DNS

query for a known malicious Internet domain [4]. The runtime

system needs to perform the operation of looking up and

applying the correct rules for each entity depending on its

current EG membership. Current approaches (Group Based

Policy (GBP) [5] or other policy framework) have their own

entity registry system, which is quite manual. The system

typically maintains a set of labels assigned to each and every

endpoint, with O(n) complexity, where n is the number of

entities in the system. This approach is difficult to implement

in existing cloud infrastructures where entity attributes are

defined and maintained over multiple distributed services.

Another approach would be collecting a set of entities that
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EG1:
TENANT:admin &
LOCATION:AZ1

EG2:
TENANT:admin &
LOCATION:AZ2

HTTP
LOCATION

AZ1 AZ2

TENANT

admin demo

Host1 Host2 Host3
EG1:

TENANT:admin &
LOCATION:Host1

EG2:
TENANT:admin &
LOCATION:Host2

HTTP
EG2:

TENANT:admin &
LOCATION:Host3

Label namespace

Original intent

Normalized intent
Fig. 7: Automatic label and EG mapping

Algorithm 1 Map entities to EGs (Congress)

1: function MAP(Entities, DatalogEGRules)
2: mapping := ∅
3: for i := 0 toDatalogEGRules.length do
4: mapping[i] := ∅ � Initialize a mapping array for all EGs

5: for Entity ∈ Entities do
6: for i := 0 toDatalogEGRules.length do
7: if ISMATCHED(Entity, DatalogEGRules[i]) then � Congress

can provide this function
8: mapping[i].add(Entity)

satisfies each label predicate (from-Label-to-entity mapping);

this is easier to implement in Congress Datalog or other

relational database systems but is not convenient to quickly

determine a policy (EG) to apply to any given entity.

Our solution is to maintain a list of entities that satisfy given

EG definitions, a membership predicate (Boolean expression)

defined over the labels. Users can use the auto-generated labels

to write their policies or policies defined written the labels in

other sources can be imported. Using the overlap and disjoint

relations captured in the label trees, individual policies can

be automatically and proactively composed and analyzed as

described in [4].

As shown in Figure 4, LMS receives EG definition and

generates relevant infrastructure policy rules for capturing the

membership. Figure 7 shows an example of EG written in a

Disjunctive Normal Form (DNF) of Boolean expression of a

set of labels (key:value). In this example, there are two label

trees: LOCATION and TENANT. We want to create an intent

which allows HTTP traffic from EG1 to EG2, where EG1
means to check if any entity is a member of a tenant admin and

is located on the location AZ1 and EG2 means to check if any

entity is a member of a tenant admin and located on the AZ2.

Then, the EG definition is converted to a set of Datalog using

the label definitions. Whenever any matched entity is appeared

in the table for EGs, LMS detects and updates mapping entities

and EGs, then intents for the EGs can be applied to the entities.

1) Mapping using Congress: In order to achieve this au-

tomatic mapping, we have started to use Congress itself as

shown in Algorithm 1. The Mapping function in Algorithm 1

performs the task. It takes the given entities and Datalog

rules for EGs. First, all entities are iterated for associating

each entity to the matched EG by Datalog rules (IsMatched

function) which evaluates all rules for each label in the EG.

The time complexity of this algorithm is O(mnk), where n
is the number of entities, m is the number of EGs, k is the

number of labels, respectively.

Algorithm 2 Map entities to EGs (hashing)

1: function GETEGNAME(Entity, Properties)
2: EGName := Entity[Properties[0]] � Entity has at least one property

entry which has a key and value
3: for i := 1 toProperties.length do
4: EGName := EGName + ”-” + Entity[Properties[i]]

return EGName

5: function MAP(Entities, EGs, Properties)
6: table := ∅
7: for EG ∈ EGs do
8: table[EG.name] := ∅ � Initialize a hash table for all EGs. The

format of EG.name is label-· · · -label.
9: for Entity ∈ Entities do

10: EGName := GETEGNAME(Entity, Properties)
11: table[EGName].add(Entity.id) � Update the hash table

Algorithm 3 Map entities to EGs (spatial hashing)

1: function MAP(Entities, EGs, Properties)
2: table := ∅
3: for Entity ∈ Entities do
4: EGName := GETEGNAME(Entity, Properties)
5: if EGName ∈ table.keys() then
6: table[EGName].add(Entity.id)
7: else
8: table[EGName] := ∅
9: table[EGName].add(Entity.id) � Update the hash table

2) Mapping using hashing: In order to improve the scala-

bility, we have used a hash table as shown in Algorithm 2.

Instead of evaluating all Datalog rules for each entity, we

create a hash table in which the key is the name of EG,

which can be generated from each entity’s properties. The time

complexity is O(nk) if n ≥ m or O(mk) if n < m, where n
is the number of entities, m is the number of EGs, k is the

number of labels.

3) Mapping using spatial hashing: However, Algorithm 2

has also an optimization challenge in the hash table for

handling the scalability of the number of EGs. We do not

have to create all entries in the hash table but create only

entries which has an associated entity. Algorithm 3 shows the

optimized function for the task. This function creates a spatial

hash table for only the given entities. The time complexity is

O(nk), where n is the number of entities and k is the number

of labels. In Section V-C2, we will show the comparison

results of three algorithms in term of time complexity. We have

used one of well-known optimized hashing techniques and our

algorithm can be improved with better hashing algorithm.

V. PROTOTYPE AND EVALUATION

In this section, we describe the implementation details of

our proposed LMS framework and evaluate it using Open-

Stack. We showcase the scalability and effectiveness of our

framework with its resource consumption and latency aspects.

A. Prototype Development

We developed LMS prototype on the latest version of Open-

Stack Mitaka [17] using Python. Like other OpenStack ser-

vices, we have built GUI for LMS as an OpenStack dashboard

GUI module, implement python-based LMS client module
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and LMS backend service for making our solution complete

and portable to OpenStack. All LMS-related components are

written in approximately 5000 lines of Python and 1000 lines

of javascrtipt/HTML/CSS. Figure 8 shows a snapshot of the

current GUI. The GUI will provide a easier and effective

means to manage labels, label tree definitions and groups.

B. Testbed Setup

For our evaluations, an OpenStack controller with LMS is

deployed on a server with 2x8 Intel Xeon 2.6 GHz cores

with 128 GB memory running Linux kernel 3.19.0. We used

two OpenStack services: Keystone for identity service and

Nova for compute service. In this experiment, we used two

data-source tables (user, project) from Keystone and three

data-source tables (availability zone, compute node, instance)

from Nova. Using the label tree definition in Section IV-B2,

we created and maintained three label trees (USER, TENANT,
LOCATION) by increasing a number of data entities such

as the number of users and projects. For evaluating the cost

involved in automatic mapping of entities to EGs, variable of

number of VM instances and EGs are considered.

Test Data: For micro benchmark results shown in Figure 9, 10

and 11, we have used the real testbed data. For experimenting

with medium scale testbed (of AWS type [18]) with thou-

sands of VMs (Figure 12), we have synthetically created data

set based on the OpenStack database schema (the synthetic

testdata is kept in-sync with the micro benchmark real data).

C. Evaluation

In this section, we present our initial experimental results

obtained with the prototype developed on top of OpenStack

for evaluating the scalability of LMS on a dynamically chang-

ing cloud environment. We present the latency and resource

over-head details of label tree construction and entity group

mapping mechanisms.

1) Evaluation of label tree construction: To simulate a

medium scale cloud environment, we experimented with up to

100k users, tenants and hosts. At each iteration, we repeated

the experiments by constantly increasing the number of ten-

ants, hosts and users (leaf-nodes) of the cloud infrastructure by

a size of 5000. We conducted the same experimental procedure

over hundred times with randomly generated data sets to

approximate the latency and memory usage. Figure 9 shows

the time and memory required to construct 1 to 3 label trees

with increase in the number of users, tenants, and hosts (leaf

nodes). The average time required to build 3 different types

of label trees with leaf-node size of 100k is ≈20 seconds and

consumes ≈170MB for building the necessary label trees. The

LMS module adds very minimal overhead to the memory and

CPU (with in ≈5%) utilization while building the label-trees

on the server mentioned in Section V-B.

In our experiment at each iteration, we incrementally added

≈5000 leaf-nodes (users, tenants and hosts), for building the

label trees, and the resultant label trees are built (updated)

instantly with in ≈800 msec to ≈1 sec on top of the existing

label trees. We can easily infer from current results, that even

in the cloud environments with millions of entities, initial

construction up of label-tree might consume considerable

time (up to few minutes), later the incremental updates (i.e.,

updating the existing label trees with non-root node additions

and deletions) should happen faster in few seconds.

2) Evaluation of entity and EG mapping: We evaluated the

latency and memory over-head of the entity and EG mappings

and compared them using three different algorithms described

in Section IV-D. For our experiments, we used a VM instance

as an entity and tested with 10, 50, 100, and 500 VM instances,

respectively. For creating each VM, we randomly select a

user and its associated project and host on which VM needs

to be instantiated. Because EG can be defined with Boolean

operation of a label (leaf node) per tree, the maximum number

of EGs is nm, where n is the number of leaf nodes per tree and

m is the number of trees. In this experiment, we incrementally

increased the number of leaf nodes by 10. Figure 10 shows

time and memory spent in mapping different number of VMs

and EGs for three of the algorithms (§IV-D).

Latency Improvements: As shown in Figure 10(a), this

approach takes considerably higher time on increasing the

number of VM instances (v) and the number of EGs (g)

as the algorithm’s time complexity is O(vg). As shown in

Figure 10(b), the Algorithm 2 remarkably reduces time when

compared with Algorithm 1 used in Congress policy engine.

However, it is not scalable on increasing the number of EGs.

Finally, we used a partial hash table in which a hash entry

is created only for existing VM instances. That is, we do

not have to create all hash entries for all EGs. As shown in

Figure 10(c), Algorithm 3 outperforms other two algorithms

in terms of time. It is also scalable over the number of EGs

and depends only on the number of VM instances. One of

the interesting point in Figure 10(c), We found the error bar is

longer than other two results because Algorithm 3 creates hash

table entries which have any matched entity. That is, in case

of mapping the same number of VMs, the latency depends on

how many entries in the hash table are mapped with VMs.

Memory Benefits: Similarly, the memory benefits are illus-

trated only for 500 VM instances (Figure 11) for three different

algorithms (described in Section IV-D). The Algorithm 3

outperforms others as this algorithm uses partial hash table

in which the entry is created only for existing VM instances.

This approach is highly scalable as this algorithm depends on
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Fig. 12: Mapping latency for large scale cloud (Algorithm 3)

the number of VM instances rather than on the number of EGs,

there by utilizing a constant amount of memory over varying

the number of EGs as shown in Figure 11.

We also evaluate the scalability of our Algorithm 3 with

simulating real cloud scale data using available size data from

Amazon Web Service (AWS) Cloud [1], [18], [19]. Currently,

AWS Cloud operates 35 AZs within 13 geographic regions

around the world which contains more than 2 million servers

by 1M customers. So, we need to test with bigger number of

VMs and EGs. Figure 12 shows time spent in the case for

mapping bigger number of VMs over bigger different number

of EGs based on the AWS case. In the case of 10k VMs, it

takes only ≈1.3∼1.8 seconds regardless the size of EGs.

VI. RELATED WORK

Expressing high-level policies in terms of logical labels

or tags is not new [20], [21]. It has been used in Security-

Enhanced Linux [22] and more recently in Docker [9] and

Kubernetes [10] and OpenDaylight policy/intent projects [23],

[24]. Docker and Kubernetes uses simple key-value pairs for

their labels to define the properties of container applications

and pods. However, these models do not actually capture

the relations between labels. ONF Boulder group is currently

defining SDN-based North Bound Intent (NBI) which is a

paradigm/methodology for interaction between SDN Applica-

tions and forwarding infrastructure [2], which is interested in

separating high-level intents from low-level implementations

by effectively translating NBI requests and executable system

commands. We believe LMS is one of the best solutions for

achieving the goal. OpenStack Neutron is also considering to

add tags to neutron core resources [25]. LMS can help to

generate system-generated tags instead of user-generated tags

making groups and automatically capturing relations between

groups and resources.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a label management service

(LMS) to manage dynamic labels and map entities and EGs

for intent-driven cloud management. First, we have defined

a label syntax and EG using the logical labels. Second, we

have shown how to automatically construct a label namespace

by collecting data from cloud infrastructure, how to express

intents using the logical labels and compose them using label

trees, and shown how to dynamically map an entity to EG.

Finally, we have showed performance results for constructing

label trees and mapping entity to EGs.

As future work, we will test our LMS on large-scale cloud

environments to evaluate the latency and resource consumption

overhead. As an early stage work, we are integrating it with

OpenDaylight Network Intent Composition (NIC) by storing

label trees and entities to the mapping service [26].
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