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Abstract—Network Functions Virtualization (NFV) offers sev-
eral benefits for Service Providers (SPs), such as mitigating equip-
ment cost and increasing business agility. In NFV-enabled net-
works, inadequate placement of Virtualized Network Functions
(VNFs) creates bottlenecks, impacting negatively on performance.
Therefore, network operators must establish affinity and anti-
affinity rules to avoid network and processing bottlenecks, and
thus comply with Service Level Agreement (SLA) requirements
of tenants. Affinity and anti-affinity rules in NFV must be
broad and carefully elaborated to maintain service performance.
Network operators must consider further than simply resource
allocation when identifying affinity among VNFs. The criteria for
VNFs affinity varies for different forwarding graphs. Geolocation,
latency, packet loss, and bandwidth usage are some examples of
criteria that can be considered as indicators of bottlenecks in
high traffic networks. In this paper, we propose a solution to
measure affinity between pairs of VNFs, based on a weighted set
of affinity criteria considered relevant by a network operator. To
evaluate the feasibility of our affinity model, we analyze three
case studies over an experimental NFV scenario. We conclude
that our affinity model can help network operators identify the
cause of issues in NFV-enabled networks, as well as it may be used
by NFV orchestrators to aid on VNFs migration and embedding.

I. INTRODUCTION

Network Functions Virtualization (NFV) offers several ben-
efits for Service Providers (SPs), such as mitigating equipment
cost and increasing business agility [1]. NFV migrates network
functions from dedicated hardware to software running on
general-purpose servers, often referred to as Virtualized Net-
work Functions (VNFs). Virtual Machines (VMs) are used to
host VNFs, which can then be created, migrated, and destroyed
on-the-fly. In the end of the day, VNFs provide flexibility and
scalability, avoiding ossification and introducing innovation in
the network core [2].

In NFV-enabled networks, inadequate placement of VNFs
creates bottlenecks, impacting negatively on performance [3].
Network operators establish affinity and anti-affinity rules to
avoid network and processing bottlenecks [4], and thus comply
with Service Level Agreement (SLA) requirements of tenants.
These rules help operators improve service execution and
minimize resources waste [5]. Moreover, affinity and anti-
affinity rules can be based on several different aspects, such
as VNFs minimum resource requirements, latency, number of
processed packets, or even network operators needs for the
service [6]. Although affinity is a critical issue, to the best
of our knowledge, efforts to determine affinity among VNFs

have been scarce [7] [8]. Besides, these efforts focus solely on
resource allocation, disregarding the service being provided.

Affinity and anti-affinity rules in NFV must be broad and
carefully elaborated to maintain service performance. VNFs
are chained in a Forwarding Graph (FG) to provide a service
(i.e., service chaining), increasing substantially management
complexity. Network operators must consider further than
simply resource allocation when identifying affinity among
VNFs. The criteria for VNFs affinity varies widely for different
forwarding graphs. For instance, geolocation can be taken into
account to minimize latency and propagation delay among
chained VNFs located far from each other, while packet loss
and bandwidth usage can be considered as an indicator of
bottlenecks in high traffic networks. All this backs up the
argument that network operators must be able to select what
criteria are relevant when establishing VNFs affinities.

In this paper, we introduce an extendable solution to mea-
sure affinity between pairs of VNFs, given a weighted set
of affinity criteria considered relevant by a network operator.
First, we provide a definition of affinity between a pair
of VNFs, to specify the semantics of our affinity measure.
Second, we specify an extendable set of affinity criteria for an
NFV-enabled network, which an operator may provide weights
to, according to the relevance of each criterion. Third, we
propose a mathematical solution to measure affinity between
two VNFs, based on the criteria and weights provided by
the operator. Thus, our solution can help network operators
identify the root cause of problems in NFV-enabled networks
by analyzing affinity measures between VNFs. In addition,
an affinity measure supports the creation of more concise
and improved affinity rules, avoiding performance degradation
of services. Finally, affinity measures may be used by NFV
orchestrators — in addition to network operators — to aid on
VNFs migration and embedding.

The remaining of this paper is organized as follows. In
Section II, we present the related work regarding affinity in
NFV and network virtualization. In Section III, we define a
set of admissible affinity criteria and introduce our solution for
affinity measure. In Section IV, we evaluate our solution by
analyzing experimental scenarios. In Section V, we conclude
this paper and present future work.



II. RELATED WORK

Affinity and anti-affinity have been discussed in the context
of Cloud-based environments. However, most of current affin-
ity solutions disregard the nature of functions being executed
by each VM, focusing primarily on resource allocation. Most
commonly, solutions propose affinity relations based on CPU
[5], bandwidth [8], or even memory page sharing [9]. Next, we
discuss the relevant affinity related solutions for both Cloud
and NFV environments.

Chen et al. [7] proposed a method to identify affinity
relations based on resource demands and dependency among
VMs, alongside an algorithm to group these affine VMs. By
grouping affine VMs as a unit, they aim to co-locate them on
the same physical machine to improve system performance.
Despite their solution showing positive results for multi-VM
applications, the authors only consider communication patterns
to identify affinity, disregarding other criteria relevant in the
NFV context, such as latency and FGs.

Yoshida et al. [10] propose a Multi-objective Resource
Scheduling Algorithm (MORSA) for NFV. They use genetic
algorithms to obtain the best possible placement over multiple
data centers for VNFs, considering a dynamic set of criteria.
These criteria are determined by several plugins inserted in
their solutions. They present plugins for common issues in the
NFV context, such as minimizing physical machine load, intra-
datacenter traffic and protocol requirements for linked VNFs.
Although their solution takes into account many affinity related
matters intrinsic to NFV environments, it does not present any
kind of affinity metric. In addition, that paper also disregards
the services being provided by each VNF.

Franco et al. [11] present VISION, a visualization platform
with multiple interactive and selective techniques for NFV-
enabled networks. Network operators may take advantage of
VISION to identify problems on the network that impact on
the VNFs performances. Also, their solution provide unique
perspectives on NFV-enabled networks that assist in recogniz-
ing behavioral patterns, allowing a better service for tenants.
Although this study allows network operators to identify
affinity and anti-affinity relations through visualizations, they
do not propose a distinct visualization technique to achieve
this objective. Thus, the result from the model we propose can
improve their visualizations to identify performance issues.

Yousaf and T. Taleb [12] propose fine-grained resource-
aware VM management solution for NFV-enabled networks,
based on a reference resource affinity score (RRAS). The
authors consider affinity as a correlation between different
entities, which for their specific case is the correlation between
different Resource Units (RUs) of a VM running a VNF,
such as processing, memory, I/O module and storage. Their
affinity calculation results on a vector quantity representing
the impact of one reference RU (e.g., memory) on other RUs
(e.g., processing, storage, and I/O module). This affinity score
is calculated for each VM, from time to time, and stored
for further analysis. This data can then be used to trace
behavior patterns for each VNF, which can be used by the NFV

Management and Orchestration (MANO) [12] for short-term
and long-term decision making regarding VM deployment
and migration, for instance. Although the authors provide an
affinity calculation for NFV environments, their solution only
provides affinity values for RUs of a single VM, requiring
extra work to determine patterns among VMs.

Even though affinity and affinity-related issues have been
discussed by several authors, their approaches have focused
mainly on computational resources awareness. Consequently,
these solutions fall short for NFV-enabled networks, which re-
quires further considerations when defining affinity. In addition
to computational resources, requirements such as geolocation,
FGs, and service performance, must be taken into account.
Furthermore, most current solutions lack in dynamicity, since
they do not consider any interaction with operators. In the
following section, we present our affinity measure solution,
which tackles these issues.

III. SOLUTION

In this section, we present our solution to measure the
affinity between a pair of VNFs. To measure that, we must
primarily establish the semantics of an affinity relationship.
The concept of affinity refers to the correlation of different
entities, representing their ability, or inability, to perform when
combined in a certain way. The proposed solution considers
affinity as an indicative of how well two VNFs operate,
either when placed on the same Physical Machine (PM), or
when chained on the same FG. Bearing this concept in mind,
our solution provides a numerical value that represents the
affinity between a pair of VNFs, for each FG both VNFs
are chained. This affinity value can be used to help either
a network operator to rearrange the VNFs, or an orchestrator
better resolve VNF placement problems.

The proposed solution receives as input a list of weights
for each affinity criterion (see subsection III-A) and a pair of
VNFs, returning a normalized value between 0 and 1, which
represents the affinity value based on the input criteria. The
input criteria are chosen by a network operator among a set
of pre-established criteria. Additionally, one can extend this
initial set to include other criteria not considered yet.

We define two sets of admissible criteria: static and dy-
namic. The former refers to data that can be collected without
the need of VNF deployment (e.g., CPU requirements, and
VNFs conflicts). The latter relates to information of running
VNFs (e.g., memory usage, and latency). Dynamic VNF data
can be collected using a monitoring solution for NFV-enabled
networks, such as the one proposed by DReAM [13]. It is
important to distinct these two types of criterion, due to the
nature of the criteria in each set. Static criteria can be used
to measure affinity regardless whether the target VNFs are
running or not, whereas dynamic criteria can only be used
when VNFs are running. The complete set of pre-established
criteria is presented below.



Type Scope Criterion Description

Static

PM

Minimum CPU

The minimum CPU requirement, in MHz, is declared on the NSD and should be used when instantiating
VNFs for a network service. Notice that if a VNF is instantiated disregarding these requirements, then it
could have a negative impact on the service due to lack of resources. If these requirements are not met for
the VNF being evaluated, these VNFs would have a lower affinity.

Minimum memory
The minimum memory requirement, in MB, is also declared on the NSD and should be used when instantiating
VNFs for a network service. If these requirements are not met for the VNF being evaluated, these VNFs
would have a lower affinity.

Minimum storage
The minimum storage requirement, in IOPS, is declared on the NSD and should be used when instantiating
VNFs for a network service. If these requirements are not met for the VNF being evaluated, these VNFs
would have a lower affinity.

FG NFV conflicts
Check if the two VNFs are placed correctly according to a list of known VNF conflicts. VNFs with known
conflicts should not be chained on the same FG, or placed on the same PM. This criterion’s calculation will
return 1 if the conflicts are respected and 0.001 if not.

Dynamic

PM

CPU usage

CPU usage is an important metric to monitor the stress on PMs, specially because communication between
VNFs hosted by the same PM is made through memory sharing, which causes great stress to CPU. If two
VNFs were responsible for a large percentage of the PM CPU usage, then these VNFs would have a low
affinity.

Memory usage Just as CPU usage, indicates stress levels on PMs. If two VNFs were responsible for a large percentage of
the PM memory usage, then these VNFs would have a low affinity.

Storage usage This criterion is also an indicator of stress levels on PMs. A higher percentage of storage usage of two VNFs
would impact negatively on these VNFs affinity.

FG

Bandwidth usage
Bandwidth usage is an indicator of how much two VNFs are stressing the links connecting them. If these
VNFs were responsible for a large percentage of bandwidth consumption, then they would have a lower
affinity.

Packet loss Packet loss, just as latency and bandwidth usage, is an indicator of issues in the network. A higher packet
loss percentage between two VNFs would cause these VNFs to have a lower affinity.

Latency

Latency is an indicator of several issues in the network, including large distances between VNFs and
bottlenecks in the service. How much latency — and all the other FG graph criteria above — influence the
service performance, and therefore affinity, depends on the amount of traffic between the VNFs. If latency
is very high and traffic is also high between two VNFs, then these VNFs would have a very low affinity.
If latency is very low and traffic is high, then these two VNFs would have a very high affinity. However,
if traffic is low between two VNFs, latency, either high or low, would not influence the service much, and
therefore, the VNFs would have a somewhat medium affinity.

Table I: Set of criteria.

A. Criteria

In our affinity model, each dynamic and static criterion is
labeled regarding their scope: PM or FG. All static criteria
are used when calculating affinity, according to the operator’s
input weights, no matter the scope of the selected criteria.
However, dynamic criteria usage depends, in addition to the
operator’s input, on their scope. If two VNFs are running on
the same PM, then the dynamic PM criteria will be considered
on the result. If two VNFs are chained on the same FG, then
the dynamic FG will be considered on the result. It is important
to point out that a VNF may fit in both scopes presented, and
therefore, all dynamic criteria will be used.

Table I presents a brief description, type, and scope of
all admissible criteria. Table II shows the affinity calculation
equation for each criterion. All affinity measures in Table II
follow the same principle: if two VNFs are performing well
together, and respect all resource requirements, the resulting
affinity will be closer to 1; further, if there is any performance
or resource allocation problem related to those two VNFs, the
resulting affinity measure will be closer to 0.001. Hence, the
affinity of each criterion must be a normalized value between
0.001 and 1 for the overall affinity calculation to work.

The proposed initial set of criteria can be easily extended
without changing the overall affinity measurement solution.
For example, if a network operator wants to consider other
criteria not presented in our solution, he/she can provide the
necessary information in the criteria tables (i.e., criterion’s
type, scope and affinity equation) to define a new criterion.
Thus, we allow the affinity measure to be customized accord-
ing to the operator’s need.

B. Affinity measurement
Our affinity measure solution combines several equations

into one. The affinity measure calculation between two VNFs,
presented in Equation 1, is a harmonic mean of the static
affinity (Equation 3) and dynamic affinity (Equation 4). How-
ever, whether or not dynamic affinity is considered in the
mean depends on both VNFs being running. This behavior
is represented by p (Equation 2). If both VNFs are running,
p will be 1 and the dynamic affinity will be considered in the
final result. If any of the two VNFs is not running, p will
be 0 and the result will be the same as the static affinity. In
addition, since two VNFs may be chained in more than one
FG, which could imply on different values for FG criteria such
as latency, our affinity measure is calculated for each FG both



Criterion Formula

Minimum CPU α =




1 i f (cpuvn fa >= cpuNSD ) ∧ (cpuvn fb >= cpuNSD ),

(1 +max(0.001,cpuvn fb /cpuNSD
)) × 0.5 i f (cpuvn fa >= cpuNSD ) ∧ (cpuvn fb < cpuNSD ),

(max(0.001,cpuvn fa /cpuNSD
) + 1) × 0.5 i f (cpuvn fa < cpuNSD ) ∧ (cpuvn fb >= cpuNSD ),

(max(0.001,cpuvn fa /cpuNSD
) +max(0.001,cpuvn fb /cpuNSD

)) × 0.5 otherwise.

Minimum memory α =




1 i f (memvn fa >= memNSD ) ∧ (memvn fb >= memNSD ),

(1 +max(0.001,memvn fb /memNSD
)) × 0.5 i f (memvn fa >= memNSD ) ∧ (memvn fb < memNSD ),

(max(0.001,memvn fa /memNSD
) + 1) × 0.5 i f (memvn fa < memNSD ) ∧ (memvn fb >= memNSD ),

(max(0.001,memvn fa /memNSD
) +max(0.001,memvn fb /memNSD

)) × 0.5 otherwise.

Minimum storage α =




1 i f (stovn fa >= stoNSD ) ∧ (stovn fb >= stoNSD ),

(1 +max(0.001,stovn fb /stoNSD
)) × 0.5 i f (stovn fa >= stoNSD ) ∧ (stovn fb < stoNSD ),

(max(0.001,stovn fa /stoNSD
) + 1) × 0.5 i f (stovn fa < stoNSD ) ∧ (stovn fb >= stoNSD ),

(max(0.001,stovn fa /stoNSD
) +max(0.001,stovn fb /stoNSD

) × 0.5 otherwise.

NFV conflicts α =



1 if the two VNFs respect conflicts,

0.001 otherwise.

CPU usage α = max(0.001, 1 − (%cpuvn fa +%cpuvn fb /100))

Memory usage α = max(0.001, 1 − (%memvn fa +%memvn fb /100))

Storage usage α = max(0.001, 1 − (%stovn fa +%stovn fb /100))

Bandwidth usage α = max(0.001, 1 − (%bnd(vn fa ,vn fb ) /100))

Packet loss α = max(0.001, 1 − (%pkt_loss(vn fa ,vn fb ) /100))

Latency α =




1 i f 2 × lat(vn fa ,vn fb ) <= latSLA,

max(0.001, 1 −
2 × lat(vn fa ,vn fb ) − latSLA

latSLA
) otherwise.

Table II: Criteria formulas.

VNFs belong to. If the two VNFs are not directly chained
in any FG, the affinity measure will be only calculated once,
taking into account solely PM criteria.

Using a harmonic mean to combine bottom-level calcula-
tions keeps the final result value high in case the bottom-level
results are high, and decreases the result value as bottom-level
results decrease. Also, by using a harmonic mean to combine
affinities ensures that low measures are not masked by a higher
measure, since any low affinity value will decrease the final
result significantly. However, because of the harmonic mean
behavior, it is crucial that no bottom-level calculation results
on zero, since any zeros in the mean would simply result on
a zero result, possibly masking any other higher values in the
mean.

α(vnfa,vnfb ) =
1 + p

1
αs
+

p
αd

, ∀ f g ∈ {vn fa ∩ vn fb } (1)

p =



1 if the two VNFs are running,

0 otherwise.
(2)

The static affinity calculation (Equation 3) is a harmonic
mean of the static PM affinity and the static FG affinity. The
input for this measure is the constant information from all
static criteria, such as resource requirements and historical
data. In this way, the static affinity measure can be used before
VNFs deployment, to aid on the embedding process.



αs =
2

1
αspm

+
1

αs f g

(3)

The dynamic affinity calculation (Equation 4) is a harmonic
mean of the dynamic PM affinity and the network affinity.
However, whether or not PM and network affinities are taken
into account depends on a couple of parameters: x (Equation
5) and y (Equation 6). If both VNFs being evaluated are
hosted by the same PM, then x will be 1, and therefore, PM
affinity will be considered in the harmonic mean. Likewise,
if both VNFs are directly chained on the FG being evaluated,
according to the NSD, y will be 1 and network affinity will
be considered on the harmonic mean. If those conditions are
not met, then x or y will be zero, disregarding either PM or
network affinity from the equation.

αd =
x + y

x
αdpm

+
y

αnet

(4)

x =



1 if the two VNFs are hosted by the same PM,

0 otherwise.
(5)

y =




1 if the two VNFs are directly chained on the FG,

0 otherwise.
(6)

The network affinity (Equation 7) is used to adjust the
dynamic FG affinity. To do so, a specific parameter is used
to drive the result: traffic affinity. This formula follows the
following behavior: if two VNFs have a high traffic affinity,
that is, there is a relatively large amount of traffic flowing
between them, the dynamic FG affinity will have a large
influence on the overall dynamic affinity result; if two VNFs
have a low traffic affinity, the dynamic FG will not have as
much influence on the overall dynamic affinity. Thus, as there
is a low amount of traffic flowing through the VNFs, the
dynamic FG criteria will not impact the service provided by
the FG. αnet = 0.5 + ((αtr f /2) × (αd f g − (1 − αd f g ))) (7)

Figure 1 depicts a heat map demonstrating the network
affinity behavior. As the traffic affinity increases, the dynamic
FG affinity determines whether the resulting network affinity
will be high or low. For example, considering a fixed value
of traffic affinity measure of 0.9, if the dynamic FG affinity is
0.2, the network affinity will be 0.23, whereas if the dynamic
is 0.9, the network affinity will be 0.85. On the contrary, as
traffic affinity decreases, such as 0.2, the dynamic FG affinity
has a lower impact on the resulting value of network affinity,
which tends to stay around 0.5.

The traffic affinity measure (Equation 8) is a proportion
of how much traffic is passing through the virtual links
between the two VNFs being evaluated. Since this value is

only calculated if the VNFs are directly chained, we consider
the traffic value going through a single virtual link as the traffic
between the two VNFs. This value is proportioned relative to
the highest single virtual link traffic rate between any two
VNFs in the FG.
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0.50 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
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Figure 1: Network affinity values by dynamic FG affinity
and traffic affinity.

αtr f =
tr f (vnfa,vnfb )

hgst_tr f f g
(8)

Finally, the static FG and PM affinity, as well as the dynamic
FG and PM affinity, are presented in Equation 9. All four
affinity measures are calculated in the same way, a weighted
harmonic mean of the affinity measures of each criterion,
differing only by the criteria it takes into account. Each
criterion has an associated weight provided as input by the
network operator. If a network operator wants to disregard any
criterion, he needs to provide zero as the criterion’s weight.

αx =

∑nx

i=1 wi∑nx

i=1
wi

αCi

, ∀x ∈
{
spm, s f g, dpm, d f g

}

nx, number of criteria of x.
wi ∈ N, weight for criterion i.

αCi, affinity measure for criterion i.

(9)

IV. CASE STUDIES

To evaluate our affinity model, we analyze a VNF as a
Service [14] (VNFaaS) scenario with multiple tenants sharing
the same infrastructure and VNFs. We provide case studies
to demonstrate how our solution helps a network operator
to identify three distinct issues: physical machine resources
contention; latency on NFV-enabled networks, and VNFs
dependency issues.

Figure 2 illustrates our evaluation scenario, which contains
seven VNFs running over three PMs and three distinct tenants
with their respective FGs. PM 1 hosts three VNFs — a load
balancer, a firewall, and an Intrusion Detection System (IDS);
PM 2 hosts three VNFs as well — a Deep Packet Inspection
(DPI), another firewall, and an Intrusion Prevention System



(IPS); PM 3 hosts a single VNF — a packet sniffer. FG 1,
contracted by an university, includes a load balancer, two
firewalls and an IDS; FG 2 provides to a bank a DPI, a
firewall and an IPS; and FG 3, contracted by an Information
Technology (IT) company, consists of a load balancer, two
firewalls, a DPI and a packet sniffer. Figure 2 also includes
the resource capacities of each PM, described by: number
of CPUs and clock frequency, amount of memory; and I/O
operations per second (IOPS). In addition, Figure 2 includes
the bandwidth capacity of physical links between PMs, PMs
to the Internet, and PMs to tenants.

Figure 2: NFV example scenario.

Table III shows a snapshot of the current resource usage for
each PM: CPU, memory and IOPS. In addition, Table III also
informs how much of the usage percentage each VNF hosted
on one particular PM is responsible for. For instance, in this
scenario, PM 1 has a 85% of CPU Usage, from which the
load balancer is responsible for 40%. Meanwhile, Table IV
presents the usage data relevant for each FG, divided by each
flow: traffic, bandwidth usage, packet loss, and latency. It is
important to point out that FG 1 and FG 2 share a physical
link, since they both have the same flow from the Internet
to the load balancer. For all case studies, consider an empty
conflicts lists and a 30 ms SLA for latency. Also, consider
that all VNFs fulfill their resource requirements, resulting on
a static affinity value of 1.

A. Case Study #1

Consider the three VNFs running on PM 1. The load
balancer receives traffic from two different FGs; as a result,
it consumes 40% of PM 1 CPU capacity. IDS is a CPU
bound network function, being responsible for 35% of the
CPU usage. The firewall only performs rules matching, thus,
its consumption is low (10%) in comparison with the other
two VNFs. This CPU usage behavior can lead to resource
contention in PM 1, which incurs in performance degradation.

Equation 10 presents the resulting affinities, given that all the
criteria have the same weight 1.

∀ αCi, wi = 1
α(LoadBalancer, FirewallA) = 0.755

α(FirewallA, IDS) = 0.743
α(LoadBalancer, IDS) = 0.554

(10)

The provided values show that the IDS and the load balancer
have a lower affinity when compared to the affinities they have
with the firewall. The model results in an affinity close to 0.75
between the firewall and the other two VNFs, and 0.55 for the
relation between the load balancer and IDS. However, it is
important to notice that the static affinity for this calculation
was at its maximum value, which increases the total affinity.

If a network operator wants to ignore the static criteria, to
produce an affinity result more focused on execution stats,
he/she can provide input weights with zero value for the static
criteria. Equation 11 produces the affinity results directed for
the dynamic behavior in this scenario. Therefore, all static
criteria receives zero as input weight.

∀ αCi ∈ {spm, s f g}, wi = 0
∀ αCi ∈ {dpm, d f g}, wi = 1
α(LoadBalancer, FirewallA) = 0.609

α(FirewallA, IDS) = 0.592
α(LoadBalancer, IDS) = 0.383

(11)

The results without the static criteria reduces the overall
affinity among all the VNFs. However, it provides a significant
result for identifying the root cause of the problem. The
change in criteria incur in a conceptual shift for the relation
between the load balancer and the IDS. By considering only
dynamic criteria, they expose an anti-affinity behavior, which
is not true for the relationships that include the firewall. In
this scenario, the network operator, noticing the anti-affinity
relation, could move either the load balancer or the IDS to a
separate hardware, with less stress on physical resources.

B. Case Study #2

In the second case study we assess how FG dynamic criteria
impact the affinity measure. For this analysis, consider the four
VNFs chained on FG 3, in which VNFs are placed on different
PMs. In addition, as we are focusing on FG 3, affinities from
other FG that may apply to any VNF will not be analyzed in
this case study. Most VNFs on FG 3 run on distinct hardware,
so the dynamic PM criteria will not interfere in the affinity
measurement. Thus, let us focus on the network behavior
exhibited in the FG. All VNFs in FG 3 have low values for
bandwidth usage and packet loss, and there is a high input
traffic in the load balancer. However, as the function distributes
traffic among FGs, it causes a decrease in the amount of traffic
reaching both firewalls. In the case of latency, the values are
below the 30 ms established in SLA for all VNFs relations,
except for the one between the DPI and the packet sniffer,



PM CPU Usage Memory Usage Storage Usage VNF VNF’s CPU Usage VNF’s Memory Usage VNF’s Storage Usage

1 85% 65% 60%

Load Balancer 40% 20% 30%

Firewall A 10% 20% 10%

IDS 35% 25% 20%

2 90% 60% 45%

DPI 60% 30% 20%

Firewall B 10% 20% 10%

IPS 20% 10% 15%

3 20% 15% 20% Packet Sniffer 20% 15% 20%

Table III: PMs resources usage of example scenario.

FG Flow Traffic Bandwidth Usage Packet Loss Latency

1

Internet → Load Balancer 500 Mbit/s 50% 1% 10 ms

Load Balancer → FirewallA 200 Mbit/s 25% 1% 1 ms

Load Balancer → FirewallB 200 Mbit/s 37% 1% 5 ms

FirewallA → IDS 100 Mbit/s 10% 1% 1 ms

FirewallB → IDS 100 Mbit/s 37% 1% 5 ms

IDS →University 200 Mbit/s 20% 1% 10 ms

2

Internet → DPI 200 Mbit/s 20% 1% 10 ms

DPI → FirewallB 200 Mbit/s 22% 1% 35 ms

FirewallB → IPS 40 Mbit/s 4% 1% 1 ms

IPS → Bank 40 Mbit/s 4% 1% 10 ms

3

Internet → Load Balancer 500 Mbit/s 50% 1% 10 ms

Load Balancer → FirewallA 50 Mbit/s 25% 1% 1 ms

Load Balancer → FirewallB 50 Mbit/s 37% 1% 5 ms

FirewallA → DPI 20 Mbit/s 37% 1% 5 ms

FirewallB → DPI 20 Mbit/s 22% 1% 1 ms

DPI → Packet Sni f f er 40 Mbit/s 4% 1% 28 ms

Packet Sni f f er → IT Company 40 Mbit/s 4% 1% 10 ms

Table IV: FGs resources usage of example scenario.

which is close to the SLA. This high value indicates that PM
3 is physically distant from PMs 1 and 2.

With these exposed values, a network operator might iden-
tify this abnormal latency as a problem. However, taking a
closer look, the amount of traffic that is being transmitted in
this flow is low, when compared to the highest value in the
FG. Hence, even though latency is high, it compromises just a
bit of the service being provided, reducing its overall impact.
Equation 12 exposes the affinity measure from our model in
this case.

f g = 3
∀ αCi, wi = 1

α(LoadBalancer, FirewallA) = 0.707
α(LoadBalancer, FirewallB ) = 0.695

α(FirewallA, DPI ) = 0.678
α(FirewallB, DPI ) = 0.646

α(DPI, PacketSni f f er ) = 0.653

(12)

These values reveal an affinity relationship between any

pair of VNFs in the FG. This occur because the combination
of small traffic and high latency reduces the network affinity
in Equation 7. Thus, since the static criteria affinity equals
to 1, the total affinity results in a measure larger than 0.5.
In summary, the observance of theses values can prevent
the operator from misplacing VNFs based only on latency
observations.

C. Case Study #3

Finally, consider the VNFs chained on FG 2. Analyzing the
FG criteria, it is possible to notice a high discrepancy on the
latency values. The normal latency value for links between
PM 1 and 2 is 5 ms, but the latency between the DPI and the
firewall on FG 3 is 35 ms, higher than the 30 ms SLA. In
addition, evaluating the PM criteria, it is clear that the DPI is
consuming a great portion of the PM resources, stressing the
CPU and memory.

Considering the amount of traffic that gets blocked by the
firewall, decreasing from 2 Mbit/s to 0.4 Mbit/s, it is safe to
assume that it was mistakenly chained after the DPI on FG



2, causing the identified issues. To confirm this insight, we
apply our affinity measure model considering a higher weight
for the suspect resources, CPU usage and latency. Equation
13 presents the resultant affinities for the VNFs on FG 2.

f g = 2
∀ αCi ∈ {latency, cpu_usage}, wi = 2

∀ αCi ∈ {spm, s f g}, wi = 0
∀ αCi < {latency, cpu_usage, spm, s f g}, wi = 1

α(DPI, FirewallB ) = 0.003
α(FirewallB, IPS) = 0.655

α(DPI, IPS) = 0.391

(13)

The resulting affinities show an anti-affinity relation be-
tween the DPI and the firewall, due to the high latency in
the flow and the high CPU usage of the DPI. The DPI and
the IPS also present a low affinity, since the IPS is a CPU-
bound VNF and the DPI is consuming 60% of PM 2 CPU.
Notice that the DPI and the firewall belong to both FG 2 and
FG 3. For such case, we measure the affinity for each FG
that the VNFs are part of. For instance, FG 2 and FG 3 have
distinct values of latency, which further implies that the DPI
is mistakenly chained before the firewall on FG 2. Equation
14 presents the affinity measure for the DPI and the firewall
B for FG 3, considering the same weights as in Equation 13.
The resulting affinity is low due to PM resource contention,
but since the FG criteria are normalized for FG 3, the measure
is much higher than the value presented on Equation 13.

f g = 3
∀ αCi ∈ {latency, cpu_usage}, wi = 2

∀ αCi ∈ {spm, s f g}, wi = 0
∀ αCi < {latency, cpu_usage, spm, s f g}, wi = 1

α(DPI, FirewallB ) = 0.448

(14)

To solve the stated issues, and the results provided by the
affinity model, an operator can change the dependencies in FG
2, so that the DPI is chained after the firewall. In this way,
the traffic load processed by the DPI decreases, as the firewall
blocks packets. By changing the dependencies in FG 3, the
DPI and firewall will have the same flow as in FG 2, in which
the affinity measure is higher.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a measure to estimate affinity
between pairs of VNFs, based on a weighted set of criteria.
This measure helps network operators identify issues on NFV-
enabled networks. In addition, this measure can be used to
aid NFV orchestrators — and network operators — on VNFs
embedding and migration. In summary, we (i) provide an
affinity relationship definition, (ii) define an extendable set
of affinity criteria; and (iii) describe a mathematical model to
measure the affinity between any pair of VNFs.

We analyzed our affinity measure over an NFVaaS scenario,
with multiple tenants sharing infrastructure and VNFs. We
provided three distinct case studies, demonstrating how our
affinity measure helps the network operator identify different
issues on the network. In case study #1, we use our affinity
model to expose PM resource contention, derived from two
resource consuming VNFs on the same PM. In case study
#2, we analyze latency among VNFs, and how our affinity
measure might prevent network operators from misplacing
VNFs simply on latency observations. Finally, in case study
#3, we use our affinity model to highlight dependency issues
on the network, in which a DPI is mistakenly placed before a
firewall, causing high latency and CPU consumption. All these
case studies reveal that the proposed affinity measure provides
insight on NFV-enabled network issues. In addition, instead
of having to analyze dozens of different metrics, our model
combine all those metrics into a single value that expresses
how well two VNFs run together, simplifying management
and scalability.

As future work, we intend to add different criteria, to
improve the affinity measure, such as considering the function
being provided by each VNF (e.g., which rules are running on
a firewall, and what kind of inspection is being provided by a
IPS). Also, we plan to store historical data for each measure
calculated, and use it as input to retroactively improve the
affinity measure for the evaluated VNFs. Finally, this measure
might be incorporated on a visualization platform, such as
VISION [11], to aid network operators on having insights
about the network.
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