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Abstract—This article presents a new model and a resolution
algorithm, based on Tabu Search, for the assignment of Virtual
Machines (VMs) to servers in a data center. We propose a Mixed
Integer Programming (MIP) model that optimizes the Quality of
Service (QoS) and power consumption of applications, taking
into account their communication traffic and dynamic aspects.
A hierarchic method and a Tabu Search heuristic that considers
the network topology are developed to solve cases with realistic
sizes—e.g., a data center with 1600 servers per pod, for up to
128,000 total servers—. The method specifically considers the
optimal mapping of the application graph into the data center
network. The proposed scheduler is compared with 1) a static
method that does not consider workload variations, and 2) the
first-fit policy as a sample of methods that do not consider
communication traffic among VMs.

Index Terms—Data center management, cloud computing,
scheduling, Tabu Search, virtualization, virtual machine place-
ment, service function chaining, virtual network embedding.

I. INTRODUCTION

With the popularity of cloud computing services, a large
amount of data is being managed in large data centers making
use of virtualized resources. Virtualization adds flexibility
to data center management but that flexibility comes at the
expense of combinatorial complexity when allocating the
virtual and physical resources to the different applications.
The allocation problem consisting in assigning physical re-
sources (CPU, storage, memory) to virtual machines (VMs),
has been extensively studied in the literature under the name
of VM placement problem (VMPP) (see surveys [1], [2],
[3], [4]). Most of the work on the VMPP has exploited its
bin-packing nature [5], where the objective is to reduce the
energy consumption by packing as many VMs as possible in as
few servers as possible. However, as demand for applications
such as social-networking continues to grow, there has been
a shifting of the demand from being “north-south” (inside-
outside the data center), to “east-west” (intra-data center). This
shifting has the potential of creating important congestion
bottlenecks inside a data center. As a result, the network
awareness of the VM placement is gaining importance [6],
[7], [8], [9], [10], according to which the VMs that “talk to
each other” should be placed as closed as possible to reduce
their usage of network resources. The strategy, however, can
create a tight packing of VMs in the same racks, which can
induce scalability and elasticity problems when the demand
increases. The VM placement can also be classified as “on-
line” or “off-line” depending on wether the placement decision

is taken or not in an on-line, dynamic fashion [11], [12].
When the decision is on-line, the placement strategies are
usually quite simple (such as first-fit), given the need to keep
the resolution time of the scheduling algorithm as short as
possible. This paper presents a modelling framework and a
very efficient resolution approach that deals with the above
mentioned issues. The method is quick and efficient, so that
it can be integrated to on-line management engines. It can
also be used off-line for longer term optimization placement
and diagnostic. The article presents the following original
contributions:

1) A detailed Mixed Integer Programming (MIP) model
to assign VMs to servers, minimize power consump-
tion, and communication delay among VMs considering:
a)multiple server models with different capacities and
energy efficiency, b)multiple VM types that require
different amount of server resources, c)network topol-
ogy, delay, and link utilization, and d)the elasticity of
applications as the workload varies over time.

2) A very efficient Tabu Search heuristic that quickly solves
the proposed MIP model for networks of hundreds of
thousands of servers and Virtual Machines (VMs), adds
a new application to the network and resizes existing
applications each hour of the day.

The rest of this article is structured as follows. Section II
presents a short overview of the literature, including important
surveys. Section III explains the proposed strategy to assign
VMs to servers. Section IV describes the MIP model. In
Section V a Tabu Search based heuristic to solve the VM
placement is presented. Section VI describes a case study
of a data center with 128,000 servers including network
topology, application topology, workload, and power consump-
tion parameters. Section VII presents the results obtained by
comparing the proposed scheduler with static VM placement
and dynamic VM placement with first-fit policy. Finally, the
article is concluded in Section IX.

II. LITERATURE REVIEW

The VMPP is well-known to be NP-hard as it can be
reduced to the multi-dimensional bin-packing [13]. [2] sur-
veys energy aware problems inside the datacenter, including
VM placement. [3] focuses on a comprehensive overview
of resource management issues in clouds, among them, the
scheduling of the VMs. [4] deals with the VM placement
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Fig. 1. Graph of a multi-tier application.

problem optimization approaches, classifying the literature
based on the type objective functions, the type of solution
approaches, the cloud architecture and the type of experiments
being carried out. [14] proposes a detailed management of the
capacity while dealing with scalability of an SDN (Software
Defined Networking) solution. [15] treats the temporal and
spatial aspects of the problem by introducing the notion of
complimentary VMs which are VMs with different temporal
resource patterns that can be combined to optimize the local
resources. [16] tackles the problem of assigning tasks to
servers by adapting a multi-dimensional bin packing where
scalability and network awareness has been incorporated. [17],
[18], [19] have taken into account the traffic among VMs at the
time of placing VMs. They differ on the strategy to handle a
dynamic workload and on the solution methods. [20] presents
a method that provides bandwidth guarantees by considering
a two-layered problem.The multilayered approach, that we
introduced in our previous work on data center location [21],
is similar to the one presented here, however, the optimization
features and the way to handle the bandwidth guarantees are
different. Moreover, they require a specific tree-like topology
whereas our method is topology independent. Finally, we
mention the latest literature on Service Function Chaining
(SFC) and Virtual Network Embedding (VNE) [22], [23],
[24] that, even though differ from the VMPP, present a very
similar structure to our problem and could benefit from our
mapping approach.

III. PROPOSED PLACEMENT STRATEGY

For each application request, the decision to make is which
server will host the requested VM for that application. After
the decision is made, the hypervisors of the target servers
create the VMs in real time. The objective is to minimize
delay among VMs, maximize the network throughput available
among VMs, and minimize the server energy consumption.
Our placement strategy can be characterized as: a) based
on application graph, b) communication-aware, c) energy-
efficient and d) elastic. The requirements of an application are
modeled as an application graph where each node is a VM
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Fig. 2. Application and network mapping.

and each arc indicates a VM sending traffic to another one.
The application developer defines the type of VMs needed
and the expected traffic between each pair of VMs. The
scheduler takes that information as an input to place the
VMs. Figure 1 shows an example of a multi-tier application
graph, a popular architecture for Internet applications [25].
Note that our method is in no way restricted to the example,
as it can be applied to any application graph made up of
communicating software components. Thus, since the applica-
tion’s VMs communicate among themselves, the application
performance depends on which server of the network will
host each VM.The proposed model is network-aware because
the model includes the delay among VMs in the objective
function so that VMs that communicate among themselves
will be placed close to each other. This reduces the load on
the links between switches, thus improving quality of service
and avoiding bottlenecks to increase the throughput available
among VMs. The proposed approach is also energy-efficient
because an active server with enough capacity will be preferred
rather than using an inactive server. Furthermore, between
two servers of different models or manufacturers, the one that
consumes less power will be used. The application elasticity
is also considered for the placement policy. Depending on the
hour and the day, applications receive different workload sizes.
Adding and removing VMs to existing applications can handle
a varying workload. The proposed approach keeps a fraction of
each rack empty to be used by VMs added in peak periods, in
this way these applications benefit of a reduced delay and high
throughput. VM migration is not considered in the proposed
approach because even if live migration can be done in a
short time interval [26], that period could negatively impact
the programs and network protocols executing on the VM.
However, if live migration is requested, additional constraints
could be easily incorporated into the framework described
below.

IV. PROBLEM DESCRIPTION

A cloud data center network is represented as a graph
GN (V N , AN ), as shown in Figure 2. The set of nodes V N
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contains the servers S, switches Z , and a special node χ that
represents destinations outside the data center network. The
data center contains a set of racks R = {1, . . . , |R|}, and
each rack r ∈ R accommodates a set of servers Sr ⊆ S.
The servers of a rack are connected to a Top of Rack (ToR)
switch, and all the switches are connected through a particular
topology. Each link direction is an arc in AN .

A program called scheduler receives requests to add, re-
move, and resize applications. Let an represent a particular
application and Gan(V an , Aan) the topology of that appli-
cation. As can be seen in Figure 2, each node in V an is a
VM, and each arc (i, j) ∈ Aan represents that VM i sends
information to VM j. Similarly to the network layer, there is
a special node χ in V an that represents programs outside the
data center that exchange information with the VMs.
GAt (V

A
t , A

A
t ) is the graph that contains all the applications

being executed at time t. Therefore, the approach is valid not
only for a single application request, but for several requests
at the same time, as they can be considered by this graph. The
nodes in V At are the VMs of all applications, and the arcs in
AAt are the communication demands. If the system receives a
request to add a new application an at time t+ 1 then:

GAt+1 = (V At ∪ V an , AAt ∪Aan)
When a request to remove an application an is received at

time t+ 1 then:

GAt+1 = (V At − V an , AAt −Aan)
Mt : V

A
t → S is a mapping that specifies which server is

assigned to each VM at time t. Then the scheduler has to
define the mapping Mt+1 starting from Mt.

The VMs of an application can communicate among them-
selves and with Internet hosts to achieve the application’s
purpose.The parameters related to the communication traffic
are the following:
bd Average throughput of demand d ∈ AAt (in bps).
ce Capacity of link e ∈ AN (in bps).
ζ Average packet size (in bits).
Data centers typically have different server models. Each

server model has capacities associated to each server resource:
M Set of server models, e.g., 1 = Dell PowerEdge R420,

2 = HP ProLiant Dl360, 3 = IBM System x3750.
µk Model of server k ∈ S.
K Set of resources that each server has, which include

1 = CPU, 2 = network card, 3 = RAM, and 4 =
storage.

cpm Capacity of resource p ∈ K on a server of model
m ∈ M in the corresponding units (GHz, Gbps,
GB).

Different VM types require more or less of each server
resource. Each application defines the type of VMs needed
depending on the VM purpose. The following are the param-
eters that define the VMs:
T Set of VM types, e.g., 1 = small instance, 2 =

medium instance, 3 = large instance, 4 = high RAM
instance, 5 = high CPU instance.

ψi Type of VM i ∈ V At .
rpv Requirement of resource p ∈ K for a VM of type

v ∈ T in the corresponding units (GHz, Gbps, GB).
P Set of possible assignments (v,m) indicating that a

VM of type v ∈ T can be hosted on a server of
model m ∈M.

The power consumption of a server is related to its model
and its resource utilization. We assume that a server that does
not host any VM can be put in suspended-to-ram state, and
thus consume a very low amount of power. Because VMs can
be added and removed dynamically, we add a parameter to
avoid activating and deactivating a server too often. If a server
is turned on to host a VM, and then the VM is removed in a
short interval of time, the server is kept on for the next VM
to be added. Without that condition, the second VM could
arrive while the server was entering in suspension state and
would wait longer to start. The following parameters define
the power consumption aspect:
wm : R|K| → R

Power consumed by a server of model m ∈ M as
a function of CPU, network bandwidth, RAM, and
disk allocated.

πk Time of activation of server k ∈ S (in minutes); this
value is -1 if the server was never activated.

h Minimal time interval that a server must be kept in
active state (in minutes).

In order to group VMs of the same application together, we
keep a fraction of each rack available for future VMs. That
is defined by an expected utilization threshold on the rack
resources (sum of the server resources). When the resources
of a rack are higher than the threshold, a penalty term is added
to the objective function.
urpt Utilization threshold of resource p ∈ K in rack

r ∈ R (0 ≤ urpt ≤ 1).
The variables for the problem are:
xikt 1 if VM i ∈ V At is located in server k ∈ S; 0

otherwise.
ykt 1 if server k ∈ S is in active state; 0 if the server is

in suspend-to-ram state.
fdet Amount of traffic demand d ∈ AAt carried by link

e ∈ AN (in bps). This variable is in charge of
the optimal mapping and physical link allocation
between the application and the physical network
layers.

qkpt Consumption of resource p ∈ K in server k ∈ S in
the corresponding units.

lrpt Consumption of resource p ∈ K in rack r ∈ R
(0 ≤ lrpt ≤ 1).

orpt Overflow of resource p ∈ K in rack r ∈ R
(0 ≤ orpt ≤ 1).

The first part of the multi criteria objective considers the
communication delay among VMs, that is proportional to the
packet size ζ and inversely proportional to the link capacity
ce. Each link delay is weighted by the amount of traffic it
carries. The advantage of this formula when compared with
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the simple hop count is that it differentiates links with low
and high capacity—e.g., 1 Gbps and 10 Gbps links.

CD =

∑
e∈AN (ζ/ce)

∑
d∈AAt

fdet∑
d∈AAt

bd

The second part of the objective to minimize is the server
power consumption, that is calculated as the sum of each
server power consumption:

CE =
∑
k∈S

wµk (qk,1, qk,2, qk,3, qk,4)

The third term in the objective is an elasticity penalty that
aims at leaving unused servers for new VMs created at the
peak times. It is defined as the sum of the overflow of each
rack, which starts to be positive when the allocated resources
of a rack are above a threshold.

CL =
∑
r∈R

∑
p∈K

orpt

The objective function to minimize is the weighted sum:

z =αCD + βCE + γCL (1)

The problem constraints are given by:

• VM placement∑
k∈S/

(ψi,µk)∈P

xikt = 1 ∀ i ∈ V an (2)

∑
k∈S/

(ψi,µk)/∈P

xikt = 0 ∀ i ∈ V an (3)

xikt = 1 ∀ (i, k) ∈Mt−1 (4)

xikt = 0 ∀ i ∈ V At−1, k ∈ S, (i, k) /∈Mt−1 (5)

Equations (2) and (3) define that each VM must be placed in
one server with a model that is feasible for that type of VM.
Equations (4) and (5) state that the VMs previously placed
remain in the same servers.

• Active servers

ykt ≥ xikt ∀ i ∈ V At , k ∈ S (6)
ykt = 1 ∀ k ∈ S/t ∈ [πk, πk + h] (7)

Constraint (6) states that the servers hosting VMs must be in
active state. Equation (7) says that servers must remain active
at least h minutes.

• Flow conservation∑
e∈Γ−

k

fdet + xiktbd =
∑
e∈Γ+

k

fdet + xjkbd (8)

∀ d = (i, j) ∈ AAt , k ∈ S∑
e∈Γ−

k

fdet =
∑
e∈Γ+

k

fdet (9)

∀ d = (i, j) ∈ AAt , k ∈ Z

∑
e∈Γ−

χ

fdet = bd ∀ d = (χ, j) ∈ AAt (10)

∑
e∈Γ+

χ

fdet = bd ∀ d = (i, χ) ∈ AAt (11)

Equation (8) relates VM placement variables and routing of
traffic demands. It associates the application and the network
layers. For a demand from a VM i ∈ V At placed in server
k1 ∈ S to a VM j ∈ V At placed in server k2 ∈ S, the flow of
traffic bd starts in k1 and ends in k2. Equation (9) states that in
each switch k of the path from k1 to k2 the flow is conserved,
that is the incoming flow of k is equal to its outgoing flow.
Equation (10) states that the traffic coming from outside the
data center enters by node χ. Equation (11) states that the
traffic going outside the data center exits by node χ. In those
data centers where routing is restricted, additional constraints
should be added.

• Link capacity∑
d∈AAt

fdet ≤ ce ∀ e ∈ AN (12)

In Constraint (12), the flow of each link is lower than its
capacity.

• Server resource utilization

qkpt =
∑
i∈V A

rpψixikt ∀ k ∈ S, p ∈ K (13)

qkpt ≤ cpµk ∀ k ∈ S, p ∈ K (14)

Equation (13) calculates the amount of resource p reserved
in server k. Constraint (14) requires the capacity of each
resource to be respected.

• Rack resource utilization

lrpt =

∑
k∈Sr qkpt∑
k∈Sr cpµk

∀ r ∈ R, p ∈ K (15)

orpt ≥
lrpt − urpt
1− urpt

∀ r ∈ R, p ∈ K (16)

orpt ≥ 0 ∀ r ∈ R, p ∈ K (17)

Equations (15) aggregate the server resource consumption
for a whole rack and normalize it between 0 and 1. Constraints
(16) and (17) define the overflow variable for each rack and
resource. That variable starts to be positive when the rack
load lrpt is above the utilization threshold urpt and reaches
the value 1 when the rack load is 1.

• Domain of variables

xikt ∈ {0, 1} ∀ i ∈ V At , k ∈ S (18)
ykt ∈ {0, 1} ∀ k ∈ S (19)

fdet ∈ R≥0 ∀ d ∈ AAt , e ∈ AN (20)
qkpt ∈ R≥0 ∀ k ∈ S, p ∈ K (21)
lrpt ∈ R≥0 ∀ r ∈ R, p ∈ K (22)
orpt ∈ R≥0 ∀ r ∈ R, p ∈ K (23)
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V. SOLUTION APPROACH

Given that a VM scheduler in a cloud data center could need
to scale to more than 100,000 servers and VMs, we developed
a very efficient hierarchical heuristic based on Tabu Search.
We name the proposed method Cloptimus Scheduler (CS). We
exploit the fact that data center topologies are split in clusters
and sub clusters (pods) and the symmetry of the topology.

Algorithm 1 Add, remove, or resize an application.
function CLOPTIMUSSCHEDULER(Request, M )

an ← Request application
if Request type is add then

M ← INITIALGREEDYSOLUTION(an, M )
M ← TABUSEARCH(an, M )

end if
if Request type is remove then

Remove an’s VMs from M
end if
if Request type is resize then

Remove an’s VMs from solution M
Add or remove VMs from an
Place existing VMs in the same servers than before

in M
if an has new VMs to schedule then

M ← INITIALGREEDYSOLUTION(an, M )
M ← TABUSEARCH(an, M )

end if
end if

end function

function INITIALGREEDYSOLUTION(an, S)
for each vm in vmsToSchedule(an) do

Move vm to the server that least increases z(S)
end for
return S

end function

function TABUSEARCH(an, Current)
S ← Current
Best ← Current
L← {}
i← 0
repeat

Choose the pair (c, s) ∈ N (S) − L that minimizes
z when moving vm to s in S.

Move c to s in S
Add (c, s) to tabu list L for q iterations.
i← i+ 1
if z(S) < z(Best) then

Best ← S
i← 0

end if
until i = MAX ITERATIONS
return Best

end function
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Fig. 3. San Jose CAIDA’s traffic monitor during August 3, 2013 [27].

In this problem, a solution S is a mapping between VMs and
servers. The resolution approach, portrayed in Algorithm1, is
composed of three main functions: the initial greedy solution,
the Tabu Search and the Scheduler that receives requests to
add, remove or resize an application. When the request is
to add an application an, then the complete graph of the
application is passed to the initial greedy solution and next to
the Tabu Search. If the request is to remove the application,
then all the VMs belonging to the application are removed. If
the request is to resize the application, then either some VMs
will be removed or will be added, with the consequent call
to the greedy and then the Tabu Search. The initial greedy
solution places the VMs in the server that least increases the
objective function. With respect to the Tabu, the neighborhood
N (S) is the set of solutions that differ in the placement of
one of the VMs that is being scheduled. To take advantage of
the symmetry between solutions, each possible movement is to
move each VM to the first available server in each rack. Thus,
the number of possible movements is reduced to the number of
VMs to schedule multiplied by the number of racks in a pod.
The reduction of movements is valid because the servers in the
same rack are equal in terms of delay. Furthermore, choosing
the first one available optimizes the second objective that is
the power consumption because a server will be activated
only if the previous ones were full. This assumes that servers
are sorted by energy efficiency in each rack. Thus, the first
available server will also be the most efficient one among all.

The number of iterations q to keep a movement in the tabu
list is the square root of the neighborhood size. In this case,
a second restriction was added to the tabu movements. Each
VM that is moved to a server is then kept in that server for
a number of iterations, that is half of the number of VMs to
schedule. Keeping a VM fixed in a new rack for a number of
iterations allows the other VMs to be moved to that rack, and
that solution with the whole application in a different rack
can be evaluated by the algorithm. When the solution does
not improve for MAX ITERATIONS the algorithm stops. That
value was set to the number of VMs to schedule multiplied
by the number of racks.

VI. CASE STUDY

The datacenter features and network topology chosen for
the tests are portrayed in Figure 4
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Fig. 4. Data center network topology.

The proposed scheduler is executed as multiple parallel
processes, each one handling a pod of 1,600 servers. The
experiments shown in this article use one scheduler managing
the first pod of the topology. The delay of each link was set
as the time to transmit one packet of 1,500 bytes at the line
capacity.

Each application to be scheduled is a multi-tier application
with a different number of VMs. Each application is composed
of 1 load balancer, 1 memcache, 2 databases, and a number of
web servers that changes depending on the workload size. That
is the same architecture as that of Figure 1. Each web server
VM uploads up to 100 Mbps of traffic to its load balancer.
The load balancer forwards the traffic of its web VMs to the
Internet. 50% of the traffic uploaded by the web server is
retrieved from the database, and the other 50% is retrieved
from memcache.

The number of web VMs of each application was drawn
from a Pareto distribution with parameters α = 1.6 and β = 1.
Generating 800 applications gave between 1 and 68 web VMs
per application.

The workload variation is based on the load of a whole day
in an Internet link of a data center in San Jose, California,
publicly available by the CAIDA initiative [27]. As shown in
Figure 3, that link has periods of high utilization (3.72 Gbps)
and low utilization (3.22 Gbps). The relative variation in each
period was used to multiply the number of web VMs of each
application each hour of the day.

Each server has 8 cores at a frequency of 2 Ghz and 64 GB
of RAM. Each core is shared by two virtual CPUs. Each VM
requires 4 virtual CPUs of 1 GHz and 16 GB RAM, the same
requirements as the extra large instances of Amazon EC2 [28].
With these settings, each server can host up to 4 VMs.

We considered two server models with the same specifi-
cations but different power consumption. One server model
is energy-efficient and consumes 10 W in suspended state,
110 W in idle state, and an average of 210 W when it hosts
4 VMs. The other server model is less efficient and consumes
20 W in suspended state, 150 W in idle state, and an average
of 350 W when it hosts 4 VMs [29], [30], [31]. That average
power consumption can be seen in Figure 5 as a function of
the number of VMs in a server.
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Fig. 5. Server power consumption.

TABLE I
CLOPTIMUS SCHEDULER VS FIRST-FIT AFTER ADDING 800

APPLICATIONS.

Solution: CS FF

Avg. delay 11.3 µs 19.2 µs
Avg. link utilization 13.1% 23.0%
Avg. inter-switch link util. 10.5% 11.9%
Max. inter-switch link util. 32.2% 36.7%
Number of VMs 5,027 5,027
Number of servers 1,258 1,257
Total power 267.5 kW 267.4 kW

Each rack has either all energy-efficient servers, or all
energy-inefficient servers. One of the cases tested had all
racks with energy-efficient servers. Another case had energy-
inefficient servers in racks numbered with odd numbers, and
energy-efficient servers in racks numbered with even numbers.

VII. RESULTS

This section analyzes the proposed Cloptimus Scheduler
(CS) for the case study, and compares CS with First Fit (FF)
policy. We first analyze an initial period when the applications
are deployed, and then the whole day with a varying workload.

A. Initial period

We first added 800 applications with a total of 5,027 VMs
corresponding to the workload between 5 PM and 6 PM to a
pod of 1,600 servers. For each application, CS uses the Tabu
Search algorithm to place its VMs. In another experience with
the same applications and VMs, the policy to place each VM
was FF, that is to choose for each VM the first server with
enough capacity.

Table I shows the results obtained by the two policies. The
average transmission delay was 70% higher in FF than in CS,
and the average link utilization was 9.9% higher in FF than
CS. That is because CS has the minimization of delay as first
priority, and FF does not take traffic into account to place
VMs. When an application with multiple VMs is deployed,
FF picks the first the server for the first VM. If that server has
not enough space for the second VM, then it will be placed in
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a second server. The traffic between these VMs will use the
links between the servers and the rack switch. On the other
hand, CS will pick a server with enough space for two VMs,
and the traffic between both VMs will be kept within the server
and will not use any link.

Considering the links that connect rack and pod switches,
the average link utilization was 1.4% higher in FF than CS.
That improvement is because CS minimizes delay by placing
the VMs of each application in a single rack, and reduces
the use of inter-rack links. Because FF places the VMs of an
application in consecutive servers, they will often be placed
in the same rack. However, when a rack is almost full, an
application will be split and the links between rack and pod
switches will be used. As we will see, the difference between
CS and FF is larger when applications are resized over the
day.

With respect to power consumption, both mechanisms are
power-efficient because they tend to fill an active server with
VMs before turning on an inactive server. In some cases, CS
will temporally consume more power because it will prefer to
turn on a server to place VMs of the same application in the
same rack. However, the VMs of the next applications will
use the server that had been kept partially occupied, and the
total number of servers used is almost the same.

CS minimizes power consumption by taking into account
the consumption of each type of server. In the case shown,
all the racks have servers with the same type of energy con-
sumption. When racks of energy-efficient servers and energy-
inefficient servers are alternated, CS consumes 332 kW and
FF, 357 kW, an 8% advantage for CS.

B. Workload

Once the 800 applications are deployed, we consider a
workload that varies over the day. Each application is resized
each hour according to the maximal workload expected for that
hour. New VMs are deployed when the workload increases in
size, and VMs are removed in periods where the workload
decreases. Figure 6 shows the number of VMs used to match
the workload in each period and the power consumption
achieved by CC in a pod of 1,600 servers.

TABLE II
CLOPTIMUS SCHEDULER VS FIRST-FIT IN THE HIGHEST PERIOD (9 PM).

Solution: CS FF

Avg. delay 13.5 µs 19.9 µs
Avg. link utilization 20.7% 31.0%
Avg. inter-switch link util. 15.2% 27.3%
Max. inter-switch link util. 47.0% 80.0%
Number of VMs 5,490 5,490
Number of servers 1,385 1,373
Total power 291.8 kW 290.6 kW

First, we compare how much energy is saved by considering
the variation of workload instead of dimensioning for the peak
period. In this case, the peak period is at 9 PM when 291.8 kW
are consumed by the VMs placed by CS in a pod, or 23.3 MW
if the pod power consumption is extrapolated to the whole data
center. If the servers used in that peak period consume that
power during a year, 204.4 millions kWh would be consumed.
Multiplying by an electricity price of $0.16 / kWh [32] gives
a total of $32.7 millions for the electricity employed by the
data center during a year. Using CS to resize applications
during the day and suspending unused servers saves 4.9%
of energy consumption, that becomes $1.6 millions per year.
These savings are from the cloud provider point of view. Users
that deploy applications would achieve higher savings in the
cost paid to the provider to host VMs. Applications whose
workload have more variability during the day benefit the
most.

CS is then compared to the FF policy at the time of resizing
applications each hour of the day. Table II presents results
of both policies in the peak period. The first remark that
can be highlighted is that FF produces 47% more delay than
CS. That also implies that the links are 10.3% more used,
thus increasing delay and degrading the Quality of Service
(QoS). In particular, links that connect rack switches with pod
switches reach up to 80% utilization in FF. That is because
32 racks are used and 8 racks remain free after placing the
applications in the initial period. VMs added in high activity
periods are then placed in the last racks. The traffic of the
new VMs is directed to the load balancers placed in the first
racks using the links between rack and pod switches. On
the other hand, CS uses 40 racks from the starting period
leaving available space in each rack for VMs that arrive in
high periods. Then, CS places each new VM in the rack that
hosts the corresponding application and thus reduces the link
utilization between racks and improves the QoS. The cost to
pay is that 12 more servers are used in the pod of 16,000
servers, and power consumption increases 0.4% compared to
FF in the case where all servers are equally energy-efficient.
The energy consumed in the whole day is 0.3% higher in CS
than FF because a few more servers were used to improve the
QoS.
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Fig. 8. Average scheduler execution time over the network size.

C. Execution time

The execution time of CS was evaluated for different ap-
plication sizes and number of servers. To vary the application
size, an empty pod with 1,600 servers was gradually filled
with applications with between 6 and 40 VMs each. For each
application, the time to schedule the application was recorded.
With that information, the average execution time for each
application size was calculated as seen in Figure 7.

To analyze the variation of scheduling time as a function of
the network size, the number of VMs in each application was
set as 20 and we varied the number of racks, with 40 servers
per rack. For each network size, applications are scheduled
until all the servers are full with VMs. The average scheduling
time was calculated for each test. Figure 8 shows that the
scheduling time of an application grows linearly as a function
of the number of racks or servers. In particular, scheduling an
application with 20 VMs in a pod of 1,600 servers take an
average of 283 ms.

Concerning the workload variation over the day, the sched-
uler must resize each application each hour of the day. That
implies choosing the servers to place new VMs in the periods
when an application expands. The fact that only the new VMs
are deployed makes the operation very quick compared to
the operation of initial application deployment. Adding 800
applications with their 5,027 VMs in a pod of 1,600 servers
took 33 seconds in the initial period. Resizing those same
applications only took a total of half a second in each period.

VIII. DISCUSSION

The proposed method shows the importance of taking into
account the traffic among VMs to improve the QoS. An alter-
native to reduce delay and increase throughput among VMs is
to augment the link capacity between switches. However, that
approach has a high cost in number of switches and power
consumption not justifiable when not all applications require
high throughput among VMs. These topologies are indeed
useful for specific applications that do require an all to all
communication pattern such as Hadoop clusters. Experiences
in this article study communication delay, throughput, and
link utilization, metrics that vary depending on which server
host each VM. The server processing time was not included
because the processing power is a fixed requirement of each
VM type, e.g., in number of virtual CPUs in a specific
frequency. The number of VMs that will be assigned to an
application will determine the number of requests per unity of
time that each VM will handle and its processing time. How-
ever, the total response time is composed of the processing
time of each VM that participates, e.g., load balancer, web
server, database, memcache, and the communication delay.
The way these times are combined is difficult to predict
precisely because that will depend on how the application is
implemented. For instance, if a web VM makes requests to
multiple databases in parallel or in a sequential fashion. We
believe that the relation between communication delay and
total response time should be analyzed through measurements
in specific implementations. The fact that the transmission time
is expressed in microseconds should not mislead to think that
is negligible compared to a total response time in milliseconds
because each application request can require multiple internal
requests among VMs and because if congestion is not avoided
the queuing delay could increase. As this article shows, our
approach reduces communication delay and the total response
time as a result.

IX. CONCLUSION

This article presented an online/offline network-aware
method to place VMs in servers, optimizing communication
among VMs and power consumption. It also considered server
heterogeneity and VMs with different types of requirements.
Taking advantage of topology regularity made possible to
scale in the delay calculation and parallelization on multiple
clusters. The proposed scheduler, formalized through a MIP
model, also considers the elasticity of applications to improve
the QoS of VMs that arrive at peak periods. The developed
Tabu Search heuristic scaled to more than 100,000 servers
and applications with a resolution time in the miliseconds.
Applications can be added and removed on the fly, and the
number of VMs of an application can be changed to match
the workload that varies over the day. A case study shows
the advantages of the proposed approach. Compared to first-
fit policy, the delay among VMs is reduced by 70% and the
most used network link utilization is decreased 33%. We also
found that a 4.9% of power consumption is saved compared
to statically provisioning of resources for the peak period.
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