
Admission Control of API Requests in OpenStack
Tatsuma Matsuki, Noboru Iwamatsu

Software Laboratory, Fujitsu Laboratories Ltd,
4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, Japan.
{matsuki.tatsuma, n iwamatsu}@jp.fujitsu.com

Abstract—IaaS clouds have attracted much attention, and
OpenStack has become a de facto standard software for building
open-source IaaS clouds. However, the performance and scala-
bility of OpenStack services still have room for improvement.
This study focused on the admission control of API requests to
improve performance. We revealed the basic effect of admission
control by setting the concurrent connection limit of API requests
in OpenStack, and we confirmed that admission control could
improve the performance of OpenStack services by more than
50% in an overloaded situation. We also proposed a heuristic
algorithm that adaptively tuned the concurrent connection limit
by monitoring the statistics of the completed API requests
obtained from a proxy server. Our experimental evaluation
revealed that our algorithm helped avoid severe performance
degradation in OpenStack.

I. INTRODUCTION

Many applications and services have been delivered by
using Infrastructure as a Service (IaaS) clouds. From their
agility and scalability, IaaS clouds have greatly contributed to
continuously deploy applications and systems. These deploy-
ments are accelerated by opening the cloud service APIs [1],
[2]. Automated deployment tools, such as OpenStack Heat [3]
and Ansible [4], utilize these APIs to execute the deployments.
OpenStack Heat enables auto scaling of applications running
on virtual machines (VMs) on IaaS by repeatedly creating
and deleting VMs based on their workload. These operations
involve frequent API requests. In addition, the recent Platform
as a Service (PaaS) clouds, such as Cloud Foundry [5], are
often built on IaaS clouds to achieve scalability and flexible
management. A large-scale Cloud Foundry deployment is an
example that leads to build more than one hundred of VMs
on IaaS [6]. From these backgrounds, the performance (e.g.,
response times and throughput) is quite important for the
recent IaaS clouds.

OpenStack [7] is the most well-known open-source software
for building private and public IaaS clouds. It has the largest
population as an open-source cloud in terms of community
participants, developers and their activities [8]. Recent studies
also focused on clouds using OpenStack [9], [10], [11] and
some evaluated the performance of OpenStack [12], [13], [14].
However, research for improving the quality of service (QoS)
of the OpenStack services, such as creating and migrating
VMs, attaching volumes and virtual networks to VMs, is
not sufficient. The QoS of the OpenStack service must be
investigated to support large bulk API requests.

This paper focuses on admission control of the OpenStack
API requests to improve the QoS in OpenStack. Two reasons

motivate this work: 1) all OpenStack user requests originate
from the API requests and 2) we can apply an admission
controller on the proxy server without modifications in Open-
Stack codes. The latter is important because OpenStack is still
being actively developed and a large release of OpenStack
is continuously applied once every 6 months. We built a
prototype of the admission controller running with HAProxy
[15], which is often used as a load balancer in the OpenStack
high availability (HA) configuration [16].

Admission control is a well-known approach to control the
QoS of Web services and numerous existing studies have
focused on this approach [17], [18], [19], [20], [21]. However,
these existing studies are insufficient from two perspectives:
1) the effect and efficiency of admission control on the
performance of IaaS remain unclear, and 2) the admission
control that achieves high adaptability to IaaS workload is not
investigated. We then applied an admission control schema that
sets limits on the maximum concurrent connections (i.e., API
requests) in OpenStack services. We synthetically generated
workload on IaaS by using OpenStack Rally [22], which
can generate workload following various kinds of common
scenarios of OpenStack clients using APIs in OpenStack.

We also present an adaptive admission control algorithm
that takes the IaaS workload characteristics into consideration
and achieves high adaptability to various kinds of cloud
configurations. Unlike existing studies, our approach could be
applied without any reference performance, such as service
level agreement (SLA), and preliminary benchmarking. Our
main contributions made in this paper are:

1) We built OpenStack cloud environments with HA con-
figuration, executed the benchmark of a VM booting
scenario, and revealed the effect of admission control
on the performance of OpenStack services, which was
based on limiting the maximum concurrent connections.

2) We also proposed a heuristic admission control algo-
rithm in OpenStack, which automatically tunes the con-
current connection limit based on the statistics obtained
from the proxy server. We designed the algorithm to
achieve high adaptability to various kinds of cloud
environments and the characteristics of the workload
generated on IaaS, especially on OpenStack.

3) We implemented a prototype of the admission control
algorithm, which runs alongside the HAProxy. We con-
firmed that our algorithm achieves good performance
of OpenStack services via experimental evaluation with
two different types of cloud environments.

978-3-901882-89-0 @2017 IFIP 10

�������

���
��
��

������	

�����

�������

����

��������

�����

������
��������

���������
������
�������

���� ������!���
� �������

�	
�������������
� ���
�

���� �������

�	
���������	�
����
�

Fig. 1. OpenStack architecture and example of an OpenStack physical
configuration. OpenStack controller nodes and individual components are
configured to be redundant and scalable.

The rest of this paper is organized as follows. We introduce
OpenStack architecture in Section II and explain admission
control in OpenStack and its effect in Section III. Section
IV proposes an adaptive admission control algorithm and
Section V discusses its applicability. Section VI introduces
some related studies. Section VII concludes and describes
future works.

II. OPENSTACK ARCHITECTURE

OpenStack [7] is a set of open-source software to build
and orchestrate IaaS clouds. OpenStack consists of several key
components called projects. In this paper, we summarize some
of important projects and services provided by the projects.

• Nova provides VM management services such as VM
creation, deletion and migration. Some API requests
toward Nova service involve RPCs between the controller
and compute nodes. The compute nodes are responsible
for hosting VMs on the top of a hypervisor.

• Neutron provides a networking service, which enables
VMs to connect the virtual and external networks.

• Keystone provides authentication for OpenStack users
and services, endpoints discovery of OpenStack services.

• Glance is responsible for the management of VM images
used for creating VMs.

These services provided by individual projects are available
through REST APIs. These projects are loosely coupled and
communicate with each other via the REST APIs. OpenStack
users who want to build application on OpenStack also use
these APIs via OpenStack client software.

A. Configuration Example

Fig. 1 illustrates OpenStack architecture and an example of
physical configuration. OpenStack controller nodes in Fig. 1
host each OpenStack service described above. Each service
in the controller nodes utilizes stateful backend nodes, which
includes Network File System (NFS) cluster, MariaDB cluster
called Galera [23]. The controller nodes communicate with
OpenStack compute nodes via messaging service, which is

often implemented with RabbitMQ [24], to assign tasks on the
OpenStack compute nodes. The compute nodes are responsible
for running VMs on the top of hypervisor such as KVM.

The configuration shown in Fig. 1 is an example of HA
configuration in which all components are duplicated to make
OpenStack services scalable and tolerant to faults. HAProxy
[15] is used for load balancing of OpenStack controller nodes
at the top of Fig. 1. HAProxy distributes the incoming HTTP
requests to OpenStack controller nodes with a specified bal-
ancing discipline such as round robin and least connection.
When the HAProxy balances the load of HTTP requests, it
also routes the incoming request to each OpenStack service
based on the port number of individual HTTP requests.

B. API Workflow Example

API requests for OpenStack services lead to pre-defined
operations in OpenStack. We briefly introduce the example
operations caused by a boot server API request in Nova
service, which is used for creating and booting VMs. We focus
on this boot server API requests to evaluate admission control
in OpenStack, because it is the most basic service in IaaS.

When an OpenStack user wants to boot a VM, he/she issues
a HTTP POST request to Nova service. After the Nova service
accepts the request, the following operations are performed by
OpenStack: 1) checking whether the token on the request is
valid by using Keystone service, 2) accessing the database
to obtain information required for booting a new VM and
creating an entry for the new VM, 3) responding to this API
request, 4) selecting an appropriate compute host to boot a VM
by interacting with the database, 5) issuing a boot server task
to the appropriate compute node via the messaging service
and the compute node executes boot a VM, which includes
fetching information of VM image using Glance service. These
operation can be followed by some additional operations such
as the network connection by using Neutron service.

III. ADMISSION CONTROL IN OPENSTACK

All OpenStack services originate from the corresponding
API requests. Therefore, the API requests should be appropri-
ately controlled to prevent OpenStack from being overloaded
and severe performance degradation.

A. Concurrent Connection Limit

Admission control of HTTP requests in Web services has
been extensively investigated. Limiting the maximum concur-
rent connections (API requests) is a well-known approach to
avoid overloading in Web services. We focus on the limitation
of concurrent connections in the OpenStack services and
implement the limitation at HAProxy as illustrated in Fig. 2.
Fig. 2 depicts the HAProxy and backend OpenStack controller
nodes, in which the concurrent connections are limited within
ln for OpenStack controller node n. To implement the limit,
we use the maxconn parameter on HAProxy that can be set
for individual backend servers. The limitation is also set for
each OpenStack service such as Nova and Keystone. Each
service possesses different limitations. The total concurrent

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 11

��������	

��������������

��������	

������� ������

�
�
�

��������	

��������������

�������
��������

�������
��

��

��

�
�
�

����

�����

�������

�����

Fig. 2. Limiting concurrent connection on HAProxy

connection limit for a service is calculated as L =
∑

n ln.
When the number of concurrent connections exceeds the limit
L, newly incoming requests are queued on HAProxy to wait
for one of early arrival API requests to complete. By setting
the limitation, the admission of API requests can be controlled
when the large number of API requests arrives during a short
time or the early arriving requests suffer from the delay. Note
that we apply the limitation only to the requests issued by
external clients, which means that the requests issued among
OpenStack services are not regulated. In this study, the load
balancing among OpenStack controller nodes is conducted
with the least connection discipline.

In this work, we first investigated the effects of concurrent
connection limit by experimentally building two different
types of OpenStack IaaS cloud environments, which will be
explained in the following subsection.

B. Experimental Setup

1) OpenStack configuration: We experimentally built two
OpenStack cloud environments with two different sets of
physical servers. All servers in the first server set denoted
as Cloud-A have Intel Xeon E-2643 3.30GHz 4 core×2
processors, 96GB RAM, 180GB solid-state drive (SSD)×4
(RAID1+0) and 10Gbps network interface card (NIC). All
servers in the second server set denoted as Cloud-B have Intel
Xeon X5675 3.07GHz 6 core×2, 96GB RAM, 72GB hard-
disk drive (HDD)×2 (RAID1) and 10Gbps NIC. We installed
CentOS 7.2.1511 on all servers. The main difference between
these sets is the disk configuration. All servers in Cloud-A
have four SSDs, whereas those in Cloud-B have two HDDs.
Then, Cloud-A has higher performnace than Cloud-B. These
local disks called ephemeral disks are also used for VMs on
the compute nodes. These different types of clouds lead to
different performance in OpenStack, and they require different
degrees of appropriate concurrent connection limits.

We used 22 servers in total for each cloud. We built
three redundant OpenStack controller nodes with active–active
manner by using one HAProxy node. Three of the servers
were used for MariaDB and RabbitMQ cluster. We built the
MariaDB cluster with active–standby manner by using one
HAProxy node and RabbitMQ with active–active manner,
which were running with data mirroring. Each cloud had 12
OpenStack compute nodes, one Network node and one NFS
node. Notably, the hardware and software configuration of

OpenStack was completely the same between Cloud-A and
Cloud-B. We installed OpenStack Mitaka release on these
22×2 servers and used KVM as their hypervisor. The versions
of the installed software are: Nova 13.1.0, Neutron 8.1.2,
Keystone 9.0.2, Glance 12.0.0, HAProxy 1.5.14, MariaDB
10.1.12 and RabbitMQ 3.6.2.

2) Workload generation: To generate a synthetic workload
in OpenStack, we used Rally [22], a benchmarking software
for OpenStack services. Rally can generate workload with pre-
defined useful scenarios. We selected one of the most basic
scenarios that creates, boots and deletes VMs. This scenario
has two main parameters: the number of concurrency (denoted
as c) and the number of times to boot and delete VMs (denoted
as t). This scenario first issues c boot server API requests
followed by delete server API requests to Nova service, and a
new boot server request is issued once one of c delete server
API requests are completed. These operations are repeated
until t VMs are booted and deleted. These two parameters
c and t determine the degree and duration of the workload in
OpenStack, respectively.

We fixed the synthetic workload for each cloud environ-
ment. We set c = 200, t = 5000 for Cloud-A and c =
100, t = 2500 for Cloud-B. We determined these values from
preliminary experiments. Such values lead to performance
degradation and can eventually complete all API requests. All
booted VMs in our experiments have 1 virtual CPU, 2GB
RAM and 20GB disk. The workload generated in this paper is
stable. Although the workload in real IaaS clouds can fluctuate
at times and several different scenarios are mixed, investigating
with this stable workload is helpful to grasp the basic behavior
and influence of admission control in OpenStack. Analysis
based on real workload may be conducted in the future.

C. Effect of Admission Control in Cloud-A

We selected the statistics of the 95th percentile to evaluate
the performance. The percentile-based evaluation can capture
user-experienced performance, which is discussed in some
existing studies [18], [25]. Fig. 3 plots the 95th percentile
of the API response times of backend OpenStack controller
nodes, the waiting times in the queue on HAProxy and the total
response times for clients in Cloud-A. The sum of concurrent
connection limit in Nova service (denoted as L) is changing
in Fig. 3. We set the individual limits for the controller nodes
to be the same as much as possible. Fig. 3 also plots error
bars (vertical lines) that indicate the 95% confidence interval
from 10 trials for each limit. We obtained these results from
the http logs output by HAProxy. As shown in Fig. 3, the
backend response times increase as L becomes large because
the large number of concurrent connections causes resource
contentions among the API requests. Meanwhile, the waiting
times in the queue decrease as L becomes large because API
requests have more chances to be admitted. The total response
time is almost the same as their sum, and it takes a minimum
value when L is around 100. However, the influence of L
becomes small when L is larger than 40.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)12

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120 140 160

9
5
th

 p
er

ce
n
ti

le
 (

se
c)

concurrent connection limit

total response time
backend response time

waiting time

Fig. 3. Effect of the concurrent connection limit on API response times in
Cloud-A obtained from HAProxy

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140 160

to
ta

l
b
o
o
t

ti
m

e
o
f

a
V

M
 (

se
c)

concurrent connection limit

95th percentile
90th percentile
50th percentile

Fig. 4. Effect of the concurrent connection limit on the time to boot a VM
in Cloud-A obtained from Rally

We then introduce the results obtained from Rally. Fig. 4
plots the statistics of the total time to boot a VM, when L is
changing in Cloud-A. Fig. 4 indicates that the time to boot
a VM is dependent on L. We can confirm from this figure
that admission control in OpenStack can improve performance
of OpenStack by more than 50% in an overloaded situation.
When L is larger than 40, the effect is greatly large, which is
completely different from that in Fig. 3.

The root cause for the difference between Figs. 3 and 4 is
that some API requests in OpenStack result in asynchronous
operations, which is the operations that is executed after
responding to API requests. The boot server API requests
are responded when the commitment of the VM creation is
completed on the database as was explained in Subsection
II-B. The remaining operations such as booting the VM are
not included in the response times of API requests. This asyn-
chronous scheme brings about the followings observations.

1) The durations of asynchronous operations account for
a large portion of total boot times as the concurrent
connection limit increases. This is not measured by the
statistics of API response times.

2) OpenStack clients are required to execute periodical
polling operations to check if the VM becomes active,
which issues a large number of HTTP GET requests
in OpenStack, especially when the durations of asyn-
chronous operations are long. A long asynchronous
operation causes workload distribution changes.

We can confirm the first observation from Fig. 5a, in which
we breakdown the individual total boot time into four cate-

gories. We break them down by analyzing the timestamps of
debug log messages output in the OpenStack controller nodes.
All log messages involved by API requests have IDs called
request IDs which are unique for each API request. We linked
the associated log messages for each boot server API request
based on the request IDs and analyzed their timestamps. The
authentication in Fig. 5a is the time to authenticate the API
request using Keystone and the commitment is the time until
the writing of a VM entry in Nova database is finished. The
scheduling is the time until an appropriate compute node is
selected, and the boot is the remaining time spent in the
compute node. We calculated the 95th percentile value for
each category and stacked them in Fig. 5a. As shown in Fig.
5a, when L becomes large, a large portion of time is boot,
which is the asynchronous operation.

Figs. 5b and 5c confirm the second observation. Fig. 5b
shows the overall throughput of API requests for each HTTP
method obtained from a benchmarking. The number of HTTP
GET requests increases when L is large. The GET requests
have much smaller response times than the POST requests.
When the number of GET requests increases, the workload dis-
tribution characterized by statistics, such as the 95th percentile,
is influenced. To eliminate the effect of workload distribution
changes, we plot the API response times distinguishing the
POST requests from all requests in Fig. 5c. The waiting time
in Fig. 5c is almost similar to that in Fig. 3 because all
requests for Nova service share the same queue in HAProxy.
By contrast, the response times in Fig. 5c exhibit the different
rate of increase from that in Fig. 3. These results show that
the response times of POST requests, which more directly
affects on the time to boot VMs, increase as L increases. This
relationship is invisible when we monitor statistics such as the
95th percentile because of the large number of GET requests.

D. Effect of Admission Control in Cloud-B

We next show the results obtained from Cloud-B, which has
lower performance than Cloud-A because of low-performance
disk specification. Figs. 6–8 show the results we obtained from
Cloud-B. The 95th percentile of API response times shown in
Fig. 6 is getting better as L increases. This result is caused by
the workload distribution changes because of the large number
of GET requests. As shown in Fig. 6, the influence of GET
requests in Cloud-B are larger than that in Cloud-A. This is
affected by a long duration of asynchronous operation, which
is confirmed from Figs. 7a. As shown in Fig. 7a, the boot time
contributes greater portion of the total boot time compared
with that in Fig. 5a due to the low-performance disk in Cloud-
B. The commitment time in Fig. 7a is also affected by the low-
performance disk and suffers some delay compared with that
in Fig. 5a. We can confirm from Fig. 7b that the number of
GET requests accounts for a large portion of all API requests
in Cloud-B, which causes the behavior in Fig. 6. Fig. 7c plots
the statistics of API response times distinguishing the POST
requests, which exhibits a completely different behavior from
that in Fig. 6 because of the large number of GET requests.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 13

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

L=15 L=150

9
5
th

 p
er

ce
n
ti

le
 (

se
c)

authentication
commitment

scheduling
boot

(a) Breakdown of the boot time

 0

 10

 20

 30

 40

 50

 60

 70

15 30 45 60 75 90 105 120 135 150

A
P

I
th

ro
u
g
h
p
u
t

(/
se

c)

concurrent connection limit

GET
POST

DELETE

(b) API request throughput for each HTTP method

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160

9
5
th

 p
er

ce
n
ti

le
 (

se
c)

concurrent connection limit

total response time
backend response time

waiting time

(c) Statistics of POST requests

Fig. 5. Detailed effects of the concurrent connection limit in Cloud-A

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160

9
5
th

 p
er

ce
n
ti

le
 (

se
c)

concurrent connection limit

total response time
backend response time

waiting time

Fig. 6. Effect of the concurrent connection limit on API response times in
Cloud-B obtained from HAProxy

The POST API response times in Fig. 7c exhibit the same
tendency with the total boot times in Fig. 8. As shown
in Fig. 8, in Cloud-B, L should be low (around 20) to
avoid performance degradation. The performance degradation
is saturated when L is larger than 40. This is because the
low disk performance also leads to a large delay in the
asynchronous operations to boot VMs. The workload scenario
we used does not generate the newly boot server requests
unless the asynchronous operations of early arriving requests
are completed, which leads to a saturation of workload.

IV. ADAPTIVE ADMISSION CONTROL

We propose an adaptive admission control algorithm for
the concurrent connection limit in OpenStack. This algorithm
is motivated by the results obtained from Section III: 1) the
optimal concurrent connection limit is different depending
on the cloud environment, which means that the concurrent
connection limit should be adaptively determined based on the
cloud environments, and 2) simple statistics such as the 95th
percentile of API response times are not ideal to measure the
current performance of the OpenStack cloud. The workload
distribution changes depending on the concurrent connection
limit, which means that simple statistics is unsuitable for
guiding the appropriate concurrent connection limit.

A. Algorithm Design

We present an adaptive tuning algorithm for the concurrent
connection limit, which is described in Algorithm 1, to adap-

tively determine the appropriate concurrent connection limit.
The principle of our idea is to balance the waiting times in the
queue and the backend response times. This idea comes from
the trade-off relationship between these statistics as shown in
Fig. 3. Severe performance degradation is more likely to occur
when the balance of the waiting times and backend response
times is broken. We define the error of the balance as:

error =
Sw − Sr

Sw + Sr
(1)

where Sw and Sr indicate the statistics of the waiting time
in the queue on HAProxy and the backend response times,
respectively. Our algorithm adaptively tunes the concurrent
connection limit based on this error. This idea also presents
a benefit in that it does not require a reference value of API
response times. Therefore, our algorithm does not depend on
the absolute value of the API response times. It can adapt to
the cases shown in Fig. 6, in which the workload distribution
is changing depending on the concurrent connection limit.

We adapted the proportional control technique from classi-
cal control theory with a specified proportional gain Kp, which
determines how much the concurrent connection limit should
be increased or decreased. Algorithm 1 first obtains the waiting
time denoted as tw and the backend response time denoted as
tr from each completed API request. When the cumulative
number of completed API requests exceeds the pre-defined
value (denoted as N), the statistics of tw and tr (denoted as
Sw and Sr, respectively) are calculated. Our algorithm then
determines the error from Eq. (1) and updates the limit L as
L ⇐ L + δL when error ≥ 0 and L ⇐ max(L − δL, Lmin)
when error < 0, where

δL = b|error| ×Kpc − (b|error| ×Kpc mod u) (2)

We set Lmin, the minimum concurrent connection limit, to
prevent the limit from being set as 0 and u, the minimum
unit of increased or decreased limit, to prevent trivial tuning
of the limit. After the algorithm updates the limit, it sleeps
for min(Sw, Sr) × 2 time to wait for the effect of tuning on
the statistics of the completed API requests. After it sleeps,
tuning is repeated in the same manner. When L is updated,
individual limits (ln) for the controller nodes are updated so
as to be the same for all ln as much as possible.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)14

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

L=15 L=150

9
5
th

 p
er

ce
n
ti

le
 (

se
c)

authentication
commitment

scheduling
boot

(a) Breakdown of the boot time

 0

 10

 20

 30

 40

 50

 60

 70

15 30 45 60 75 90 105 120 135 150

A
P

I
th

ro
u
g
h
p
u
t

(/
se

c)

concurrent connection limit

GET
POST

DELETE

(b) API request throughput for each HTTP method

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160

9
5
th

 p
er

ce
n
ti

le
 (

se
c)

concurrent connection limit

total response time
backend response time

waiting time

(c) Statistics of POST requests

Fig. 7. Detailed effects of the concurrent connection limit in Cloud-B

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160

to
ta

l
b
o
o
t

ti
m

e
o
f

a
V

M
 (

se
c)

concurrent connection limit

95th percentile
90th percentile
50th percentile

Fig. 8. Effect of the concurrent connection limit on total boot time of VMs
in Cloud-B obtained from Rally

B. Evaluation

We built a prototype of the adaptive limit controller which
implements our algorithm (Algorithm 1) that runs on the
HAProxy server for OpenStack controller nodes. The con-
troller tails the http logs output by HAProxy and obtains
the statistics of each completed API request. The controller
adaptively updates the concurrent connection limit using the
UNIX socket commands [15]. We set the parameter of our
algorithm as Lmin = 15,Kp = Lmin, u = 5, N = 100 and
calculate the 95th percentile of tw and tr.

Figs. 9 and 10 show the behavior of our adaptive limit
controller in Cloud-A and Cloud-B. The upper graphs in these
figures indicate the number of the concurrent connections and
the requests in the queue, which are obtained from the show
stat socket command of HAProxy. The middle graphs in these
figures indicate the error calculated from Eq. 1, which is
calculated every 10 s (a time bin). The bottom graphs are the
95th percentile of the waiting times, backend response times,
and total response times for each time bin.

As shown in Fig. 9, our algorithm can automatically and
adaptively tune the limit by balancing the waiting times and
backend response times. The limit in Cloud-A converges at the
near-optimal value of around 60. In addition, our algorithm can
adapt to the Cloud-B environment, which requires a small limit
on the concurrent connections. Fig. 10 indicates that the limit
converges at around 20 in Cloud-B. The middle and bottom
graphs in Fig. 10 have more fluctuating behavior than that in

Algorithm 1 Adaptive tuning of concurrent connection limit
1: Minimum concurrent connection limit: Lmin
2: Current concurrent connection limit: L⇐ Lmin
3: # of API requests that is calculated the statistics: N
4: Counter for new API requests: count
5: Set of backend response times: T r

6: Set of queueing delay: Tw

7: Proportional gain for the adaptive tuning: Kp

8: while true do
9: T r ⇐ φ,Tw ⇐ φ, count⇐ 0

10: while count < N do
11: if a newly completed API request exists then
12: add tr in T r and add tw in Tw

13: count ++
14: else
15: sleep 1 second
16: end if
17: end while
18: Sr ⇐ calcstats(T r), Sw ⇐ calcstats(Tw)
19: error⇐ (Sw − Sr)/(Sw + Sr)
20: update L based on error, Kp, and Lmin
21: sleep (min(Sr, Sw)× 2) seconds
22: end while

Fig. 9, because the arriving rate of API requests is small and
a low number of requests exists in each time bin.

We next evaluated the overall performance of our adaptive
limit controller as shown in Figs. 11a and 11b, in which we
picked up some representative results from the cases that L is
static (L = 45, 150 for Cloud-A and L = 15, 150 for Cloud-
B) to compare the performance. These figures confirmed that
our algorithm can avoid severe performance degradation in
total boot time of a VM, especially in Cloud-A. Although
the achieved performance is not optimal, severe performance
degradation is avoided.

Finally, we evaluated the impact of the proportional gain Kp

in Cloud-A. To show the effect of Kp more clearly, we selected
300 s from the beginning that the benchmarking started, and
this is the average value of 30 time bins (each time bin has
10 s). The selected period is the phase that the controller is

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 15

 0
 30
 60
 90

 120
 150
 180
 210
 240

co
n
n
ec

ti
o
n
 c

o
u
n
t

concurrent connection limit
queue length

-0.9
-0.6
-0.3

 0
 0.3
 0.6
 0.9

er
ro

r

error

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600 700 800 900 1000

9
5
th

 p
er

ce
n
ti

le
 (

se
c)

Elapsed time (sec)

total response time
backend response time

waiting time

Fig. 9. Behavior of our adaptive limit controller and its effect in Cloud-A

 0
 15
 30
 45
 60
 75
 90

 105
 120

co
n
n
ec

ti
o
n
 c

o
u
n
t

concurrent connection limit
queue length

-0.9
-0.6
-0.3

 0
 0.3
 0.6
 0.9

er
ro

r

error

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500

9
5
th

 p
er

ce
n
ti

le
 (

se
c)

Elapsed time (sec)

total response time
backend response time

waiting time

Fig. 10. Behavior of our adaptive limit controller and its effect in Cloud-B

actively tuning L and L is not converged yet as shown in Fig.
9. The error bars in Fig. 12 are the 95% confidence interval
calculated from 10 trials. As shown in Fig. 12, the average
absolute error calculated from Eq. 1 varies depending on Kp.
However, its effect on the total API response time and total
boot time is relatively small. As shown in Fig. 3, the place
that can balance the waiting time and backend response time
is less influenced by L settings. Although we should avoid
setting a large Kp, this parameter is not remarkably sensitive
for the performance of OpenStack.

V. DISCUSSION

We investigated the influence of admission control in Open-
Stack API requests. Based on the results, we proposed an
adaptive limit control algorithm, which achieved good per-
formance on two different cloud environments. This section

presents certain considerations that must be met to apply our
adaptive limit controller to real production OpenStack clouds.

Admission control in this study uses a queue in the proxy
server to delay the arriving requests when the system is
overloaded. However, the waiting times in the queue and
backend response times may become indefinitely long. When a
drastically overloaded or faulty situation occurs, some arriving
requests have to be dropped and the early overloaded message
is sent as a response. This step, a well-known approach in
production Web services, has been the focus of several existing
studies [17], [19], [21]. To drop some requests, we have to set
a timeout for the waiting time in the queue.

Asynchronous operations, such as the booting VMs, result
in much workload in OpenStack. However, admission control
based on the API response times does not directly address such
operations. To sufficiently address these operations, we have
to obtain the time to complete the asynchronous operations
and tune the limit based on that. An approach based on the
performance metrics such as CPU utilization on the compute
nodes also may work good for such operations. However,
the collection of these data takes much cost because a large
number of the controller and compute nodes are running on
production environments.

In some OpenStack clouds, setting a static limit works
well based on preliminary experiments. Our adaptive limit
controller has no guarantee that the best performance can be
achieved, but it can help avoid severe performance degrada-
tion. The applicability of our principle idea in Algorithm 1
that balances the waiting times and backend response times
must be more extensively investigated. However, the trade-
off relationship between the two performance indicators are
remained in all environments, and when a severe performance
degradation occurs, there should be a large gap between these
two indicators. The largest benefit of our adaptive controller is
its adaptability. As shown in Section IV-B, our controller can
achieve good performance in both OpenStack clouds, which
have completely different abilities to serve the OpenStack
service.

VI. RELATED WORK

Based on the fact that many industrial developers have
attracted much attention on OpenStack clouds, numerous
recent studies have targeted the OpenStack clouds. Some of
these studies focused on the performance of VMs running
on OpenStack [10], [12] [26], [27]. Sharf et al. [10] studied
network-aware VM scheduling in OpenStack. Karacali et al.
[12] and Callegati et al. [26] measured and evaluated network
performance with various of OpenStack network configu-
rations. Vilaplana et al. [27] proposed an SLA-aware load
balancing in Web-based application on cloud environments,
and this strategy was implemented on OpenStack.

The existing work focusing on the services provided by
OpenStack [9], [11], [13], [14] is more related to our present
study. Sharma et al. [9] presented HANSEL, a root cause
diagnostic system for faults in OpenStack. Fault diagnosis in
HANSEL is conducted by monitoring control messages such

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)16

 0

 20

 40

 60

 80

 100

45 150 adaptive

9
5
th

 p
er

ce
n
ti

le
 (

se
c)

concurrent connection limit

total API response time
total boot time of a VM

(a) Cloud-A

 0

 20

 40

 60

 80

 100

 120

15 150 adaptive

9
5
th

 p
er

ce
n
ti

le
 (

se
c)

concurrent connection limit

total API response time
total boot time of a VM

(b) Cloud-B

Fig. 11. Effect of our adaptive limit control

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

15 45 75 150
 0

 10

 20

 30

 40

 50

 60

er
ro

r

9
5
th

 p
er

ce
n
ti

le
 (

se
c)

proportional gain

average error
total API response time
total boot time of a VM

Fig. 12. Effects of the proportional gain in Cloud-A.

RPC calls and API requests in OpenStack. However, this work
focused on the faults caused by human operations rather than
its performance. Almasi et al. [13] evaluated the duration of
VM creation compared with the different OpenStack releases
by using CloudBench [28]. Paradowski et al. [14] evaluated
the performance of OpenStack services compared with that of
CloudStack [29]. OpenStack Rally [22] is a tool that is often
used for performance evaluation of OpenStack service. Rally
supports many kinds of benchmarking scenarios, including
VM boot and delete, authentication, network creation, and
volume attachment. These studies are limited to the evaluation
of OpenStack service performance.

Although QoS management in OpenStack lacks detailed
investigation, that in Web services has a long history supported
many existing work. In the present paper, we introduce several
studies focused on the admission control of Web services. El-
nikety et al. [20] presented an admission control method. They
estimated the capacity of Web sites by measuring the highest
load that achieves maximum throughput of HTTP requests,
and a newly arriving request is deferred in an admission queue
when the admitting request will exceed the capacity. However,
the capacity estimation is conducted offline, which leads to
less adaptability of system configuration changes. Kamra et
al. [17] and Liu et al. [21] investigated admission control for
overloaded Web sites. Their admission control uses a technique
from control theory with a reference response time combined
with the M/G/1–PS queuing model to determine the drop
probability of HTTP requests. Therefore, these studies require
a reference value for response times. Ashraf et al.’s approach
[19] utilizes extensively measured information, which includes
the number of rejected, deferred, and aborted sessions and
the number of overloaded servers to determine whether every
newly arriving user session will be admitted. Their approach
was evaluated with a discrete-event simulation. Welsh et
al. [18] presented an overload management technique with
the staged event-driven architecture model. They adaptively
controlled the token bucket rate for admission at each stage
based on the error between the 90th percentile of response
time and a reference value.

Performance of admission control in Web services is also
analyzed using the queueing model with a limited number

of concurrent connections [30], [31], [32]. Cao et al. [30]
modeled the performance of Web server using the M/G/1/K-
PS model, in which the limited number of HTTP requests can
be processed and the service discipline is processor sharing.
Khazaei et al. [31] models Web server with the M/G/m/m+r
model, which has a request buffer with size of r. By using
this model, they analyzed the important performance indicators
such as drop probability. However, these abovementioned
studies require the estimation the parameters such as service
demands of HTTP requests. Some studies have discussed
parameter estimation [33], [34], but such a step results in
complexity and computational cost that leads to decreased
adaptability.

VII. CONCLUSION & FUTURE WORK

In this study, we focused on the admission control of API
requests in OpenStack. We first investigated the basic effect
of admission control in OpenStack by setting the concurrent
connection limit. Our results confirmed that admission control
can improve the performance of OpenStack services by more
than 50% in an overloaded situation.

We also proposed a heuristic algorithm that adaptively
controls the concurrent connection limit by monitoring the API
response times from the backend OpenStack controller nodes
and the waiting times in the queue in HAProxy. From our
experimental evaluations, we found that our controller helped
avoid severe performance degradation in OpenStack.

However, some asynchronous operations in OpenStack may
cause difficulty in controlling the overloaded situation in
OpenStack services. In addition, the synthetic workload gen-
erated in this paper is relatively stable and more realistic
workload should be applied to our controller to confirm its
efficiency. Lack of trace studies of real IaaS workload makes it
difficult to conduct experiments with more realistic workload.
Existing trace studies focus only on the workload generated by
applications running on IaaS [35] and these help the studies
about VM consolidation and placement in IaaS. In the future
work, the workload traces of OpenStack services have to be
investigated and conduct experiments, which are not stable
and contain the workload of not only Nova but also the other
OpenStack services.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 17

REFERENCES

[1] (2016, November) Amazon elastic compute cloud api refer-
ence. [Online]. Available: http://docs.aws.amazon.com/AWSEC2/latest/
APIReference/ec2-api.pdf

[2] (2016, November) Openstack api documentation. [Online]. Available:
http://developer.openstack.org/api-guide/quick-start/index.html

[3] (2016, November) Openstack heat. [Online]. Available: https://wiki.
openstack.org/wiki/Heat

[4] (2016, November) Ansible. [Online]. Available: https://www.ansible.
com/

[5] (2016, November) Cloud foundry. [Online]. Available: https://www.
cloudfoundry.org/

[6] (2016, November) Optimizing openstack for large scale cloud
foundry deployments. [Online]. Available: https://www.openstack.org/
summit/openstack-summit-atlanta-2014/session-videos/presentation/
optimizing-openstack-for-large-scale-cloud-foundry-deployments

[7] (2016, November) Openstack. [Online]. Available: https://www.
openstack.org/

[8] D. Freet, R. Agrawal, J. J. Walker, and Y. Badr, “Open source cloud
management platforms and hypervisor technologies: A review and
comparison,” in Proceedings of IEEE SoutheastCon 2016, March 2016,
pp. 1–8.

[9] D. Sharma, R. Poddar, K. Mahajan, M. Dhawan, and V. Mann, “Hansel:
Diagnosing faults in openstack,” in Proceedings of the 11th International
Conference on emerging Networking EXperiments and Technologies
(CoNEXT), December 2015.

[10] M. Scharf, M. Stein, T. Voith, and V. Hilt, “Network-aware instance
scheduling in openstack,” in Proceedings of the 24th International Con-
ference on Computer Communication and Networks (ICCCN), August
2015, pp. 1–6.

[11] Y. Xiang, H. Li, S. Wang, C. P. Chen, and W. Xu, “Debugging openstack
problems using a state graph approach,” in Proceedings of the 7th ACM
SIGOPS Asia-Pacific Workshop on Systems (APSys), 2016, pp. 13:1–
13:8.

[12] B. Karacali and J. M. Tracey, “Experiences evaluating openstack net-
work data plane performance and scalability,” in Proceedings of the 15th
IEEE/IFIP Network Operations and Management Symposium (NOMS),
April 2016, pp. 901–906.

[13] G. Almsi, J. G. Castaos, H. Franke, and M. A. L. Silva, “Toward building
highly available and scalable openstack clouds,” vol. 60, no. 2-3, pp.
5:1–5:10, March 2016.

[14] A. Paradowski, L. Liu, and B. Yuan, “Benchmarking the performance
of openstack and cloudstack,” in Proceedings of the 17th IEEE Inter-
national Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), June 2014, pp. 405–412.

[15] (2016, November) Haproxy documentation. [Online]. Available:
http://cbonte.github.io/haproxy-dconv/

[16] (2016, November) Introduction to openstack high availability. [Online].
Available: http://docs.openstack.org/ha-guide/intro-ha.html

[17] A. Kamra, V. Misra, and E. M. Nahum, “Yaksha: a self-tuning controller
for managing the performance of 3-tiered web sites,” in Proceedings of
the 12th IEEE International Workshop on Quality of Service (IWQOS),
June 2004, pp. 47–56.

[18] M. Welsh and D. Culler, “Adaptive overload control for busy internet
servers,” in Proceedings of the 4th Conference on USENIX Symposium
on Internet Technologies and Systems (USITS), March 2003, pp. 43–57.

[19] A. Ashraf, B. Byholm, and I. Porres, “A session-based adaptive admis-
sion control approach for virtualized application servers,” in Proceedings
of the 5th Internation Conference on Utility and Cloud Computing
(UCC), November 2012, pp. 65–72.

[20] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel, “A method for
transparent admission control and request scheduling in e-commerce
web sites,” in Proceedings of the 13th International Conference on World
Wide Web (WWW), 2004, pp. 276–286.

[21] X. Liu, J. Heo, L. Sha, and X. Zhu, “Adaptive control of multi-tiered
web applications using queueing predictor,” in Proceedings of the 10th
IEEE/IFIP Network Operations and Management Symposium (NOMS),
April 2006, pp. 106–114.

[22] (2016, November) Openstack rally. [Online]. Available: https://wiki.
openstack.org/wiki/Rally

[23] (2016, November) Mariadb galera cluster. [Online]. Available:
https://mariadb.com/kb/en/mariadb/galera-cluster/

[24] (2016, November) Rabbitmq. [Online]. Available: https://www.rabbitmq.
com/

[25] P. Lama and X. Zhou, “Autonomic provisioning with self-adaptive neural
fuzzy control for percentile-based delay guarantee,” ACM Transactions
on Autonomous and Adaptive Systems (TAAS), vol. 8, no. 2, pp. 9:1–
9:31, July 2013.

[26] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Performance of
network virtualization in cloud computing infrastructures: The openstack
case,” in Proceedings of the 3rd International Conference on Cloud
Networking (CloudNet), October 2014, pp. 132–137.

[27] J. Vilaplana, F. Solsona, J. Mateo, and I. Teixido, “Sla-aware load bal-
ancing in a web-based cloud system over openstack,” in Proceedings of
the International Conference on Service-Oriented Computing (ICSOC).
Springer, December 2013, pp. 281–293.

[28] M. Silva, M. R. Hines, D. Gallo, Q. Liu, K. D. Ryu, and D. d. Silva,
“Cloudbench: Experiment automation for cloud environments,” in Pro-
ceedings of 2013 IEEE International Conference on Cloud Engineering
(IC2E), March 2013, pp. 302–311.

[29] (2016, November) Apache cloudstack. [Online]. Available: https:
//cloudstack.apache.org/

[30] J. Cao, M. Andersson, C. Nyberg, and M. Kihl, “Web server performance
modeling using an m/g/1/k*ps queue,” in Proceedings of the 10th
International Conference on Telecommunications (ICT), vol. 2, February
2003, pp. 1501–1506.

[31] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of
cloud computing centers using m/g/m/m+r queuing systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 5, pp.
936–943, May 2012.

[32] V. Gupta and M. Harchol-Balter, “Self-adaptive admission control poli-
cies for resource-sharing systems,” in Proceedings of the 11th Inter-
national Joint Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), 2009, pp. 311–322.

[33] J. F. Prez, G. Casale, and S. Pacheco-Sanchez, “Estimating computa-
tional requirements in multi-threaded applications,” IEEE Transactions
on Software Engineering, vol. 41, no. 3, pp. 264–278, March 2015.

[34] S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson, “Estimating
service resource consumption from response time measurements,” in
Proceedings of the Fourth International ICST Conference on Perfor-
mance Evaluation Methodologies and Tools (VALUETOOLS), October
2009, pp. 48:1–48:10.

[35] A. Beloglazov and R. Buyya, “Openstack neat: a framework for dynamic
and evergy-efficient consolidation of virtual machines in openstack
clouds,” Concurrency and Computation Practice & Experience, vol. 27,
no. 5, pp. 1310–1333, April 2015.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)18

