
Latency-Sensitive Data Allocation for Cloud Storage
Song Yang1, Philipp Wieder1, Muzzamil Aziz1, Ramin Yahyapour1, 2 and Xiaoming Fu2

1Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), Göttingen, Germany
2Institute of Computer Science, Göttingen University, Germany

{Song.Yang, Philipp.Wieder, Muzzamil.Aziz, Ramin.Yahyapour}@gwdg.de, Fu@cs.uni-goettingen.de

Abstract—Customers often suffer from the variability of
data access time in cloud storage service, caused by network
congestion, load dynamics, etc. One solution to guarantee a
reliable latency-sensitive service is to issue requests with multiple
download/upload sessions, accessing the required data (replicas)
stored in one or more servers. In order to minimize storage costs,
how to optimally allocate data in a minimum number of servers
without violating latency guarantees remains to be a crucial
issue for the cloud provider to tackle. In this paper, we study
the latency-sensitive data allocation problem for cloud storage.
We model the data access time as a given distribution whose
Cumulative Density Function (CDF) is known, and prove that this
problem is NP-hard. To solve it, we propose both exact Integer
Nonlinear Program (INLP) and Tabu Search-based heuristic. The
proposed algorithms are evaluated in terms of the number of used
servers, storage utilization and throughput utilization.

I. INTRODUCTION

Cloud storage (e.g., Amazon S3, Windows Azure, Google
Cloud Storage) is emerging as a business solution for remote
data storage due to its features in ubiquitous network access,
low maintenance, elasticity and scalability. The current cloud
storage systems have successfully provided data storing and
accessing services to both enterprises and individual users.
For example, Netflix, one of the most popular Internet video-
streaming providers, has put all its content on Amazon S3
storage [1]. Another example is the cloud storage tool such
as Dropbox or Google drive, which can enable individuals to
store their data on the cloud and access it anywhere over the
Internet. It is reported that the registered users in dropbox have
raised to 400 million by 2015, with daily 1.2 billion uploaded
files [2]. It can be expected that more and more enterprises
and individuals will transfer their data workloads to the cloud
in the future due to the increasing capital expenditures for
maintaining private infrastructures.

In current cloud storage systems, the data access time or
latency is usually uncertain [3] because of network congestion,
load dynamics, disk I/O interference, maintenance activity,
etc. [4], [5]. For example, for a 32 Mb data file in Amazon
S3, we measure the data GET (download) and data PUT
(upload) latencies among 1000 requests. Fig. 1 shows that the
data access time is random and dynamic for both GET and
PUT operations. As a result, the uncertainty of data access
time deteriorates the Quality of Service (QoS) to customers
and affects the end user’s experience, which may reduce
the number of customers and hence the profit of the cloud
providers [6]. Therefore, how to guarantee reliable latency-

sensitive service remains to be a crucial issue for the cloud
provider to tackle.

0 200 400 600 800 1000
Data Request Sequence

6

8

10

12

G
ET

 L
at

en
cy

 (s
ec

.)

(a) GET Latency

0 200 400 600 800 1000
Data Request Sequence

4

6

8

10

PU
T

La
te

nc
y

(s
ec

.)

(b) PUT Latency

Fig. 1: Latency for 32 Mb data file among 1000 requests in
Amazon S3: (a) GET latency (b) PUT latency.

According to [5], [7], to deal with the latency uncertainty
so as to guarantee a reliable latency-sensitive storage service,
one way is to concurrently issue each request with multiple
sessions, and use the earliest response from those sessions.
The redundant sessions can be accommodated by one or
more replicas on different servers, which mainly depends on
server’s I/O rate as we will explain later. For example, we
conduct experiments on Amazon S3 to concurrently use three
replicas of a 32 Mb data file to issue 1000 sequential requests.
Fig. 2 shows that this approach can efficiently decrease latency,
compared to the approach via no replica provisioning (single
issuing) as shown in Fig. 1, although at the cost of increased
network resource (e.g., bandwidth).

5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

GET Latency (second)

CD
F

Redundant Issuing
Single Issuing

(a) CDF of GET Latency

2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

PUT Latency (second)

CD
F

Redundant Issuing
Single Issuing

(b) CDF of PUT Latency

Fig. 2: Cumulative Density Function (CDF) of accessing 32
Mb data file in Amazon S3 with 3 replicas (redundant) issuing
and no replicas (single) issuing.

Another approach is to increase throughput by increasing

978-3-901882-89-0 @2017 IFIP 1

the I/O rate so as to reduce latency. For example, different
on-demand I/O [8] parameters can be selected by customers
in Google Cloud Storage service. Accordingly, a higher I/O
rate provisioning may decrease latency but also charges higher
since it consumes more computing resources. On the other
hand, we should also guarantee that all the demands’ volume
on one certain server should not exceed its maximum working
load, otherwise the overloaded server will become a bottleneck
and thereby rendering response time significantly higher. For
example, in [9], for 32 Mb block size in a VM on Windows
Azure, it is measured that the total response time over 1000
requests is more than 10 seconds at 50 reads/sec and 20
write/sec in write requests, compared to 20 reads/sec and 10
writes/sec, respectively.

Similar to [10], [11], we formulate the uncertain GET/PUT
latency for each storage server as a given distribution based
on its historical data. In this paper, we use data access to
refer to data GET or PUT operation, and make no difference
between latency, data access time and response time. We focus
on how to allocate data file(s) on minimized number of servers
to concurrently issue the data requests, such that for each
request, the probability of accessing a data file within its
requested response time is no less than a specified value. Our
key contributions are as follows:

• We present a latency-sensitive cloud storage service
model (Section II).

• We propose the Latency-Sensitive Data Allocation
(LSDA) problem, and analyze its complexity (Sec-
tion III).

• We propose both exact and heuristic solutions to solve
the LSDA problem (Section IV).

• We evaluate the proposed algorithms in terms of perfor-
mance via simulations (Section V).

II. LATENCY-SENSITIVE CLOUD STORAGE SERVICE
MODEL

We assume that a data chunk is the basic data storing unit,
whose size is represented by b and hence, it cannot be further
partitioned. In this context, the size of any data file d can
be represented by b · |d|, where |d| represents the number of
chunks that constitute it. For simplicity, we assume that one
whole/entire data file can only be placed in one server, i.e.,
it cannot be separated and stored on separate servers. The
notations used in this paper are summarized in Table I.

We consider a heterogeneous cloud storage system con-
sisting of a set of |S| servers S. For a particular server
s ∈ S in the cloud storage system, L(s) denotes its maximum
affordable I/O rates or maximum working/server load without
degrading the performance and C(s) represents its storage
limit. Suppose there are g possible data access I/O rates,
a1, a2, . . . , ag . We assume that the data access (GET or
PUT) time follows a given distribution [10], [11]. Therefore,
its Cumulative Density Function (CDF) f b

s (x)
1 represents the

1It is worthy to mention that fb
s (x) does not mean the failure probability

and we also do not consider the server failure probability in this paper.

TABLE I: Notations.

Notation Description
s, S The set of |S| storage servers and one server s ∈ S
L(s) Maximum working load of server s
C(s) Storage limit of server s

fb
s (x)

The probability that one data chunk b can be retrieved
within time x on server s

R(d, T, δ,α)

The set of data requests R. For each r(d, T, δ,α) ∈ R,
T indicates the requested data access time for data file
d with size |d|, δ implies the requested probability of
retrieving d within time T , and α represents requested
I/O rate

Ns The number of established sessions on server s

γ
The parameter used for determining the next loaded
server to empty in TSDA

M Maximum times to call Intensification function in TSDA

µ
The parameter used for controlling TSDA whether to
call Diversification function or find next loaded server

probability that one data chunk can be retrieved at most x time
units. Under the server’s maximum working load, the CDF
is dependent on server load in some sense, but it does not
change much, e.g., when the server load increases, the latency
may be a bit higher. To deal with this issue, we only adopt
the “conservative” CDF for when the server’s working load is
close to its maximum working load, i.e., the “upper bound”
of latency distribution function. By doing this, (1) the latency
constraint can be maximally guaranteed, although this comes
at the expenses of a bit higher server usage than optimum.
(2) The problem complexity is largely reduced, otherwise we
need latency probability functions corresponding to different
degrees of server loads. We use the term “session” to represent
one GET/PUT thread or process to serve a data request from
a data file located/placed in one server to the user’s end. In
this context, multiple sessions can be established to issue one
or more data requests on one server (say s), but the total
consumed I/O rates should not exceed L(s).

Without loss of generality, for a data request r(d, T, δ,α),
T indicates the requested data access time for data file d
with size |d|, δ implies the requested probability of retrieving
d within time T , and α represents the requested I/O rate.
Suppose r has been issued by k servers (replicas), where
Ns sessions are established on server s. Let us use fd

s (x) to
denote the probability of accessing d within time x on server
s. Consequently, the total probability of accessing d within T
is:

1−
k∏

s=1

(
(1− fd

s (T))
Ns

)
(1)

where (1 − fd
s (T))

Ns denotes the unsuccessful probability
of accessing D within time T on server s for Ns sessions,
and

∏k
s=1

(
(1− fd

s (T))
Ns

)
is the unsuccessful probability of

accessing D within time T on k servers for all their respective
sessions. As a result, 1−

∏k
s=1

(
(1− fd

s (T))
Ns

)
indicates the

probability of at least one session on one server can access D
within time T .

Let’s take an example to better illustrate it, where we do not
differentiate GET and PUT for simplicity. Given two servers

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)2

A and B, and their Probability Density Function (PDF) of
accessing a data file d (|d| = 20 Gb) within time x (in ms)
follow:

fd
A(x) =

⎧
⎨

⎩

0.9 : x ≤ 10
0.05 : 10 < x ≤ 15,
0.05 : x > 15

fd
B(x) =

⎧
⎨

⎩

0.75 : x ≤ 6
0.2 : 6 < x ≤ 10
0.05 : x > 10

Server A
 Available Storage: 100 Gb
Available Server Load: 60 Mb

Data request r (d, 10, 0.995, 50)

Server B
 Available Storage: 120 Gb
Available Server Load: 70 Mb

Establish session 1
to issue r with probability 0.9
of accessing d within 10 ms

data
d

data
d

Total issuing probability
1-(1-0.9)*(1-0.95)=0.9975

Establish session 2
to issue r with probability 0.95
of accessing d within 10 ms

Fig. 3: Placing data on two servers using one session on each
server to satisfy accessing data latency probability.

Server A
 Available Storage: 100 Gb

Available Server Load: 180 Mb

Data request r (d, 10, 0.995, 50)

data
d

session 1 session 3 session 2

Total issuing probability:
1-(1-0.9)3=0.999

(a) Establishing 3 sessions on A

Server B
 Available Storage: 120 Gb

Available Server Load: 180 Mb

Data request r (d, 10, 0.995, 50)

data
d

session 1 session 2

Total issuing probability:
1-(1-0.95)2=0.9975

(b) Establishing 2 sessions on B

Fig. 4: Placing data on single server using multiple sessions
to satisfy accessing data latency probability.

We first assume server A has storage 100 Gb and available
server load 60 Mb/s, and server B has storage 120 Gb and
available server load 70 Mb/s. Suppose there arrives a request
r to access data file d under I/O rate α = 50 Mb/s with T = 10
ms, and δ = 0.995. According to their PDFs, placing d on
server A alone can guarantee a probability 0.9 with latency
no less than 10 ms, and placing d on server B solely can
promise probability 0.95 with latency at most 10 ms. Since
only one session can be established on each of servers (either
60 < 2 · 50 = 100 or 70 < 2 · 50 = 100), placing D on either
server A or B cannot satisfy the requested δ. On the other
hand, as Fig. 3 shows that simultaneously placing d on both A
and B leads to a probability of 1−(1−0.9)·(1−0.95) = 0.995
with latency at most 10 ms, which can meet the requested
probability.

Next, let’s consider the scenario when each server can
simultaneously support multiple sessions for data access. Since

CDF f b
s (x) is calculated based on server s’ historical latency

performance, it already includes the scenario when multiple
sessions may access the shared resources such as buffers on the
same server. Therefore each session on server A can statically
guarantee a probability of accessing data file within time 10
at least 0.9. In this sense, Eq. (1) still holds for multiple
sessions to be established on the same server. For example,
we assume that both server A and B have available server
load 180 Mb/s. In this sense, to satisfy the requested latency
probability, we do not need to place d on two servers. Instead,
we can issue the request with only one copy stored in any
server but more sessions are needed. For instance, on server A,
three sessions are needed to simultaneously to accommodate
the request (shown in Fig. 4(a)), since the probabilities of using
two sessions and three sessions are 1− (1− 0.9)2 = 0.99 < δ
and 1 − (1 − 0.9)3 > δ, respectively. On the other hand, on
server B, two sessions are needed (shown in Fig. 4(b)) since
1−(1−0.95)2 = 0.9975 > δ. From the above example we see
that in order to satisfy the latency probability constraint, more
sessions are sometimes needed to establish from different data
copies/locations (Fig. 3) or the same data location (Fig. 4).
Clearly, the latter case can save more storage space.

III. PROBLEM DEFINITION AND ANALYSIS

A. Latency-Sensitive Data Allocation
Formally, the Latency-Sensitive Data Allocation (LSDA)

problem can be defined as follows:

Definition 1: Assume a cloud storage system consisting
of a set of |S| servers S. For a server s ∈ S, L(s) denotes
its maximum affordable working load or I/O rates without
degrading the performance, and C(s) represents its storage
limit. Given a set of R data requests R, for a request
r(d, T, δ,α) ∈ R, T indicates the requested data access time
for data file d with size |d|, δ implies the requested probability
of retrieving d within time T , and α represents the requested
I/O rate. The Latency-Sensitive Data Allocation (LSDA)
problem for cloud storage is to place all the requested data
d ∈ ∆ in minimized number of servers without violating each
server’s storage and maximum working load, such that for
each request r(d, T, δ,α), the probability of accessing data d
within time T is at least δ.

In the LSDA problem, we mention that if a data file dm for
one request r1 is placed on a server s, when another request
r2 which stills requests dm is issued by the server s, there is
no need to place dm on server s again. In this sense, issuing
r1 and r2 by server s only consumes one time of storage |dm|
but consumes the sum of their requested I/O rates. Moreover,
for a certain data GET/PUT request, perhaps more than one
redundant sessions are established to issue it, the client will
use the first finished response from those redundant sessions
and then drop the other sessions. This will of course consume
more network resource such as bandwidth, but the specified
probability of accessing data within requested latency can be
guaranteed.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 3

Theorem 1: The LSDA problem is NP-hard.
Proof: Let’s first introduce the Bin-Packing problem:

Given n items with sizes e1, e2, . . . , en, and a set of m bins
with capacity c1, c2, . . . , cm, the Bin-Packing problem is to
pack all the items into minimized number of bins without
violating the bin capacity size. The Bin-Packing problem is
proved NP-hard [12].

Assume for each request r(d, T, δ,α) ∈ R, placing d on any
single server (say s) is enough to guarantee that fd

s (T) ≥ δ.
We also assume that each server has enough storage capacity
but each server has limited I/O rate. That is to say, the data
access latency constraint and server’s storage constraint are not
considered. Now, if we map/regard the item with its size in
the bin packing problem to the request with its requested I/O
rate in the LSDA problem, respectively, the LSDA problem is
equivalent to the bin-packing problem and hence is NP-hard.

IV. EXACT AND HEURISTIC ALGORITHMS

A. Exact Solution

In this subsection, we propose an exact solution to solve
the LSDA problem. We start by some necessary notations and
variables:
R(T, d,α, δ): The set of R requests.
∆: The set of the requested data files.
S: The set of servers.
L(s) and C(s): The maximum working load and storage

limit of server s, respectively, where s ∈ S.
CDF d,α

s (x): The CDF for server s for accessing (GET or
PUT operation which depends on the request) data with size
d for I/O rate α.
Ns: Maximum number of sessions that can be established

on server s ∈ S for one request.
P r
s,i: A boolean value indicating whether request r is

accommodated by placing its requested data d on server s
and is served by i-th session.

Y d
s : A boolean value indicating whether data d ∈ ∆ is

stored in server s ∈ S.
Objective:

min
∑

s∈S

max
d∈D

Y d
s (2)

Data request time probability constraint:

1−
∏

s∈S

Ns∏

i=1

(
1− P r

s,i · CDF |d|,α
s (T)

)
≥ δ ∀r(T, d,α, δ) ∈ R

(3)

I/O rate constraint:

∑

r(T,d,α,δ)∈R

N∑

i=1

P r
s,i · α ≤ L(s) ∀s ∈ S (4)

Determine data allocation on a specific server:

Y s
d′ = max

1≤i≤N,r∈R
P r
s,i ∀d′ ∈ ∆, s ∈ S,where r.d = d′ (5)

Server capacity constraint:

∑

d∈∆

Y s
d · |d| ≤ C(s) ∀s ∈ S (6)

Eq. (2) minimizes the number of total used servers. For
instance, we first calculate the maximum value of Y d

s for
server s ∈ S, and as long as Y d

s = 1 for some d ∈ ∆, it
means that server s in use to store some data d. After that,
we take the sum of maxd∈D Y d

s for each server s ∈ S and try
to minimize this value. Eq. (3) ensures that for each request
r(T, d,α, δ) ∈ R, the probability of accessing data d within
time T is at least δ. More specifically, P r

s,i · CDF |d|,α
s (T)

denotes the probability of accessing D within time T on server
s by establishing i-th session. In this sense, by taking into
account all Ns possible sessions on each server s ∈ S, Eq. (3)
represents that at least one session on one server s ∈ S has
a probability of accessing D within time T no less than δ.
Eq. (4) ensures that the total consumed I/O rates on each
server s ∈ S does not exceed its maximum working load.
Eq. (5) determines whether a data file d ∈ ∆ is placed on
server s ∈ S. Eq. (6) ensures that each server does not violate
its storage limit.

B. Heuristic

Algorithm 1 TSDA (S,R,M, T, µ, γ)

1: Sort the servers in decreasing order according to m(s)
2: Accommodate each request with each server that first

fits in the order. In case servers are not enough, dummy
servers are created with tiny value of m(s).

3: P ← ∅, Li ← ∅, Ls ← ∅, k ← 0 and store this initial
solution into Li.

4: Select the target loaded server st with minimum value of
l
L + c

C + γ r
R

5: While time limit T is not reached do
6: fd ← false;
7: A(S) =Search (S,M, st, fd, Li, Ls)
8: If fd == true then
9: k ← 0; In case there exists a server su satisfying

m(su) < m(st), then use st to host all the requests from
su and empty su if possible.

10: Else if fd == false and k < µ · |A(S)| then
11: k ++;
12: Else Call Diversification(A(S), Li, Ls, P)
13: Determine next loaded server st with minimum l

L +
c
C + γ r

R
14: return min(P).

In this subsection, we propose a Tabu Search-based heuristic
to solve the LSDA problem. Tabu search is an advanced local
search algorithm, which is introduced by Glover [13], [14].

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)4

Algorithm 2 Search (S,M, st, fd, Li, Ls)

1: counter ← 0
2: While counter ≤ M
3: Foreach request r in st
4: Try to issue it with the server(s) which already stores

its required data file, otherwise use first fit server to host
the request. The server allocation should not be in Ls.
Denote A(S) as the result of server allocation for the
requests.

5: If all the requests have been accommodated by current
loaded servers then

6: fd ← true; Return A(S)
7: Else
8: Call Intensification(A(S), Li, Ls, st)
9: counter++

10: return A(S)

Algorithm 3 Intensification (A(S), Li, Ls, st)

1: Sort the loaded servers in A(S) except for st according
to cs

C(s) ·
ls

L(s) in decreasing order.
2: Assign the first 20% of servers to Group G1, and put all

the other servers in Group G2.
3: Use one server in G1 to issue the accommodated re-

quest(s) from one server in G2 to if possible.
4: Swap accommodated request(s) between two servers in

G1 if possible.
5: Record the Ls with the original data placement in each

server before its change.

Algorithm 4 Diversification (A(S), Li, Ls, P)

1: P ← A(S).
2: Remove from solution A(S) the 1

2 servers with smallest
u(s) value, and issue each request from a removed server
with each empty server. The 1 : 1 request to server
allocation should not be in the Tabu list Li.

3: Reset Ls to empty and add the initial solution to Li.

The local search algorithm starts from an initial solution,
and improves this solution by moving to a better neighbor
solution iteratively. It will stop if the current solution cannot
be further optimized. Different from local search, Tabu search
allows the solution to deteriorate in the searching procedure.
By keeping track of recent moves in a so-called Tabu list,
cyclic moves in the search space are banned in order to save
running time. Moreover, Tabu Search can be enhanced by
(1) Intensification: to (slightly) modify the current neighbor
solution to encourage move combinations and make search
region more attractive and (2) Diversification: to guide the
search toward the unexplored areas of search space.

Our proposed heuristic, called Tabu Search-based Data
Allocation (TSDA) algorithm, is presented in Algorithm 1.
In Step 1, we first sort the servers based on the following

equation in decreasing order.

m(s) =
C(s) · L(s)

µ(s)
(7)

where C(s) and L(s) imply the capacity and maximum load of
server s, and µ(s) =

∫∞
0 (1−CDF (x))d(x) denotes the mean

value of a given distribution based on its cumulative distributed
function. In this context, a bigger m(s) value indicates that
server s is “good” in terms of having greater capacity and
working load, and “faster” response time. Following that, in
Step 2, each request is accommodated by the first suitable
server in that order. We store this initial solution in Ti in
Step 3, and define Ts to be the Tabu list during the searching
procedure. In particular, Ts stores which request cannot be
issued by which server. We also define a queue P to store
the solution that cannot be further optimized during searching
round (local optimal). k is initially equal to 0 and denotes the
times that the current solution is not improved after calling
Search function in Algorithm 2. After that, we first select one
server with the minimum value of the metric in Eq. (8):

u(s) =
cs

C(s)
+

ls
L(s)

+ γ
rs
R

(8)

where cs and ls represent the total consumed capacity and
I/O rates by all the data requests stored on it, rs denotes the
number of requests that is accommodated by it, and γ is an
user specified parameter. Therefore, a bigger u(s) indicates
that this server is well utilized, and a smaller u(s) value
implies that this server is not well utilized. As long as the
time limit T is not reached, Step 5-Step 13 is going to search
a solution with a minimum number of servers to issue all
the requests. In Step 6, fd is initially set to false which
represents whether the selected server is emptied. The general
idea of Steps 7-13 is to first select a not well-utilized server
st according to Eq. (8), and try to use other current loaded
servers to issue all the requests from st (Algorithm 2 which
we will specify later). More specifically, if calling Algorithm 2
in Step 7 returns a feasible solution, then k is set to 0 and
st can be emptied in Step 9. In case a “better” server st is
emptied, st will replace the current loaded server su which
has a smaller metric in terms of Eq. (7) than it if possible. If
st cannot be emptied but k is less than µ · |A(S)|, where µ is a
fractional number and |A(S)| denotes the current total number
of used servers, k is increased by 1 in Step 11. Otherwise we
call Diversification function in Algorithm 4 in Step 12. The
general idea of Diversification function is first to store the
current found solution A(S) in P . Then it empties half of the
(not well-utilized) servers and accommodates each of those
requests from those emptied servers by each empty server.
We then select next server st to be emptied in Step 13. When
the time limit is exceeded, in Step 14, we return a so-far best
solution from P .

Algorithm 2 performs how to empty a selected server, by
using current loaded servers to host all the requests from st.
In Step 1, a variable counter is set to 0 and denotes the
maximum times that it can call Intensification function. As

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 5

Select a server
St from A(s)

Intensification

Diversification

Start:
Initial solution

A(S)

Success
Yes

No && k≤ μ·|A(S)|

No && k> μ·|A(S)|

Tabu List

Data Placement should
not be in the Tabu List

T is
reached

No

Empty St

Output a
solution

Yes

Fig. 5: An overview of TSDA.

long as it is less than M , for each request r which is originally
accommodated by st, Step 4 searches for one (or more) current
loaded server(s) to issue it. If all the requests originally issued
by st have been accommodated by the other servers, then we
return this solution in Step 6. Otherwise, we call Intensification
function in Algorithm 3 and increase counter value by 1. In
Algorithm 3, if a data file d which is stored in one server s1
in group G1 or G2 has been accessed by multiple requests,
then we prefer to swap or move its whole associated requests.
Otherwise we only “swap” or “move” single request issued
by the servers in different groups. In all, Fig. 5 depicts an
overview of TSDA.

V. SIMULATION-BASED EVALUATION

A. Simulation Setup
Due to the lack of experimental resources, we cannot

measure the maximum working loads and CDF of data access
time for dozens of servers in cloud storage environment.
Instead, we simulate a cloud storage system consisting of
30 servers. The storage capacity and maximum working load
of each (free) server are assumed to be 1 TB and 1.26
Gb 2, respectively. There are in total 40 data files of 5
types. The size in Gb is (randomly) chosen from one of the
intervals: [1, 1], [4, 9], [25, 40], [45, 60], [95, 110], for each
type respectively. By doing this, we want data sizes are
different from each other in order to make the optimal solution
not easy to find. The requested I/O rate is in the set of

2We use a fractional number 0.7 in [9] to multiply the referred value 1.8
in [15], which leads to 1.8 ∗ 0.7 = 1.26 Gb/s=1260 Mb/s.

{5, 10, 20, 50, 100} in Mb/s. We randomly generate 100, 200
and 300 requests. In order that at most Ns = 5 sessions are
enough for accommodating any data request on any empty
server s ∈ S, the simulation parameters are set like this: for
each request r(d, T, δ,α), d and α are randomly generated. T
is chosen among [8, 20], [40, 100], [250, 600], [500, 900] and
[800, 2000] in ms for aforementioned 5 types of data files,
respectively. δ is selected among [50%, 70%], [70%, 85%],
[80%, 90%], [85%, 95%] and [90%, 98%] for α = 5, 10, 20, 50,
and 100 Mb/s, respectively. For simplicity, we assume that
the GET latency and PUT latency of a data file follow a
totally identical distribution on the same sever. We assume
three kinds of distributions for data access time of the server,
namely (1) exponential distribution, (2) geometric distribution
and (3) uniform distribution. For each distribution, different
parameters are assigned to each server in order that these
servers are “heterogeneous” for simulation. More specifically,
in the exponential distribution 1− e−λx, λ is chosen from the
intervals [0.01, 0.03], [0.04, 0.06], [0.08, 0.1], [0.12, 0.15] and
[0.2, 0.25] for α = 5, 10, 20, 50, and 100 Mb/s, respectively. In
the uniform distribution x−α

β−α , α = 0 and β is chosen from the
intervals [20, 25], [16, 20], [12, 16], [11, 14] and ∈ [8, 13] for
α = 5, 10, 20, 50 and 100 Mb/s, respectively. In the geometric
distribution 1 − (1 − p)x, p is selected from the intervals
[0.07, 0.09], [0.1, 0.12], [0.12, 0.15], [0.15, 0.18] and [0.18, 0.2]
for α = 5, 10, 20, 50 and 100 Mb/s, respectively. According to
[16], the data access time is increasing approximately linearly
with the data size. Therefore, for simplicity, we assume that
if a data file consisting of c data chunks stored in server s, it
follows that CDF cb

s (x) = CDF b
s (

x
c), where b = 1 Gb in this

context.
The simulation is run on a desktop PC with 2.7 GHz

and 8 GB memory. We use IBM ILOG CPLEX 12.6 to
implement the proposed INLP, but we found it is very time
consuming to return a (final) solution because of its nonlinear
constraint in Eq. (3). For example, for exponential distribu-
tion when R = 100, the INLP keeps on running for one
day and still does not terminate. In order to let the INLP
return the result in a reasonable time, we set a running time
limit of 1, 2 and 3 hours3 for 100, 200 and 300 requests,
respectively. We use C# to implement the proposed heuristic
TSDA. From our simulations on TSDA for the LSDA problem,
we found that it starts to return a “reasonable” solution at
T = 60, 450, 1000 ms for when requests’ amount R = 100,
200 and 300, respectively, and it ends in returning a relatively
stable solution at T = 100, 500 and 2000, respectively.
Therefore, we set the time limit T = 60, 80, 100, 200 ms for
R = 100, T = 450, 480, 500, 1000 ms for R = 200, and
T = 1000, 1500, 2000, 3000 ms for R = 300. Moreover, we
set M = 30, γ = 10 and µ = 0.8.

B. Simulation results
We first evaluate the algorithms in terms of the number of

used servers. From Fig. 6, we see that the INLP and TSDA

3We also set longer running time (e.g., 10 hours) for the INLP for 200 and
300 requests. We found that the results are the same.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)6

(a) R=100 (b) R=200 (c) R=300

Fig. 6: The number of used servers for different number of traffic requests (R): (a) R = 100 (b) R = 200 (c) R = 300.

(a) R=100 (b) R=200 (c) R=300

Fig. 7: Storage utilization percentage for different number of traffic requests (R): (a) R = 100 (b) R = 200 (c) R = 300.

(a) R=100 (b) R=200 (c) R=300

Fig. 8: Throughput utilization percentage for different number of traffic requests (R): (a) R = 100 (b) R = 200 (c) R = 300.

for T = 100, 200 have the same performance when R = 100.
Except for that, the INLP always consumes the minimum
number of servers for different amount of requests, which also
validates its correctness. The number of servers consumed by
TSDA decreases when the time limit T increases, and TSDA
can achieve a close-to-optimal performance with the exact
INLP when (T,R) = {(200, 100), (1000, 200), (3000, 300)}.
In particular, TSDA performs poorly when the time limit T
is not sufficient enough. For example, when T = 450 and
R = 200 for exponential distribution scenario, TSDA uses
more than 30 servers. Since there are in total 30 available
servers to issue requests, the extra servers are dummy servers
according to Alg. 1. For comparison reason, if more than 30
servers are consumed by TSDA, we regard that it consumes
30 servers.

Next, we compare the algorithms with respect to (1) storage

utilization percentage: (total used storage in Gb) divided by
(1000∗ number of used servers), and (2) Throughput utiliza-
tion percentage: (total consumed I/O rates in Mb/s) divided
by (1260∗ number of used servers). Fig. 7 and 8 plot the
performance of INLP and TSDA in terms of these two metrics.
As expected, the INLP obtains the maximum utilization of
storage and throughput (or equal utilization with TSDA for
T = 100, 200 when R = 100), since it consumes a minimum
number of servers (or equal number of used servers with
TSDA for T = 100, 200 when R = 100) as shown in
Fig. (6). The value achieved by TSDA increases when T
grows. We see that it obtains the same or close performance
with INLP when T = 200, 1000, 3000 for R = 100, 200, 300,
respectively. In all, the exact INLP can always achieve the
best performance, so it can be used when the computation
speed is not a big concern. This is because its running time

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 7

will increase exponentially when the problem size grows. On
the other hand, TSDA can be a preferred choice especially for
when data requests arrive in a bursty manner, since its running
time (≤ 3 sec.) is significantly less than INLP (≥ 1 hour) and
it can obtain a close-to-optimal performance.

VI. RELATED WORK

Lin et al. [17] study the QoS-aware Data Replication
(QADR) problem, which is to find an optimal data replica
placement strategy, such that both the total replication cost
of all data blocks and the total number of QoS-violated (i.e.,
data access time) data replicas are minimized. Lin et al. [17]
first formulate the QADR problem as an ILP. Subsequently,
they transform the QADR problem to the Min-Cost Max-Flow
problem and solve it in polynomial time. However, Lin et al.
[17] assume that the data access time is a deterministic value,
which is not the case in reality as we mentioned earlier in
Fig. 1. Bai et al. [18] deal with how to place data replicas in
cloud storage systems without violating latency constraint. It
is assumed that the expected service time of a data file d on a
server s is calculated as |d|·Rs

NTCs
, where Rs denotes the number

of concurrent requests on s for d, and NTCs represents the
network transmission capability of server s. Subsequently, they
propose a graph-based heuristic to allocate data replicas with
data access latency guarantee. However, using expected value
to model “uncertain” or “probabilistic” data access time cannot
accurately or comprehensively reflect the “uncertainty” of data
access time in realistic cloud storage systems. On the contrary,
this paper adopts the cumulative density function to model
uncertain data access time, which is more practical.

Liu et al. [11] tackle the deadline-guaranteed data real-
location problem in cloud storage. They first formulate this
problem as an INLP formulation, with the objective of mini-
mizing both the number of used servers and traffic load caused
by replication through a network. It is assumed each server
is modeled as an M/M/1 queuing system to serve requests.
They calculate upperbound λg

sn of service rate for server sk
to guarantee that each request from tenant tk has a latency no
longer than ddk and its realizing probability is no less than Ptk .
Subsequently, they propose the Parallel Deadline Guarantee
(PDG) scheme, which dynamically reallocates data from an
overloaded server to an underloaded server to guarantee that,
for each tenant tk, at most ϵtk percentage of all requests
have service latency larger than a given deadline dtk . Hu
et al. [10] address how to determine the smallest number of
servers under a two interactive job classes model. Assuming
the job arrival process is Poisson with rate λ and service
time distribution is exponential with mean 1

µ . They propose
a Probability dependent priority (PDP) scheduling policy to
maximize the probability of meeting a given response time
goal. However, in reality, the arrival rate of traffic requests
such as bursty traffic does not always follow Poisson process
and the service times are also not always exponential [19].
The solutions of [10], [11] become invalid for bursty traffic
and non-exponential service time.

You et al. [9] study the load management problem in
cloud storage. They first formulate an exact ILP to solve the
optimization problem, that transfers the data from overloaded
servers to underloaded servers by using minimum bandwidth
migration costs. They further speed up the proposed ILP by
reducing the unnecessary number of its decision variables,
and applying Divide-and-Conquer and relaxation techniques.
Cheng et al. [20] implement an Elastic Replication Manage-
ment System (ERMS). ERMS can automatically manage the
replication number of severs based on data’s access frequency.
However, [9], [20] do not take data access time into account
when dealing with data (replication) placement.

VII. DISCUSSION

We highlight that in reality, the user does not have control
over the servers but the cloud provider makes decisions on
how to allocate data (files) on servers. The purpose of the
addressed LSDA problem in this paper is to provide cloud
provider a cost-efficient solution to deal with data allocation
issues without violating latency constraints. We could also
apply the LSDA problem in the scenario when traffic requests
arrive asynchronously. For instance, traffic requests arrive at
different times during a day in realistic application. In that
context, the network lifetime can be partitioned into a set of
equivalent-length time slots4 and on each time slot we can have
a set of traffic requests. Consequently, the cloud provider can
perform the proposed algorithms in order to get solutions on
how to allocate requested date files at each time slot.

Moreover, considering that duplicating data may be time-
consuming especially for large data files, so for time-sensitive
application, data allocation should be done before the requests
in the next period arrive, otherwise it may incur additional
waiting time for customers and hence prolong the data access
time. In that case, we suggest to apply traffic prediction
technique [21] such as Markov chain [22] and Auto Regressive
(AR) process [23] to retrieve traffic requests as the input of
the LSDA problem.

VIII. CONCLUSION

In this paper, we have studied the Latency-Sensitive Data
Allocation (LSDA) problem. Under the assumption that the
data access time follows a given distribution and its CDF
is known, we have proved that the LSDA problem is NP-
hard. Subsequently, we propose an exact Integer Nonlinear
Program (INLP) and a Tabu Search-based heuristic to solve
it. Simulation results reveal that the exact INLP can always
achieve the best performance in terms of the number of
used servers, storage utilization percentage and throughput
utilization percentage. The Tabu Search-based heuristic, on
the other hand, can achieve a close-to-optimal value with the
INLP, but its running time is much less than the INLP.

ACKNOWLEDGEMENT

This work has been funded by EU FP7 ITN CleanSky (No.
607584).

4Each time slot can for instance span one minute, two minutes, etc. which
depends on the real application.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017)8

REFERENCES

[1] “Netflix finishes its massive migration to the amazon cloud.”
[Online]. Available: http://arstechnica.com/information-technology/
2016/02/netflix-finishes-its-massive-migration-to-the-amazon-cloud/

[2] “By the numbers: 12 interesting dropbox statistics.” [Online]. Available:
http://expandedramblings.com/index.php/dropbox-statistics

[3] G. Liang and U. C. Kozat, “Fast cloud: Pushing the envelope on delay
performance of cloud storage with coding,” IEEE/ACM Transactions on
Networking, vol. 22, no. 6, pp. 2012–2025, 2014.

[4] S. L. Garfinkel and S. L. Garfinkel, “An evaluation of amazons grid
computing services: EC2, S3, and SQS,” in Technical Report TR-08-07.
Harvard University, 2007.

[5] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[6] “Amazon found every 100ms of latency cost them
1% in sales.” [Online]. Available: http://blog.gigaspaces.com/
amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

[7] Z. Wu, C. Yu, and H. V. Madhyastha, “Costlo: Cost-effective redundancy
for lower latency variance on cloud storage services,” in Proc. 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2015.

[8] “Google storage: On-demand I/O.” [Online]. Available: https://cloud.
google.com/storage/docs/on-demand-io/

[9] G.-W. You, S.-W. Hwang, and N. Jain, “Ursa: Scalable load and power
management in cloud storage systems,” ACM Transactions on Storage
(TOS), vol. 9, no. 1, pp. 1–29, 2013.

[10] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu, “Resource provisioning for
cloud computing,” in Proceedings of the 2009 Conference of the Center
for Advanced Studies on Collaborative Research. IBM Corp., 2009,
pp. 101–111.

[11] G. Liu, H. Shen, and H. Wang, “Deadline guaranteed service for multi-
tenant cloud storage,” IEEE Transactions on Parallel and Distributed
Systems, no. 99, pp. 1–14, 2016.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W. H. Freeman & Co.,
1979.

[13] F. Glover, “Tabu search-part i,” ORSA Journal on computing, vol. 1,
no. 3, pp. 190–206, 1989.

[14] ——, “Tabu searchpart ii,” ORSA Journal on computing, vol. 2, no. 1,
pp. 4–32, 1990.

[15] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and P. Rodriguez,
“Greening the internet with nano data centers,” in Proceedings of the
5th ACM international conference on Emerging networking experiments
and technologies, 2009, pp. 37–48.

[16] M. Kwon, Z. Dou, W. Heinzelman, T. Soyata, H. Ba, and J. Shi, “Use
of network latency profiling and redundancy for cloud server selection,”
in 7th IEEE International Conference on Cloud Computing (CLOUD),
2014, pp. 826–832.

[17] J.-W. Lin, C.-H. Chen, and J. M. Chang, “Qos-aware data replication
for data-intensive applications in cloud computing systems,” IEEE
Transactions on Cloud Computing, vol. 1, no. 1, pp. 101–115, 2013.

[18] X. Bai, H. Jin, X. Liao, X. Shi, and Z. Shao, “RTRM: A response time-
based replica management strategy for cloud storage system,” in Grid
and Pervasive Computing. Springer, 2013, pp. 124–133.

[19] K. Salah, K. Elbadawi, and R. Boutaba, “An analytical model for
estimating cloud resources of elastic services,” Journal of Network and
Systems Management, pp. 1–24, 2015.

[20] Z. Cheng, Z. Luan, Y. Meng, Y. Xu, D. Qian, A. Roy, N. Zhang, and
G. Guan, “ERMS: an elastic replication management system for HDFS,”
in IEEE International Conference on Cluster Computing Workshops
(CLUSTER WORKSHOPS), 2012, pp. 32–40.

[21] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[22] S. Pacheco-Sanchez, G. Casale, B. Scotney, S. McClean, G. Parr, and
S. Dawson, “Markovian workload characterization for QoS prediction
in the cloud,” in IEEE International Conference on Cloud Computing
(CLOUD), 2011, pp. 147–154.

[23] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual ma-
chines for managing SLA violations,” in 10th IFIP/IEEE International
Symposium on Integrated Network Management, 2007, pp. 119–128.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017) 9

