
Measuring Robustness of SDN Control Layers
Yury Jiménez, Juan Antonio Cordero, and Cristina Cervelló-Pastor

Abstract—The controller placement problem remains a key
aspect of Software Defined Networking (SDN). The selection of
a suboptimal controller may impact severely the performance
of the control layer and, in consequence, cause a substantial
degradation in the data layer. Different approaches for controller
placement have been proposed with various objectives in mind,
but most of them do not consider the characteristics of the
resulting control layer in terms of robustness. In this paper
we propose and formalize a complete metric for estimating
robustness of a SDN control layer, and we evaluate two heuristics
for controller selection and control layer construction: Fast
Failover and a simplified version of k-Critical. The results of the
performed evaluation indicate that the control layer topology
induced by k-Critical is less prone to failures, more robust and
more homogenous than those computed by Fast Failover.

Index Terms—Software Defined Networking (SDN), controller
placement, data layer, control layer, robustness.

I. INTRODUCTION

Software Defined Networking (SDN) emerges as a solution
for simplifying management and operation in large or complex
networks, by decoupling control and data planes in the net-
work, typically implemented in routers in traditional networks.
Physical separation between the control layer (handled by
controllers) and the data layer (implemented by nodes or
switches) in SDNs implies that reliability of the communi-
cation between devices working at each layer needs to be
addressed specifically, as any network failure may cause a
disconnection in the forwarding layer between a controller
and a node, and thus lead to a severe data packet loss and
performance degradation [1] [2]. Therefore, one of the most
important aspects when building a control layer is protection
against failures.

In a SDN environment, the performance and characteristics
of the control layer are affected by both the controller place-
ment and the underlying network connectivity. Given that,
in essence, a control layer is a shortest path tree rooted at
the controller, the position of the controller(s) is the main
optimization variable for a given SDN – in particular, in terms
of control layer robustness as it can affect the SDN network
ability to respond rapidly to network events, limiting the
availability, convergence time and protection against failures
[3] [4] [5] [6]. Through the delay-constrained shortest paths,

Yury Jiménez and Cristina Cervelló-Pastor are with the Depart-
ment of Telematics Engineering, Universitat Politècnica de Catalunya
(UPC), C/ Esteve Terradas, 7, 08860, Castelldefels, Spain, e-mails:
{yury.jimenez;cristina}@entel.upc.edu.

Juan Antonio Cordero is with ICTEAM, Université catholique de Louvain
(UCLouvain), Place Sainte Barbe, 2, B-1348, Louvain-la-Neuve, Belgium,
e-mail: juan.cordero@uclouvain.be.

This work has been supported by the Government of Catalonia through
a predoctoral FI scholarship, the Government of Spain through project
TEC2013-47960-C4-1-P; and the Belgian Science Policy Office (BSPO)
through the project IAP BESTCOM.

henceforth called control channels, the controllers collect net-
work state information from nodes, and decide and distribute
the forwarding decisions to them [7].

Heller et al. [8] evaluate the controller placement for WANs,
where latency dominates. Different controller placement are
compared in terms of node-to-controller latency, for the funda-
mental limits imposed on reaction delay, fault discovery, and
event propagation efficiency. Authors conclude that a single
controller is often sufficient to meet existing reaction-time
requirements in WANs. This analysis is extended by Hock
et al. [3], who present a framework for evaluation of differ-
ent resilience metrics (e.g., node-to-controller latency, failure
tolerance, load balancing, inter-controller latency), in order to
enable selection of the optimal controller placement; authors
conclude that optimal values for the examined resilience
metrics are often impossible to achieve simultaneously. The
objective of Fast Failover [4] is to minimize the data loss
caused by a node or link failure in the control layer by
considering a notion of local node protection (against failures
in parents). The node that maximizes the number of locally-
protected nodes is thus selected as controller (see section
III-A). K-Critical [5] explores a controller placement heuristic
that balances controller-node communication latency and path
length minimization objectives, and selects k controllers under
some given requirements, e.g., maximum delay between the
controller and nodes. Resulting trees tend to be wide near the
controllers and narrow further away from them, where paths
have as few hops as possible in order to reduce the data loss
when nodes or links fail. As shown in these works [2-6], the
controller selection has a deep impact in both cases, in the
robustness of the control layer topology (e.g., robustness) and
therefore the resilience of the underlying SDN.

In this paper we propose a robustness metric and evaluate
the robustness of the control layers built with Fast Failover and
k-Critical controller placement heuristics. Section II describes
the network model and introduces the main elements of the
notation used throughout the paper. Section III discusses the
notion of robustness, defines different parameters to measure
the robustness of a control layer in a SDN and details
the procedure to compute them. Section IV focuses on the
evaluation of both algorithms. Section V concludes the paper.

II. NETWORK MODEL AND NOTATION

Consider a SDN modeled by a graph G = (V,E, δ), where
V = {1, . . . , n} is the set of vertices in the graph (set of
nodes in the network), E is the set of edges in the graph
(links between nodes in the network), and δ : E −→ R+

maps a link e ∈ E with δ(e), the delay associated to link e.
Let N be the number of nodes in the network (N = |V |). The
control layer or management tree induced by the selection of a

controller n ∈ V in a given SDN (with graph G) is a subgraph
Tn ⊂ G; its set of vertices and edges is denoted by VTn and
ETn , respectively. Given a node x ∈ V and a controller n,
Tx ⊂ Tn will denote the subtree of Tn rooted at node x.
We assume that nodes keep track of their set of neighbors by
periodically exchanging HELLO messages. Moreover, for a
management tree Tn, each node s ∈ VTn

also knows its parent
node in the tree, denoted by pTn(s), and the adjacent nodes
attached to it in the control layer (children).

III. ROBUSTNESS METRIC

Intuitively, a network is robust when communication be-
tween two nodes is not severely affected by –or can efficiently
recover from– network failures, thus minimizing data loss
in these cases. In terms of network paths, this notion of
robustness implies that (1) the probability of failures along
existing paths in the control layer of a given SDN is low,
meaning that the number of involved nodes in a control
channel is small, and (2) in case of failure in a control layer, it
is possible for affected nodes to reestablish communication by
using additional, unaffected paths in the tree. For evaluating
the robustness provided by a controller placement, we assume
that such a reconnection algorithm is available in the network
and makes every node able to detect failures and reconnect
dynamically to any existing path at distance 1.

To evaluate the robustness of a control layer, we first use a
resilience metric (section III-A) based on the fraction of locally
protected nodes in the control layer [4]. While this is a valid
first-order estimation of robustness, it has some drawbacks that
derive from their implicit assumptions, as discussed in section
III-B. We thus propose (section III-C) a new, more complete
robustness metric, which takes into account the fraction of
nodes potentially affected by network failures, and their ability
to recover.

A. Robustness as 1-hop local node protection

In a first approximation, the robustness of a control layer
Tn rooted at a given controller n can be measured as the
expected fraction of protected (unaffected) nodes within the
set of downstream nodes when one of them fail [4]. The
underlying notion of node protection, hereafter denoted 1-
hop local node protection, can be formalized as follows. Let
p ≡ pTn

(s) denote the parent of node s ∈ VTn
and Tp be the

subtree rooted at node p, where Tp ⊂ Tn. Then, the 1-hop
local protection of the node s is defined in Equation (1).

P (s) =

{
0 , ∃s′ ∈ V, s′ /∈ Tp : (s, s′) ∈ E
1 , otherwise (1)

According to this expression, s is considered protected if
P (s) = 0, unprotected otherwise. Note that this protection
metric is only effective, in practice, against failures in the
parent node; but the fact that a node is protected according to
this definition does not imply that it is resilient with respect
to further failures in the corresponding tree, e.g. if the failure
occurs at the 2-hop parent. Therefore, this protection metric is
not sufficient to determine the network robustness with respect

A

B C

D E F

A

G H

Fig. 1. Local protection in a control layer over a SDN.

to failures. This metric provides an idea about how many nodes
have a certain local (1-hop) protection, but is not informative
about the effective level of protection and, hence, cannot be
used to directly infer the number of nodes that can reestablish
communication with the controller in case of a failure.

B. Towards a network robustness metric

When there is a failure in a SDN, the number of affected
nodes does not only depend on their local protection on the
first hop (with respect to their parents), but on their (inner)
protection with respect to the failing node and also on the
protection provided by upper nodes affected by the failure.
Consider the situation in Fig. 1. Note that G is a local 1-hop
protected node, as defined in section III-A: if E fails, it can
still get reconnected to the control layer via D, which is a
neighbor of G in the network. However, G is not protected
against a failure in B, given that its possible path through
D also involves B. Note also that G would be, in practice,
“protected” against a B failure if there was a link in the
network between E and F (not shown in Figure 1) and
its parent E could hence reconnect to the control layer via
{F,C,A} (A assumed to be controller).

C. Robustness as generalized node protection

In order to define a more accurate metric for control layer
robustness, we introduce the notion of generalized local node
protection, formalized in Equation (2). Given a controller n,
a node s ∈ Tx ⊂ Tn has generalized local protection against
a failure in x if it has a connection with a node s′ in the
direction of the controller that is not in Tx.

P ′(s) =

{
0 , ∃s′ ∈ V, s′ /∈ Tx : (s, s′) ∈ E
1 , otherwise (2)

In this context, given a control layer Tn (rooted at controller
n), the nodes primarily affected by a failure in node x are the
downstream nodes of x, that is, |Tx|. The fraction of these
nodes that are locally protected against this failure is then:

1

|Tx|
∑
s∈Tx

P ′(s) (3)

Given a controller n, any node s depending on a locally-
protected node z against a failure in x (z ∈ p(x, s)) is also
protected, as the reconnection of z allows it to communicate
to the controller by way of the path p(y, z) ∪ p∗(z, n), where
p∗(z, n) is the new path from z towards the controller n, after
x’s failure and z’s reconnection to the control layer. The binary
function:

F (s) =
∏

z∈p(s,x)

P ′(z) = {0, 1} (4)

indicates whether a node s ∈ Tx is protected against the
failure of x (value 0) or not (value 1). Note that, for a node
s ∈ Tx to be protected, it is only necessary that one of the
ascendant nodes (denoted by z) of s in the path towards x
is locally protected, or s is locally protected itself (Eq.2). In
other words, a locally protected node induces protection for
any downstream node. Taking all these cases into account,
the fraction of protected nodes (locally protected or indirectly
protected by upper or upstream nodes) against the failure of
x in Tn can be computed as follows:

Rx,n =
1

|Tx|
∑
s∈Tx

F (s) =
1

|Tx|
∑
s∈Tx

∏
z∈p(s,x)

P ′(z) (5)

In order to discover the robustness in a control layer Tn ⊂ G,
rooted at controller n, we compute, for each possible node
failure in the network, the number of affected nodes and
the number of affected (unprotected) nodes, that is, those
which can not reestablish communication with the controller
n. Algorithm 1 describes the computation of the control layer
robustness parameter.

Algorithm 1 Evaluating Control Layer Robustness
Require: G = (V,E, δ), n ∈ V, Tn ⊂ G

for each node-to-fail x 6= n, x ∈ VTn do
Tx ←− subtree rooted at x
for each path p(x, y) ⊂ Tx, where y is a leaf node do

for each node s ∈ p(x, y), s 6= x do
for each node z ∈ p(x, s), where z 6= x do
P ′(z)←− Eq. (2)

end for
F (s)←−

∏
z∈p(x,s) P

′(z) (Eq. (4))
end for

end for
Rx,n ←− 1

|Tx|
∑

s∈Tx
F (s) (Eq. (5))

end for
return En{Rx,n}

IV. SIMULATION AND RESULTS

A. Setup

Both algorithms for controller selection and control layer
construction (Fast Failover and simplified k-Critical, for k =
1) are implemented in MATLAB, and their performance is
evaluated over a set of randomly generated graphs of fixed
size (100 nodes) with three levels of node connectivity:
sparsely, medium and strongly connected graphs. Network
graphs were generated by using Gephi [9]. Depending on
the value of the network wiring probability, Gephi generates
networks with close-to-Gaussian distribution of node degrees.
For sparse graphs a wiring probability of 0.036 was used,
the resulting networks have an average node degree within
[1−5]. Medium (in density) and dense graphs have an average
node degree within [1− 10] and [1− 50] respectively; graphs
were generated with a wiring probability of 0.050 and 0.18.
For each node connectivity level, results are averaged over
100 graph samples. For each edge, a random link length is
assigned following a uniform distribution within [1, 10] km.
Delays associated to network links depend on their length,
assuming typical optical fiber rates and using this expression:

Delay = Dlink(m)
Vlight(m/sec) . Both algorithms (Fast Failover and k-

Critical for k = 1) are executed over these graphs: controllers
are selected and the corresponding delay-based, controller-
rooted shortest path trees are computed. This setup allows
to compare the properties of both algorithms by observing
the structure and impact of controller selection over the
induced control layer. The delay value (Dreq = 0.20sec) was
determined so that k-Critical selected a single controller in all
network categories.

B. Results

Performed simulations have been examined in terms of
delay, topology structure and control layer robustness.

1) Delay: Fig. 2 displays the average delay between con-
trollers and nodes in the generated control layers from con-
trollers selected by k-Critical and Fast Failover. It can be
observed that k-Critical produces substantially “faster” trees
that Fast Failover for all network categories. This effect,
which is particularly relevant in sparse SDNs, implies that the
dissemination of control information throughout the SDN is
performed, both for an average node and for the most “distant”
node from the controller, within shorter time intervals.

Fig. 2. Average link delay.

2) Topology: k-Critical also produces shorter trees (in
hops) than Fast Failover, that is, trees for which the longest
branch (Fig. 3) has fewer hops than the trees rooted at the
controller selected by Fast Failover. Although the advantage
of k-Critical over Fast Failover naturally decreases with node
density (as, in a full mesh SDN, all trees would have length
1), it is still observable for dense SDNs. The fact that tree
branches are shorter in k-Critical than in Fast Failover also
implies that a random node x has, in average, fewer down-
stream nodes (i.e., nodes for which the control channel towards
the controller traverses x) in the first case (k-Critical) than in
the second. These downstream nodes are the nodes affected
by the failure of any node x (including those that may recover
due to some sort of protection).

3) Robustness: Fig. 4 shows the percentage of “locally 1-
hop protected nodes” in control layer trees generated by k-
Critical and Fast Failover. This is, as detailed in section III-A,
the fraction of nodes that could reconnect with the control

Fig. 3. Average tree length. Average on average branch length.

layer in case of failure in their upstream link/parent. Although
Fast Failover is designed to optimize this specific metric, its
performance in this aspect is very similar to the one achieved
by k-Critical. As argued in section III-B, the metric of “locally

Fig. 4. Nodes locally protected against failures in immediate upstream
link/parent.

1-hop protected nodes” is not sufficient to evaluate the robust-
ness of a control layer; a generalization of this metric is thus
proposed in section III-C. Fig. 5 shows the complementary
of this metric, that is, the average (computed over all possible
node failures) of the fraction of downstream nodes that cannot
recover from a failure, in k-Critical and Fast Failover control
layers. Note that this metric behaves as expected when the
network density increases – SDNs with higher connectivity
are, in general, more robust than those with low connectivity,
due to the fact that more links are available, and thus more
redundant paths can be leveraged in case of node failures. It
can be observed that, in the light of this generalized robustness
metric, k-Critical (k = 1) controllers produce more robust
control trees than Fast Failover, in particular in sparse SDNs
– that is, in networks where algorithm robustness is more
necessary. As the SDN node density increases, both algorithms
tend to provide a similar level of control layer robustness.

Fig. 5. Network robustness index. 0=robust, 1=non-robust.

V. CONCLUSIONS

The problem of controller placement in Software Defined
Networks remains open. This paper proposes and formalizes a
metric to quantify the control layer robustness, defined as the
fraction of nodes that have an backup path to the controller in
case of a node or link failure. It was evaluated over control
layer created from controllers found by a simplified version
of k-Critical and Fast Failover heuristics. The latter is aligned
with the fast failover mechanisms included in the specification
of OpenFlow. Although k-Critical has not been explicitly
designed to optimize any robustness metric, it shows a very
similar performance to Fast Failover in terms of the underlying
robustness metric. Moreover, k-Critical has a lower complexity
(O (n): it grows linearly with the size of the network) than Fast
Failover (O

(
n2
)
). Further work in the direction of control

layer robustness should focus on the formalization of the
desirable properties, the theoretical analysis of the generated
trees and the evaluation on realistic topologies.

REFERENCES

[1] S. Hassas, A. Tootoonchian, Y. Ganjali. “On Scalability of Software-
Defined Networking”, Communications Magazine, IEEE., vol. 51, no.2,
ISBN 0163-6804, 2013.

[2] B. Nunes, M. Mendonca, X. Nguyen, et al. “A Survey of Software-
Defined Networking: Past, Present, and Future of Programmable Net-
works,” Communications Surveys & Tutorials, IEEE, vol. 16, no.3, pp.
1-18, 2014.

[3] D. Hock, M. Hartmann, S. Gebert, et al. “Pareto-optimal resilient
controller placement in SDN-based core networks”, Teletraffic Congress
(ITC), 2013 25th International., pp. 1-9, Shanghai, 2013.

[4] M. Tatipamula, N. Beheshti-Zavareh, Y. Zhang. “Controller Placement
For Fast Failover in the Split Architecture”, U.S. Patent 0028073 A1,
January 31, 2013.

[5] Y. Jiménez, C. Cervelló-Pastor, A. Garcı́a, “Defining a Network Man-
agement Architecture”, The PhD Forum of the 21st IEEE International
Conference on Network Protocols, Germany, 2013.

[6] Y. Jiménez, C. Cervelló-Pastor, and A. Garcı́a, “On the controller place-
ment for designing a distributed SDN control layer”, IFIP Networking
2014 Conference, Norway, ISBN 978-3-901882-58-6, 2014.

[7] N. McKeown, T. Anderson, H. Balakrishnan et al. “ OpenFlow: enabling
innovation in campus networks”, ACM SIGCOMM CCR, Vol. 38, no.2,
pp. 69-74, 2008.

[8] B. Heller, R. Sherwood, N. McKeown. “The Control Placement Problem”,
ACM SIGCOMM., New York, ISBN: 978-1-4503-1477-0,2012.

[9] M. Bastian, S. Heymann, M. Jacomy, “Gephi: an open source software for
exploring and manipulating networks”, International AAAI Conference
on Weblogs and Social Media, 2009.

