
Continuously Delivering Your Network

Steffen Gebert, Christian Schwartz, Thomas Zinner, Phuoc Tran-Gia
University of Würzburg, Institute of Computer Science

{steffen.gebert,christian.schwartz,zinner,trangia}@informatik.uni-wuerzburg.de

Abstract—Softwarization and cloudification of networks
through software defined networking and network functions
virtualisation promise a new degree of flexibility and agility. By
moving logic from device firmware into software applications
and applying software development mechanisms, innovation can
be introduced with less effort. Concrete ways how to operate
and orchestrate such systems are not yet defined. The process of
making changes to a controller software or a virtualized network
function in a production network without the risk of network
disruption is not covered by literature. Complexity of systems
brings the risk of unexpected side-effects and has so long been a
show-stopper for administrators applying changes to networking
devices. This paper suggests the adaption of the successful concept
of continuous delivery into the software defined networking
world. Test-driven development and automatic acceptance tests
demonstrate that the software engineering community already
found ways to ensure that changes do not break. Applied to
network engineering, the adaption of continuous delivery can
be seen as an enabler for risk-free and frequent changes in
production infrastructure through push button deployments.

I. INTRODUCTION

The introduction of Software Defined Network (SDN) has
ushered networks in an agile future, allowing flexible configura-
tion for researchers and businesses alike. However, regardless of
these new accomplishments, even after decades the Command
Line Interface (CLI) is still the best friend of network engineers
when configuring switches, routers or other network devices.
Furthermore, the network is configured decentralised directly on
the devices, irregardless if this happens via CLI or a Graphical
User Interface. Thus, there is no simple way to test the complete
network configuration before applying it to all devices. The
network engineer has to ensure to always enter the correct
commands, make no typing errors and hopefully experience
no unforeseen side-effects. This cumbersome process causes
severe problems for the management of today’s networking
infrastructure, as the possibility to break the production network
results in security updates being applied late or never, e.g.
recently for the Heartbleed bug [1], [2].

Currently, updates or configuration changes often happen
in scheduled maintenance periods, when users are informed
of possible complications. This approach tries to increase the
Mean Time Between Failure (MTBF), as downtimes are avoided
by holding off changes until necessary. At the same time, the
risk of failure is increased, as multiple changes are applied
at the same time. Additionally, identification the root causes
of problems becomes more challenging, when more than one
change is introduced to the network at the same time.

Software developers experienced similar problems before ag-
ile methods were introduced. Methods from DevOps allow short
feedback cycles and frequent releases to avoid misconception,
extensive manual testing, and failures that are hard to identify,
when many changes are applied simultaneously. Instead, modern
web companies like GitHub [3] or Amazon.com [4], release
changes more often into production – in number of tens or

hundreds per day. Such practices aim to increase availability
by reducing the Mean Time To Repair (MTTR) instead of
increasing MTBF. Through automated tests and deployments,
the quality assurance efforts per change can not only be reduced,
but also the time to release a fix into production is decreased.

While there exists network configuration management soft-
ware that allows automatized deployment of changes to network
devices, the proprietary nature of configuration interfaces in
traditional network elements results in a high complexity and
price for such tools. Thus, many modern networks are not
using any of these tools and still maintained manually with
configuration saved decentralized and no ability to roll back.

Recent developments in the area of SDN are about to disrupt
this market and offer new opportunities for change. Besides
the benefits of a better network performance, a simplified
management and configuration of the network infrastructure is
promised. Most research work on the management of software
defined networks, however, focuses on improving performance
or reliability by defining controllers architectures and roles of
entities [5] or generally the more sophisticated management
of network flows [6]. The actual life cycle of the introduced
SDN entities, including provisioning and maintenance, is not
covered by existing literature. This work suggests to apply
Continuous Delivery (CD) to networks comprising SDN and
the related concept of Network Functions Virtualisation (NFV).
Expected results are higher agility and effortless and risk-free
deployment of new networking software.

This paper is structured as follows: Section II introduces
the technical background, which consists of the networking
concepts SDN and NFV, as well as CD as a software
engineering mechanism. Section III describes the contribution
of this work, which is to apply CD to SDN-based networks.
Details of potential implementations, as well as open issues,
are discussed in Section IV. Section V concludes this work.

II. BACKGROUND

This section introduces techniques from network and soft-
ware engineering to build the foundation for understanding the
contribution of this paper – applying successful techniques from
software engineering to the problems of network management.

A. SDN and NFV

The Software Defined Networking (SDN) concept suggests
the externalization, centralization and softwarization of the
network control plane into an SDN controller software –
a shift away from traditional networking towards software-
driven network control. An optimization of traffic flows inside
the network is possible by having a global view over the
network inside the logically centralized control plane [7]. By
the controller running as software application on a standard
server, faster innovation cycles for the network control plane is
possible than with current integrated devices, where firmware



updates must be installed to introduce new mechanisms or
protocols. The pace of innovation can already be seen by the
number of available OpenFlow controller implementations. The
plugin architectures of modern SDN controllers allow easy
extension such as monitoring, routing, security, application
awareness and quality of experience optimizations.

NFV [8] aims at replacing network functions provided by
monolithic hardware middleboxes with software implemen-
tations. Overdimensioning of resources can be avoided by
applying elasticity mechanisms of cloud application stacks,
including cluster and replication functionality. NFV promises
slim software instances that provide a particular functionality,
similar to the microservices approach in software engineer-
ing. Examples include deep packet inspection, firewalling or
functionality of mobile networks [9]. SDN is the preferred
mechanism to pipe all or only specific parts of the traffic through
a specified set of network functions. The VNF forwarding
graph [10] specifies, which network functions should be passed,
and e.g. if the traffic should be mirrored to a monitoring
function, or passed through an intrusion detection function.

All the promises of increased flexibility by frequently
modifying the network software and configuration come with
the risk of breaking the network. Besides bugs and breaking
changes in software releases, the risk of human errors are
reasons, why traditional networks are progressing only very
slowly. The question is now, how virtualization of network
elements allows frequent changes without increasing the risk
of unexpected outages. Frequent releases of software and short
innovation cycles however are also a goal of application soft-
ware developers. One concept that allows frequent deployment
of new software releases while maintaining high quality is
continuous delivery.

B. Continuous Delivery

To mitigate the risk of broken software deployments while
keeping a high pace of software releases, continuous delivery
([11]) introduces the concept of the deployment pipeline. Every
change to the software developed using the CD paradigm has
to pass all stages of this pipeline. An important principle is that
in case of failure, the team making the changes, the delivery
team, receives fast feedback. Every version of the software
that passes until the end of the pipeline is considered as stable.
The stages of such a deployment pipeline that are executed on
in a centralized software like Jenkins [12] or Go CD [13] are
illustrated in Figure 1 and described as follows:

Delivery 
Team

Version 
Control

Build & unit 
tests

Automated 
acceptance 

tests

User 
acceptance 

tests
Release

Check in

Check in

Trigger

Trigger

Trigger

Approval

Approval

Feedback

Feedback

Feedback

Feedback

Fig. 1. The deployment pipeline for software projects as suggested by [11].
Red: Test execution resulted in failure; green: tests succeeded.

Version control: Every change to the software is checked into
a Version Control System (VCS), e.g. Git. The VCS prevents
overwriting changes of source code files, when multiple
developers modify the same file. It also provides access to
historic versions of the source code and allows to revert
back to any state. After checking a change into the VCS,
the deployment pipeline is instantiated and the state of the
software code is passed through the following stages.

Build & unit tests: A build server picks up the change and
creates an executable build artifact by compiling the source
code. By creating the build on a centralized server, it
is ensured that the whole team is able compile and
release software. After successfully creating the build, unit
tests are executed following the technique of Test-Driven
Development (TDD). In case of any error, the pipeline is
stopped and humans informed about the issue. Fast feedback
regarding any failure is important for efficient software
development. On success, the next stage is triggered.

Automated acceptance tests: The particular steps in this
stage depend on the actual implementation of the deploy-
ment pipeline. The final result, however, is the knowledge
whether the created build artifact meets specified acceptance
criteria. Such criteria range from functional and integration
tests to capacity tests, and longer-lasting source code
analysis. Functional tests ensure that the functionality of
a software meets its specification. Integration tests ensure
that a part of the software works after integration with other
components. To execute all of these tests, a running version
of the software is required, which is therefore deployed into
a production-like system. This means that the environment,
where the tests run, matches the production environment
in terms of version and configuration of operating system,
libraries, and installed software. If all tests pass, the pipeline
is continued, otherwise the team is notified to adjust.

User acceptance tests: The Quality Assurance (QA) sign-
off, when testers manually verify the functionality of the
software, is the first human intervention after checking into
the VCS. As extensive automated tests in the previous steps
verified the basic feature set, the QA team has now more
time to focus on new features and exploratory testing. After
these manual tests, the build artifact is ready for release.

Release: Finally, the software release is installed on production
servers or, in case of on-premise software, it is made
available for customers. This can be triggered manually
in the CD software or completely automated.

The result of this process is the knowledge of the last state
of the software that is known to work, be it the new or an older
build. Automated tests reduce manual QA effort and duration
that a change takes to pass through the deployment pipeline.

Besides to software development, the continuous delivery
paradigm has been successfully applied to other areas. Modern
configuration management software, e.g. Chef [14], follow the
infrastructure as code paradigm to define the setup of an entity,
mostly a server including its application stack, as source code.
Any change to the configuration stored in a VCS goes into
production only if the new setup passes the pipeline.

III. CONTINUOUS DELIVERY OF NETWORK FUNCTIONS

Next, the suggested adaption of continuous delivery to
network operations is described. This does not mean that
network administrators will now become or be replaced by
software developers. Instead, network engineers should learn
from experiences made in software development. Similar





IV. DISCUSSION

This section briefly discusses the aspects that are in the
authors’ opinion worth noting to understand the reasons for
introducing CD for networks. A more detailed discussion can
be found in the extended paper version [15].

A. Releasing More Frequently

For agile software development, the ”highest priority is
to satisfy the customer through early and continuous delivery
of valuable software” [18]. Increased quality and productivity
through introduction of agile methods in software engineering is
reported in [19]. More releases do not mean more bugs, instead
that fixes are released faster is observed for Mozilla Firefox [20].
The number of outages triggered by software deployments for
Amazon.com was reduced by 75% [4]. A safety net provided by
automated deployments backed by tests instead reduces stress
for humans. In case of failures, the smaller amount of changes
deployed eases the root-cause analysis or rollback.

B. Adaption of Behavior-Driven Development to Networks

Behavior-Driven Development (BDD, [21]) allows also non-
technical people to write specifications in a natural language
style domain specific language called Gherkin. Giving such a
language with an implementation for the used SDN technique,
e.g. OpenFlow, network administrators could far easier adopt
the concepts of TDD and continuous delivery without know-
ing implementation details. An example of such a behavior
specification of an SDN controller is shown below.

Feature: Reactive mode

Scenario: Flow to unknown destination

Given the switch having a flow table with

no entries connects to the controller

And host A is connected to the switch

And host B is connected to the switch

When host A sends data to host B

Then the data should be received by host B

Listing 1: BDD specification of a reactive controller behavior.

C. Metrics

An essential part of CD and DevOps practices is the
collection if metrics, which means more than just monitoring of
bandwidth usage and QoS [22]. Instead, a data-driven culture
relies on aggregating data in order to allow engineers and
business units to make decisions based on measured truth
instead of assumptions. While a changed network parameter
does not necessarily result in a change of measured QoS, it can
affect performance of applications running on top. Collection
and aggregation of metrics can also include the number of
transactions in an online shop, where a large decrease of this
metric and network metrics can be correlated as well as matched
with the time of deployments. If a certain behavior is seen after
a change to the network or server infrastructure, this change is
likely to be the cause.

V. CONCLUSION

As every change introduces a risk of failures, traditional
networks are hardly changed. Softwarization of networks allows
agile methods also for management of IT infrastructure, which,
however, have to be supported by automated processes including
tests that bring the certainty that configuration changes or
updates will not harm. This paper described the established

concept of continuous delivery, an important technique for
agile and high-quality software development. The adaption of
this process to software-based networks in order to use agile
methods and risk-free deployments is the main contribution.
Usage of the infrastructure as code paradigm followed by
automated deployments of infrastructure ensures availability
and consistence of testing, staging and production environments.
Automated acceptance tests verify every change prior to
deployment into production infrastructure automatically, which
then happens automatically or through the push of a button. This
process was illustrated by describing the deployment pipeline
of an SDN controller, followed by a brief discussion.

ACKNOWLEDGMENT

This work has been performed in the framework of the
CELTIC EUREKA project SASER-SIEGFRIED (Project ID
CPP2011/2-5), and it is partly funded by the BMBF (Project ID
16BP12308). The authors alone are responsible for the content
of the paper.

REFERENCES

[1] TrustedSec. (2014, August) CHS Hacked via Heartbleed Vulnerability.
[Online]. Available: http://bit.ly/1to0fCd

[2] G. Cluley. (2014, August) Heartbleed blamed for hack
that put 4.5 million patients at risk. [Online]. Available:
http://grahamcluley.com/2014/08/heartbleed-chs-hack/

[3] J. Douglas. Deploying at GitHub. [Online]. Available:
https://github.com/blog/1241-deploying-at-github

[4] J. Jenkins, “Velocity culture (the unmet challenge in ops),” in O’Reilly
Velocity Conference, Jun. 2011.

[5] R. Ahmed and R. Boutaba, “Design considerations for managing wide
area software defined networks,” Communications Magazine, Jul. 2014.

[6] H. Kim and N. Feamster, “Improving network management with software
defined networking,” Communications Magazine, Feb. 2013.

[7] M. Jarschel, F. Wamser, T. Höhn et al., “SDN-based Application-Aware
Networking on the Example of YouTube Video Streaming,” in European
Workshop on Software Defined Networks, Berlin, Germany, Oct. 2013.

[8] ETSI, “Network Functions Virtualisation (NFV); Archit. Framework.”

[9] S. Gebert, D. Hock, T. Zinner et al., “Demonstrating the Optimal
Placement of Virtualized Cellular Network Functions in Case of Large
Crowd Events,” in ACM SIGCOMM, Aug. 2014.

[10] ETSI, “Network Functions Virtualisation (NFV); Terminology for Main
Concepts in NFV,” Oct. 2010.

[11] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation, 2010.

[12] Jenkins CI server. [Online]. Available: http://jenkins-ci.org

[13] go continuous delivery. [Online]. Available: http://www.go.cd

[14] Chef. [Online]. Available: http://www.chef.io/chef/

[15] S. Gebert, C. Schwartz, T. Zinner et al., “Agile management of software
based networks,” University of Würzburg, Tech. Rep. 493, 2015. [Online].
Available: http://www3.informatik.uni-wuerzburg.de/TR/tr493.pdf

[16] M. Jarschel, C. Metter, T. Zinner et al., “OFCProbe: A Platform-
Independent Tool for OpenFlow Controller Analysis,” in IEEE Interna-
tional Conference on Communications and Electronics, Aug. 2014.

[17] P. Wette, M. Draxler, and A. Schwabe, “Maxinet: distributed emulation
of software-defined networks,” in Networking Conference, 2014.

[18] K. Beck, M. Beedle, A. van Bennekum et al., “Manifesto for agile
software development,” 2001.

[19] A. Ahmed, S. Ahmad, N. Ehsan et al., “Agile software development:
Impact on productivity and quality,” in IEEE ICMIT, Jun. 2010.

[20] F. Khomh, T. Dhaliwal, Y. Zou et al., “Do Faster Releases Improve
Software Quality? An Empirical Case Study of Mozilla Firefox,” in
IEEE Working Conference on Mining Software Repositories, Jun. 2012.

[21] D. North, “Behavior modification - the evolution of behavior-driven
development,” Better Software Magazine, Jun. 2006.

[22] J. Roche, “Adopting devops practices in quality assurance,” Communi-
cations of the ACM, Nov. 2013.


