
Quality of Service on Services Selection using Anycast Techniques: a Convergence
Analysis

Lucas J. Adami ∗, Julio C. Estrella ∗, Stephan Reiff-Marganiec † Rafael M. de O. Libardi ∗,
∗ University of São Paulo (USP)

Institute of Mathematics and Computer Science (ICMC), São Carlos-SP, Brazil
Email: {ljadami, jcezar}@icmc.usp.br

† University of Leicester
University Road, Leicester, LE1 7RH - UK

Email: srm13@le.ac.uk

Abstract—Anycast is an effective technique to select sys-
tem servers among many and by spreading client requests
achieve high performance and scalability. In our previous
work, we presented the Global Application Layer Anycast
(GALA) system. By combining real time network distances
measures and geolocation, it performed better than its inherited
algorithm, GAA. In this work we analyze how fast the GALA
algorithm can find the best server to attend a client request
and comparing its convergence to GAA. Using simulations,
we show that it converges much faster and we propose a
maximum selection time metric to be used in the selection
process. Experimental results reveal that the GALA algorithm
is two times better than the GAA considering the metric
proposed.

Keywords-anycast; service selection; quality of service; dis-
tributed systems;

I. INTRODUCTION

In systems with high demand, a set of servers are used
to attend to the clients requests. That way, the load is
spread through these nodes and the systems scalability is
significantly improved. Among the techniques used for this
goal, anycast as proposed by Partridge et al. [1] is an
effective one. The main idea is to map servers to the same
IP address. Then, the clients send requests to the mapped IP
and the network is responsible to route the packets to the
best server using metrics, such as router hops, as parameters.

Some works [2] [3] [4] exploring the application layer
anycast predict the distance between the client and a server
to select a node. However, researches [5] [6] show that these
predictions can influence the selection accuracy resulting in
inaccurate choices. Some works [7] [8] use real measures
(round trip time, RTT) to find nearby servers, but they also
have problems that affect the overall performance. Yet, the
flexibility of the metrics used is not explored by any of the
cited works. They are limited by the node distances and
server loads.

In previous work [9], we proposed an application layer
anycast system that combined both predictions and real time
measures of the distance between nodes. It is called GALA,
Global Application Layer Anycast. The results showed that

our system was better than a previous one, GAA, that uses
only real time measures. In this paper, our contribution
is an analysis of the convergence speed of the GALA
algorithm and a new metric proposal for the application
layer anycast systems, the maximum selection time. The
simulation results show that the majority of the requests in
GALA already converge in 150 milliseconds while in GAA
it takes approximately 450 milliseconds to reach this state.
The results show that under this metric GALA significantly
outperforms GAA due to a much faster convergence.

II. RELATED WORK

We classify available application layer anycast systems
in prediction systems and real measures systems. Many
systems predict server distances to select the best node
available. OASIS [2] (Overlay-based Anycast Service In-
frastructure) classifies a server locality using IP prefixes.
Proxima [3] is based on network coordinates (NCs). NCs are
an estimate of the location of a node in a network. DOAT
[4] (Distributed Overlay Anycast Table) uses spacial filling
curves combined with NCs to find close system nodes. As
cited before, even though the prediction can improve the
anycast system performance, it can result in inaccurate server
selections [5]. According to the research of Xing et al., the
network topology further influences the prediction accuracy
[6].

There are also anycast systems that use real time measures
to find nearby system nodes. They use RTT as a metric.
AICN [7] (Anycast for Information Centric Network) com-
bines IP layer anycast and application layer anycast, also
considering server loads in the server search. However, by
using IP layer anycast, the system inherits all its drawbacks,
such as the need of special routers for anycast packets
routing. GAA [8] (Global Application-layer Anycast) groups
its servers in concentric rings. The main problem of this
architecture lays in the initial server selection. When a client
requests a service, a random server node is chosen to route
their request. Because the servers are globally spread, if a



distant initial node is chosen, the algorithm takes more steps
to converge. Thus, the total request time increase.

III. DESIGN DETAILS

Figure 1 illustrates the GALA system. An anycast query
comprises six main steps. First, the client retrieves a list of
available resolvers (1). Then, using this list, it sends a query
to the first resolver (2) (in order they appear on the list).
After that, the resolver searches for the queried name in a
domain names server (3). The answer contains an IP address
of a valid system server. Using this initial IP, the resolver
iteratively probes this server and its neighbours until a good
server is found (4). The chosen server is returned to the client
which invokes the service directly to the selected node (5).
Finally the node will receive the request and process the
result consulting service data if necessary (6).

Client
Resolvers List

Publisher Servers

1

2

3

4

5
6

Resolver

Client Application

Resolvers List DNS/HTTP

GALA Resolver

Service Data
GALA Daemon

Service Handler

Figure 1. GALA system overview.

A. Clients

The client is responsible to send anycast requests to the
GALA system and receive the responses in a transparent
way. An anycast request is a domain name query for a name
in the form *.any. The client application is responsible to
generate such requests.

B. Publishers

Publishers are nodes that contain the system servers
location data. In our proposal, we use a DNS server.

We know that the geographic distance between nodes is
correlated to the network distance (RTT) [9]. Therefore,
to map the servers, we use geolocation. There are many
available geolocation databases on the Internet. For GALA,
we chose MaxMind. Comparative studies [10] [11] showed
that MaxMind has the best results comparing to the other
free databases.

The servers are mapped into regions (grid). This mapping
is done using the formulas described in [9]. Each area has a
representative name in the domain name system, in the form
xXyY.service.url. System servers are aware of this mapping
and know which area they belong to. Thus, once they enter
the system, they send register requests to the DNS server in
these mapped areas. That way, each area name registry will
contain all servers within that region.

C. Resolver

The GALA resolver application receives domain name
queries from clients and answers them. If the name to be
resolved is a traditional one, the query is resolved using the

system traditional routines. If the name to be resolved is an
anycast name, it processes it in four main steps.

First, the GALA resolver consults the geolocation
database that contains IP addresses and their respective lati-
tude and longitude locations. By knowing the client location,
the resolver builds a domain name based on these values,
using the equations cited before. Then, the GALA resolver
asks the publisher for the mapped domain name records.
Using the list returned, the resolver randomly chooses an
initial one and starts the search algorithm described in [9].

Then, after selecting a server, the resolver returns it as an
answer to the client application, which invokes the service
directly on the server.

D. Servers

Servers offer the service to the clients. They typically
have three modules: the service handler, the service data
and the GALA daemon. The service handler is the service
application itself. The service data is the information stored
in the node that is required for the execution of the service.
Finally, the GALA daemon is responsible for integrating the
node with the entire system.

The GALA daemon is responsible for registering the
server into the system, update neighborhood information and
answer resolver messages.

GALA servers only keep information of a portion of
system nodes. These nodes are called neighbors. The neigh-
borhood is formed by concentric rings. Further servers fall
in outer rings and closer servers fall in inner rings. The
distance is defined by the RTT.

IV. PERFORMANCE EVALUATION

In our previous work [9] we showed that GALA results in
better service execution, decreasing the number of hops and
total request time. Also, it maintained the selection efficiency
if compared with GAA. We consider the efficiency as the
ratio of the real closest server distance and the distance of
the server found by the system.

A. Experimental Setup

We executed a complete factorial experiment, with two
levels for each factor. For the results analysis, we used
linear regression. Also, we generated the graphics using the
Minitab software 1.

With the performance evaluation, we wanted to show the
convergence of the GALA algorithm compared to the GAA
algorithm. The convergence is important because the faster
an algorithm converges, the faster it can resolve requests
within a time limit, respecting possible request time limit
constraints. To do so, we executed many experiments using
the same simulator of our previous work. We used two
factors, each one with two levels. The factors used are

1Minitab: http://www.minitab.com



algorithm and input data with levels GAA/GALA and Planet-
Lab/Geonames, respectively. On the first input configuration,
we use PlanetLab nodes as servers and Geonames as clients.
On the second, we swap their roles.

To show convergence, we consider histograms to analyze
the distribution of the requests total times. In addition,
by using a cumulative histogram, we plot a fitted normal
demonstrating the percentage of requests that already fin-
ished over time.

B. Results

Figure 2 shows the histogram of the request total latencies.
The first panel shows the result for the first input configura-
tion, while the second shows the result for the second input
configuration.

In our simulation, we do not simulate service execution.
Thus, we consider total latency as the time from client
requesting a service until the answer of the system with
the best node available. The x axis represents the observed
latencies. The y axis shows the total amount of requests
that took the observed time to select the best server, as
percentage.

Figure 2. Histogram of latency.

It is possible to observe the randomness of the request
times for the GAA algorithm. This happens because of the
initial server selection, which is done randomly. On the
other hand, GALA observations tend to accumulate near the
origin. This behaviour is the expected one, as the GALA
algorithm tries to use nearby servers to start the search
process. Also, the input data change does not affect the
overall observations much.

Figure 3 shows the accumulated frequencies of the request
latencies. The graph curves are fitted normals and were
generated by Minitab. Each panel shows the accumulated
frequencies for an input configuration. The x axis represents
the observed latencies. The y axis shows the total amount
of requests that took the observed time or less to select the
best server, as percentage.

Figure 3. Accumulated histogram of latency.

This Figure illustrates clearly that GALA reaches its
convergence in much less time than GAA. For example,
considering the left panel, 100% of the requests already con-
verges by 150 milliseconds, while, in GAA, this percentage
is near 30%. This fact repeats for the right panel. Also, the
input once again did not influence the algorithms behaviour
significantly.

C. Limiting the Maximum Selection Time

Service Level Agreements (SLAs) are a contract between
the server and the client involving some quality of service
parameter.

In the application layer anycast systems studied [4] [2] [3]
[7] [8] [12], the authors limited the use of the metrics for
selecting a server by means of network distance and server
load. In our system, we propose the use of a well-known
SLA, the maximum server selection time. This metric is
defined by the client and tells how much time the system
has to select a server to attend the client request.

This new metric fits well on our system because it is based
on iteration. Also, the system transparency achieved does
not prevent its usage. Clients send anycast queries using the
domain names in the format of domain.name.any. If they
want to define a maximum selection time, they query the
following: domain.name.any%mst=1000. MST stands for
maximum selection time and 1000 means that the algorithm
has one second to select the best server.

The system resolver will parse the query string and will
notice the SLA appended to the anycast domain name. Then,
on the search algorithm, it will take action so a server is
returned before the time expires. To do so, it sets a timer that



expires on the given MST. When the time has passed, the
currently selected server (in the current iteration) is returned.

We analyzed how the GALA system behaves using this
SLA, compared to GAA. Table I shows possible maximum
selection times and how many requests GALA and GAA
systems would attend with the best known server. It consid-
ers both input data configurations.

MST (ms) % of Requests GALA % of Requests GAA
25 36.1119 4.3399
75 79.9391 17.0272

125 95.5922 24.5248
175 99.7261 32.5492
225 100 48.0782
325 100 91.7416
350 100 97.3455
375 100 99.3375

Table I
MAXIMUM SELECTION TIMES.

It is important to note that the best known server does not
necessarily mean the best server. In our previous work we
showed that both GALA and GAA have approximately 95%
of accuracy. In addition, if the server is unable to converge
before the selection time expires, it does not mean that the
selection failed. It will return the currently selected server,
which is the best one for the current algorithm iteration.

Analyzing the Table, it becomes clear that GALA can
attend a client SLA better than GAA. By a 125 MST value,
it can comply with the quality of service on 95% of the client
requests, while in GAA, this value is under 25%. GAA will
reach its optimal state with an approximate 350 MST value,
being able to attend 99% of the requests. GALA will offer
the same quality with a 175 MST value, exactly half of the
time for GAA.

V. CONCLUSION

As we discussed, the GALA algorithm converges much
faster than GAA. This happens because GALA will always
consider close servers to the client by using geolocation, so
the probed servers by GALA are closer which decreases the
resulting request total time.

Yet, we added an SLA metric on the server selection,
the maximum selection time. Knowing that our algorithm
converges faster than GAA, we only confirmed its results
by presenting a table with MST examples. Overall, GALA
was two times better than GAA considering this metric.
Furthermore, we affirm that the metric added to the system
fits well on application layer anycast systems, especially
ours.

For future work, we plan to deploy the GALA system in
a real environment. Then, we will also consider server loads
on the selection algorithm. The deployment experiment will
help us confirm our algorithm efficiency.

ACKNOWLEDGMENT

We would like to thank FAPESP (Fundacão de Amparo
à Pesquisa do Estado de São Paulo) for the support of this
research (Process 2014/10771-7 and 2013/05635-4). Also,
we would like to thank ICMC-USP (Institute of Mathematics
and Computer Science) and the LaSDPC (Distributed Sys-
tems and Concurrent Programming Laboratory) for offering
the necessary equipments and laboratories for this study.

REFERENCES

[1] T. M. C. Partridge and W. Milliken, “Host Anycasting Ser-
vice,” 1993, rFC 1546.

[2] M. J. Freedman, K. Lakshminarayanan, and D. Mazières,
“OASIS: anycast for any service,” in Proceedings of the 3rd
conference on Networked Systems Design & Implementation
- Volume 3, ser. NSDI’06. Berkeley, CA, USA: USENIX
Association, 2006, pp. 10–10.

[3] G. Wang, Y. Chen, L. Shi, E. K. Lua, B. Deng, and X. Li,
“Proxima: Towards Lightweight and Flexible Anycast Ser-
vice,” in INFOCOM Workshops 2009, IEEE, 2009, pp. 1–2.

[4] E. Mykoniati, L. Latif, R. Landa, B. Yang, R. Clegg, D. Grif-
fin, and M. Rio, “Distributed overlay anycast tables using
space filling curves,” in INFOCOM Workshops 2009, IEEE,
2009, pp. 1–6.

[5] R. Zhang, C. Tang, Y. Hu, S. Fahmy, and X. Lin, “Impact of
the inaccuracy of distance prediction algorithms on internet
applications - an analytical and comparative study,” in INFO-
COM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, 2006, pp. 1–12.

[6] C. Xing and M. Chen, “Impact of network topology on
distance prediction accuracy,” in Networking, Sensing and
Control, 2008. ICNSC 2008. IEEE International Conference
on, 2008, pp. 1425–1429.

[7] S. Yuan, T. Lin, G. Zhang, Y. Li, H. Tang, and S. Ci, “A future
anycast routing scheme for information-centric network,” in
Communications (APCC), 2012 18th Asia-Pacific Conference
on, 2012, pp. 173–178.

[8] Z.-Y. Ma, J. Zhou, and L. Zhang, “A Scalable Framework for
Global Application Anycast,” in Information and Computing
Science, 2009. ICIC ’09. Second International Conference on,
vol. 1, 2009, pp. 250–253.

[9] L. J. Adami, J. C. Estrella, E. M. de Oliveira, and S. Reiff-
Marganiec, “Providing Quality of Service on Services Se-
lection using Anycast Techniques,” in IEEE SCC, 2014. 11th
IEEE International Conference on Services Computing, 2014.

[10] Y. Shavitt and N. Zilberman, “A geolocation databases study,”
Selected Areas in Communications, IEEE Journal on, vol. 29,
no. 10, pp. 2044–2056, 2011.

[11] B. Huffaker, M. Fomenkov, and K. Claffy, “Geocompare: a
comparison of public and commercial geolocation databases,”
May 2011.

[12] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: a
lightweight network location service without virtual coordi-
nates,” New York, NY, USA, pp. 85–96, 2005.


