
URL Forwarding for NAT Traversal

Md. Ahsan Raza, Reaz Ahmed and Raouf Boutaba
School of Computer Science, University of Waterloo
Email: {m6raza, r5ahmed, rboutaba}@uwaterloo.ca

Abstract—Rapid technological advancement has induced
widespread adoption of smart, powerful and multi-purpose end-
user devices (e.g., phones, tablets, set-top boxes, gaming console
etc.) in our daily life. Unfortunately, the available mechanisms
for accessing, configuring and controlling these devices are still
primitive, and require physical access to the devices. Enabling
remote access to these devices through a widely used protocol,
such as HTTP, can significantly improve their usability and
can foster innovative applications. However, the end-devices are
often NATed by home gateways, which is not suitable for HTTP
access over the Internet. In this work, we present a mechanism
for seamless traversal of HTTP traffic through home gateways.
Our approach builds upon the existing Web-technology. It allows
remote access using global DNS names, despite the end-devices
having local IPs. As a proof of concept, we realize the proposed
architecture on the well-accepted OpenWRT platform, and report
experimental results on device access performance.

I. INTRODUCTION

End user devices such as smart phones, tablets, TV set-
top boxes and gaming consoles, have evolved significantly in
processing power, storage, battery life and network connec-
tivity. These devices are becoming cheaper every year, and
offering wider range of capabilities including GPS, gyroscope
and accelerometer. However, we need to have physical access
to these devices to use their capabilities.

Remote access to the end-devices can foster a wide-range
of applications such as hosting content directly from a device,
remote control and configuration, remotely access on-device
sensors and camera, etc. The impact can be significant. For
example, we can achieve better privacy and control over shared
personal content if we can host them from our own devices.

In order to grant remote access to the end devices, we have
to address three eminent issues: a) access protocol, b) naming
and c) NAT (Network Address Translation) traversal. First, end
devices come from different vendors. They have heterogeneous
capabilities. Thus, converging to a single protocol to access
every end device is challenging. Secondly, a globally unique
name is required for identification and remote access. The
naming system has to efficiently handle billions of names, and
frequent change in name to address association. Third, end
devices are usually behind NAT boxes, which makes it very
difficult to establish incoming connections for hosting services
in these devices.

The first two issues, i.e., access protocol and naming, can
be addressed by using Hypertext Transfer Protocol (HTTP).
HTTP has become the de facto communication protocol for
online services and applications, including video streaming
(e.g., YouTube), peer-to-peer file sharing (e.g., BitTorrent) and
online collaborative document editing (e.g., Google Docs).
Programming tools for HTTP server and client development

are available for almost every platform. The naming mecha-
nism used by HTTP is URL, which is also widely accepted. It
is a natural consequence to name the end devices using the host
name part of an URL. Name resolution mechanisms offered
by DDNS and pWeb [1] offer dynamic binding and efficient
resolution of DNS names to end devices.

Unfortunately, the available mechanisms for addressing
the third issue, i.e., NAT traversal, are not adequate. They
require manual configuration or adhoc patches. In this work
we propose URL forwarding – a simple mechanism for HTTP
traffic traversal through NAT boxes (or home gateways). Our
approach builds upon the existing Web-technology. It allows
remote access using global DNS names, despite the end-
devices having local IPs. We have made our solution available
for public use at pwebproject.net/url-forwarding.

The rest of this paper is organized as follows. In Section II,
we present an overview of URL forwarding and its benefits.
Section III presents our solution for implementing URL for-
warding within a home gateway. Our experimental testbed
and performance evaluation are presented in Section V. An
overview of the existing NAT traversal mechanisms and their
comparison to URL forwarding is presented in Section VI.
Finally, we conclude in Section VII.

II. URL FORWARDING AND BENEFITS

A. An Overview

DNS maps fully qualified domain names (e.g.
www.google.com) to static IP addresses so that the users do
not have to remember the IP address of the server. Instead,
they can use easy to remember names. One drawback of
using DNS is that not everyone willing to serve content and
services has a static IP address. For example, regular Internet
users receive temporary public IP addresses that change over
time. A number of systems including pWeb and numerous
DDNS providers allow end-users to obtain DNS names and
dynamically attach IP addresses to those names. However, it
remains the responsibility of the user to redirect incoming
traffic to the devices behind their home gateways. Usually a
home gateway implements a NAT mechanism to multiplex
incoming requests to the local devices. There are different
types of NATs and traversal mechanisms, but they share a
common problem – local devices find it difficult to create
server sockets for hosting any service for users outside the
local network.

The proposed URL forwarding mechanism allows seamless
traversal of HTTP traffic through home gateways. We assume
that a user has obtained DNS-compatible names for his/her end
devices and has the means to associate their home gateway’s
public IP address to his/her device names. For our imple-
mentation we have used pWeb’s naming system. However the

URL forwarding mechanism presented in this paper is equally
applicable to any DDNS provider. Below is an outline of the
proposed URL forwarding mechanism: a) We install a web
request interceptor (WRI) module in the home gateway or on
a standalone machine in the local network. For the second case,
we need to add a port-forwarding entry in the home gateway
that points to the machine running the WRI. In both cases, the
WRI will be listening to the incoming HTTP traffic and will
work as a reverse-proxy; b) A local device registers its DNS-
compatible name and local IP address with the WRI using
standard HTTP messages; c) All incoming HTTP messages
are forwarding to the WRI, which extracts the target URL
from the HTTP message header. Then it looks up its local
registration database for a match and forwards the request to
the registered local device.

B. Benefits

The proposed URL forwarding technique has the following
benefits compared to conventional NAT traversal mechanisms.

1) Simplicity: NAT traversal mechanisms do not provide
any explicit way for an end-device to notify a home gateway
that it wants to listen (i.e., open a server socket) on a specific
port. As a result, some complicated adhoc measure is required
to install a forwarding rule at the home gateway. On the
contrary, the proposed URL forwarding mechanism provides
simple HTTP message for explicit device registration.

2) Identification: In NAT traversal, local devices are iden-
tified by their IP addresses. Every time a device reconnects
it gets a new IP address. So, there is no way to identify a
returning device. Whereas, for URL forwarding, devices are
identified by their globally unique URL. A home gateway
can use this URL for identifying a returning device and
automatically register it.

3) Standardization: Since URL forwarding uses the stan-
dard HTTP protocol and a few well-defined messages, it will
be easy to standardize and implement in all platforms.

4) Innovation: A home gateway can work as a local name
resolver and thus can support many new applications, such as
automatically syncing devices as they become available in the
local network, managing devices from a single node in the
network etc. On the contrary, NAT traversal mechanisms rely
on IP address and allow requests from selective sources only.

C. Integration with the Internet

URL forwarding provides a mechanism for multiplexing
HTTP request to multiple local devices through a home
gateway. There are two prerequisites for URL forwarding: a)
acquire DNS names for each end device and b) associate a
local device name to its gateway’s public IP address. DDNS
and pWeb are two alternative ways to fulfill these two prereq-
uisites. To use DDNS, one has to subscribe to a provider (e.g.,
dyndns.com or noip.com) and configure his home gateway (or
a local machine) to bind the gateway’s IP address to the DNS
name given by the DDNS provider. Each DDNS provider uses
its propitiatory communication protocol and are not compatible
with each other. pWeb, on the other hand, is an open system.
In pWeb a user can pick his own DNS name and can contribute
to the name resolution process. In addition, pWeb allows

a user to advertise his local services/contents to the World
through an open search engine. Considering the flexibility in
pWeb, we have made our prototype implementation compatible
with pWeb messaging. However, the proposed concept and
implementation can easily work with any DDNS provider.

III. THE PROPOSED APPROACH

In this section we present the high level architecture of
our solution. Figure 1 illustrates the functional components of
the architecture and how they interact with each other. There
are three major components in the solution: 1) Web Request
Interceptor (WRI), 2) device tracker and 3) updater.

Device 2

Local Area Network

pWeb

Home
gateway

Device 1

user

3. Device name
resolution

WRI

5. Request proxied

2. register with
Web Server

1. register with pWeb Homeagent

4. Access device 1

Forwarding
Table

Device
Tracker

Device DB

EPGW : NXPort

IPGW : NIPort
IP1

IP2

Updater

Updater

WRI : Web Request Interceptor

Legend

EPGW : External home gateway port

IPGW : Internal home gateway port

NXPort : External port WRI is listening on

NIPort : Internal port WRI is listening on

IPX : Internal IP address of device X

Fig. 1: Proposed System Architecture

1) Device Tracker: The device tracker runs in home gate-
way and maintains a database of all devices in the network
that are registered with WRI. Every time an Updater in
an end device calls the Device Tracker, which updates the
device database (DB) with the device’s DNS name, internal
IP address, listening port and a PREFIX LEN (more details
below). Based on the content of the database, the device tracker
updates the forwarding table. Then, the device tracker sends
a command to WRI and instructs it to reload the updated
forwarding table. With its configuration up to date, WRI then
plays its role to proxy all incoming traffic to the appropriate
device.

2) WRI: The WRI runs on the home gateway and is a
crucial component in our solution. In principle, the WRI is
a web server that works as a reverse proxy in our solution.
The WRI listens on a standard port (e.g., 80 or 8080). It
intercepts the incoming HTTP messages and finds the target
URL by inspecting the HTTP request header. Then it looks
up its internal forwarding table to find the local IP address of
a registered device that matches the target name. Each entry
in the forwarding table has a PREFIX LEN that governs the
number of DNS name prefixes to match. Full DNS name is
matched if the PREFIX LEN is set to zero. Devices using
pWeb should set the PREFIX LEN to 3 since names in
pWeb are of the form devicename.username.servername.dns-
suffix. In pWeb, the dns-suffix points to a DNS server that

works as a gateway between DNS and pWeb. For exam-
ple, the name nexus.bob.uwaterloo.dht.pwebproject.net refers
to the nexus phone of user bob, who is registered to the
uwaterloo server. Here, nexus.bob.uwaterloo is a unique name
in pWeb and dht.pwebproject.net points to a DNS gateway.
There can be many DNS gateways, and the dns-prefix will
change accordingly. For example, if a user uses mygw.ca as
the DNS gateway then bob’s home gateway will see the name
nexus.bob.uwaterloo.mygw.ca in HTTP header. After inferring
the target device, the WRI forwards the request to the target
device which sends a response back to the requester.

3) Updater: The updater runs on an end-device and regis-
ters the device with WRI and with pWeb. When a user turns on
his device, the updater is loaded and the user provides his or
her pWeb credentials and other meta-information. The updater
then invokes the Device Tracker to register itself with WRI. It
then updates its network address (IP:port) with pWeb.

IV. FUNCTIONAL OVERVIEW

A. Device registration

Updater WRI
Device
Tracker

pWeb

saveToDeviceDB()

updateForwardingTable()

update_device (EPGW, NXPort, deviceName)

registerDevice(devicePort)

Ack

Ack

Fig. 2: Registration with device tracker and pWeb

Figure 2 illustrates the process to register a device with
WRI and pWeb. Upon start up, the updater software collects
user’s pWeb credentials and the port number of any web
service that the user wants to host from his device. The updater
then registers the device using the following steps:

First, the updater invokes the update device message from
pWeb’s REST API (see developer.pwebproject.net for details).
The update device message requires several pieces of infor-
mation including the public IP address (EPGW) of the home
gateway, the listen port (NXPort) of WRI and the user’s pWeb
credential. EPGW can be extracted in different ways, such
as calling a public server to return the address or using one
of pWeb’s servers. The NXPort is retrieved using the web
interface exposed by WRI. The user’s pWeb credentials are
collected from the user in the very first step.

With all the necessary information available, the updater
module invokes a pWeb’s server (aka home agent), e.g.,
uwaterloo.pwebproject.net, to updates the device’s network
address. pWeb only supports HTTPS to register devices so that
the user’s credentials are encrypted when they are sent over the
Internet. After a successful update, pWeb adds a DNS entry
for the device (e.g., nexus.bob.uwaterloo) that points back to
the the home gateway (i.e., EPGW : NXPort).

After updating pWeb, the updater registers with the device
tracker. For this registration, the updater extracts metadata

information such as the local IP address of the home gateway.
The updater calls a server process running on the home
gateway (device tracker in our case) that will register the
device. The updater provides the relevant peer data (collected
or computed previously) to this process: the device DNS name
in the pWeb system, the listening port on the device and the
private IP address of the device. The process does some basic
data validation (e.g. ensures the device port is valid) then goes
on to update its own internal database containing the devices
that are registered with WRI. If a device with the same DNS
name already exists, the IP address is updated. If, for any
reason, the pWeb registration process fails, the registration with
the reverse proxy server on the home gateway is halted.

B. Name Resolution and Content Request Process

Figure 3 illustrates the process of accessing a device behind
a home gateway. First an external user, willing to access a
NATed service, makes a DNS request to resolve the device
name (e.g., nexus.bob.uwaterloo.dht.pwebproject.net). The
DNS forwards the resolution request to the pWeb name reso-
lution system via a DNS gateway (here dht.pwebproject.net).
pWeb in turn finds the home agent (here uwaterloo) and
retrieves the network of address (EPGW : NXPort) of the
home gateway. It should be noted that this two step name
resolution process remains transparent to the end users.

User pWeb WRI

resolveDNSName
(deviceName)

Serving
Device

EPGW:NXPort

HTTP GET/POST
(deviceName)

response
response

proxyRequest

Forwarding
Table Lookup

Fig. 3: Name resolution and device access process

After learning the home gateway’s network address, the ex-
ternal user (usually a web browser) makes a HTTP GET/POST
request to the home gateway. Upon receiving the HTTP
request, the WRI inspects the ”Host” header field and obtains
the global DNS name of the target device. This information
is enough for the WRI to know which device to forward the
request to. The WRI maps unique DNS names to the internal
IP addresses of the registered devices within the network.
It received this information, along with the port on which
the peer’s server process is listening on, during the peer
registration process. With the internal IP address and port
of the producer peer known, the WRI proxies the request
to that IP address and port. The web service running on the
serving device processes and responds to the request. The WRI
receives the response and sends it back to the external user. The
WRI listens on a single port, yet it may forward the request
to multiple devices in its local network.

C. Auto-register and Auto-unregister Process

The idea behind auto registering and auto unregistering
devices is two fold. First, it makes the solution more user-
friendly in that users do not need to register their devices

constantly whenever they move in and out of the same network.
Second, it lets the WRI only serve the devices that are still on
the network, which improves performance. Any device that
exits the network will be automatically unregistered.

When a device successfully registers itself for the very
first time, the updater persists the state to a local persistent
store. The updater then registers the device with the WRI
every 5 minutes. The device tracker module in the home
gateway registers the device. In addition, it stores the time of
registration. The updater adds itself to the operating system’s
startup sequence (if applicable). Next time the operating sys-
tem boots up, the updater reads from its persistent store, and
sees that it had previously registered a user and therefore it re-
registers that user. The device tracker re-registers the device
with effectively no change, however, it updates the device
registration time and network address.

The home gateway uses soft registration. If a device’s
last registration time in the forwarding table is older than 20
minutes, it is automatically unregistered and the corresponding
entry in forwarding table is removed. This ensures freshness
of all devices registered with the reverse proxy server.

D. Security

In this section we discuss a few of the security aspects
that may affect our solution. We briefly discussed one security
issue in Section IV-A, i.e., a malicious user masquerading as a
genuine user and being able to receive the requests targeted to
the genuine user. This vulnerability can exist if a device can
be registered with WRI without any authentication. A genuine
user may register a device with pWeb and then with WRI.
A malicious user can subsequently register his/her device with
WRI by invoking a simple HTTP GET request. If the malicious
user knows the genuine user’s pWeb username, device name
and home agent name, (s)he can register for the device to
receive requests targeted to the genuine user.

One way to potentially fix this issue is to pass the user’s
pWeb credentials to the server process that performs the
registration with WRI and have it ensure that the user’s pWeb
credentials are valid before registering with WRI. This will
ensure that only the genuine users can register. However, this
also means that one should use encryption (e.g. HTTPS) to
transport the data between the device and the registration
process, since the user’s pWeb credentials are now being sent
over the network.

Another vulnerability can exist if the auto register func-
tionality is implemented, and the user’s pWeb credentials are
saved in a persistent store without being encrypted. There are
many techniques used by browsers to encrypt users’ passwords
before being saved to a persistent store. Zhao et al. [12]
presented a technique that can be used by browsers to save
users’ password in a secure manner to a persistent store.
Similar techniques should be used to encrypt users’ passwords
when they are saved by the updater module.

V. EVALUATION

A. Experimental Setup

We setup an experimental environment based on the ar-
chitecture proposed in Section III. We first needed a home

gateway platform that could support a reverse proxy web
server as well as dynamic server-side languages such as PHP.
OpenWRT, a linux variant, is such a home gateway platform.
It supports a large number of home gateway hardware1. Most
importantly, it supports running reverse proxy web server
software and PHP2 within its environment. Given these char-
acteristics, we decided to use OpenWRT as the home gateway
platform for our experiment.

Given that we need a web server that can work as a reverse
proxy, we chose nginx that is a well-known, high performance
web server. PHP is a widely used server-side language that is
easily deployable in linux environments, so we chose PHP for
developing the server-side processing software.

To setup a working environment, we deployed a virtual
network using Oracle Virtual Box. The host machine had
Windows 8.1 with an out of the box Intel Core i7-3770
processor at 3.4 GHz and 12 GB RAM. We setup an OpenWRT
VM for emulating the home gateway, and provided it with a
single core processor and 256 MB of RAM. The OpenWRT
VM had two network interfaces: one that allows the VM
to connect to the Internet, while the other one allows local
ndevices to connect to the OpenWRT VM and make the
OpenWRT VM their home gateway. To simulate devices on the
network, we setup up to 7 Ubuntu VMs, each with two cores
and 1 GB RAM. The devices had a single network interface
to connect to the OpenWRT VM.

We then installed nginx and PHP on the OpenWRT VM.
Nginx listened on port 8080 for external requests. For registra-
tion requests from within the network, nginx listened on port
8980 locally. On the Ubuntu VMs, we ran Apache web server
to listen to and respond to requests from the external users.

We wrote a device tracker as described in Section III
using PHP. The device tracker script uses a binary file as
its device database. When a device requests to register with
nginx, the device tracker saves the device information to its
internal database and updates nginx configuration file. Then it
sends a reload signal to nginx, which forces nginx to reload
its configuration. To register the Ubuntu VMs with pWeb and
nginx as described in Section III, we developed the Updater
module in Java. After registering the device with pWeb and
nginx, we were able to receive requests using the global device
name from users outside the network and respond to those
requests.

B. Performance Results

1) Performance Results for the Proposed Architecture:

Test case - basic RTT: We first evaluate the perfor-
mance of basic RTT: the end-to-end time it takes for the
response to a request to return to a peer after they issue
the request through the device’s pWeb name. We control for
two variables in the response times: effects of pWeb DNS
resolution time and effects of webpage caching.

Test methodology: We host a webpage of negligible
size on 4-7 Ubuntu VMs, with each VM representing a device,
and measure the response time. From two separate machines,

1http://wiki.openwrt.org/toh/start
2http://wiki.openwrt.org/doc/howto/http.nginx

placed 150 kilometers away from each other, we ran a process
on each laptop lasting 3 minutes that simultaneously sent a
varying number of requests per minute to each device. This
process was then terminated, and a new instance of the process
started. The process ran for a total of 10 times. We averaged
the results of the 10 processes and then averaged the results
from the two laptops. The final value calculated represents a
single data point on a graph. The amount of requests sent per
minute per device varied from 1 - 300 depending on the test.

Effects of pWeb DNS name resolution time: We attempt
to reach the producer peer’s device through two paths: through
the device’s pWeb name and directly through the home gate-
way’s public IP address. To reach the device directly through
the home gateway’s public IP address, we send an HTTP
request as usual but use the home gateway as the proxy server.
This method retrieves the page directly from the server without
going through pWeb. We can measure the performance of the
system with and without the latency caused by pWeb DNS
name resolution. Figure 4a considers only the requests that
were made via the device’s pWeb name. Figure 4b considers
only the requests that were sent directly to each device through
their home gateway’s IP address.

Effects of webpage caching: We measure the response
times depending on whether the webpage we are attempting
to retrieve has been cached or not. To measure the caching
metric, we divide response time into two sets: average response
time of all requests and the average response time of the first
requests. The latter requests are uncached and therefore give
us a measure of how fast an uncached request returns. The
uncached requests appear as ”first response time” data points
in the graphs. ”Average response time” is the average response
time for all requests, cached or uncached. ”First response time”
is the average response time of those requests that are the first
to run when the test process starts. For example, when we send
10 requests per minute per device for a duration of 3 minutes,
this is equivalent to 1 request to each device every 6 seconds.
The ”first response time” only considers the requests issued in
the first 6 seconds. We repeat this test 10 times and average
the response times to ensure an outlier does not seriously skew
the results.

(a) Request through pWeb (b) Direct request

Fig. 4: Response times (ms) for HTTP requests

Results: Figures 4a - 4b show the results of the tests.
It is clear from the results that the latency introduced by
pWeb name resolution is significant when the results are
uncached: the final response time is between 2000 - 4500
milliseconds (ms). With the results cached, however, using the
pWeb name gives the response in a negligible amount of time:
between few hundred to 2000 ms. Directly accessing content

from the device through the public IP address always returns
the response in a negligible amount of time. The uncached
response time is between 100 - 250 ms. The response time is
even smaller when the requests are cached: between 20 - 200
ms. It is clear from these results that the latency introduced
by the proposed architecture is minimal to negligible.

It is interesting to note the drop in the pWeb response
time as the number of the requests per minute increase. This
is likely due to cached DNS records in any number of DNS
servers that are used in the name resolution.

2) Files of Non-Trivial Size:

Test case - upload capacity fairness and utilization: In
this section, we evaluate two key metrics: the fairness of the
system upload capacity distribution and its utilization.

Test methodology: We run the test in an environment
that has an upload speed of 400 KB/s. We run the test
against varying number of Ubuntu VMs, with each Ubuntu
VM emulating a device, and host an Updater on each one of
the VMs. We deploy a PHP script in the VM that generates
garbage content of arbitrary size. The script takes a single
parameter x, a positive integer, and generates content of size
x KB.

From a single machine, we sent simultaneous requests to
each VM to produce content of varying size and recorded the
upload times. This process was repeated 10 times, after which
the upload times from the 10 runs were averaged. The averaged
upload times were converted to kilobytes per second. Each
machine’s average upload speed represents a single point on
a graph. In this test, we only sent requests directly to the IP
address using the same method outlined in section V-B1 so as
to not have the results affected by pWeb DNS name resolution
time. The number of Ubuntu VMs per test were between 2-5,
depending on the test case. The ”Baseline” shows the optimum
upload speed per machine - it is the upload capacity of the
network divided by the number of machines attempting to
upload files simultaneously.

Results: Figures 5a - 5d show the results of the tests.
The trend lines show that the upload capacity distribution is
fair across the devices: the upload speed experienced by any
individual device at any given point does not significantly
differ from the upload speed experienced by other devices.
The upload capacity utilization approaches baseline as the
file upload size increases. With smaller file sizes, the time to
establish the connection takes a great chunk of the total upload
time and thus brings down the overall upload time. As the file
size increases, the time to establish the connection has less of
an impact on the upload speed and they appear and stabilize
around the baseline. Files of size 500 KB - 1 MB and greater
have a fair and full utilization of the upload capacity.

3) OpenWRT Scalability:

Test case - OpenWRT Scalability: In this section, we
evaluate the scalability of OpenWRT in face of large number of
requests. To evaluate this, we measure the RTT of requesting a
page of negligible size when the number of requests per minute
to OpenWRT are abnormally high and the number of devices
on the network is on the higher side, though not unusually
high.

(a) Requesting files from 2 devices
simultaneously

(b) Requesting files from 3 devices
simultaneously

(c) Requesting files from 4 devices
simultaneously

(d) Requesting files from 5 devices
simultaneously

Fig. 5: Speed for uploading files from 2-5 devices
simultaneously (file sizes in KB)

Test methodology: We host a webpage of negligible
size on 7 Ubuntu VMs, with each VM representing a device
on the network. We use a methodology similar to that used
in section V-B1. From a single machine, we ran a process
lasting 3 minutes that simultaneously sent a varying number of
requests per minute to the OpenWRT VM. The nginx instance
on OpenWRT forwarded the requests to the relevant Ubuntu
VM and the VM responded to the request. This process was
then terminated and a new instance of the process started. The
process ran for a total of 10 times. The final value calculated
represents a single data point on a graph. In this case, however,
we only sent requests directly to the IP address using the
same method outlined in section V-B1. This ensures that the
pWeb DNS resolution time does not affect the results of the
experiment. The amount of requests sent per minute varied
from 7 - 2100 depending on the test.

Fig. 6: Response times (ms) for direct requests to OpenWRT

Results: Figure 6 show the results of the test. Starting
with 7 requests per minute and amping it up to an unreasonable
2100 requests per minute, the response time basically remains
unchanged. Given the high number of devices on the network
(7) and the unreasonable requests per minute (2100), it is clear
that the scalability of OpenWRT is not affected by a high
number of requests or the number of devices on the network.

VI. RELATED WORKS

NAT traversal allows outside hosts to see and communicate
with the devices behind a NAT [3]. There are a wide variety
of NAT traversal solutions, each solution being very different
from the other.[2][8] Here we discuss some of these solutions.

1) Universal Plug and Play (UPnP): offers a simple and
robust way to connect devices from different vendors [3]. It can
automatically forward ports on an UPnP-enable home gateway
for NAT traversal. UPnP has known security issues. Malwares
can use UPnP to open ports and have unfettered access to the
local devices [4].

2) Session Traversal Utilities for NAT (STUN) [11]: is not
a NAT traversal solution by itself. However, it allows a device
behind a NAT to discover its public IP address, public port
and if it is located behind a NAT [6]. To utilize STUN, node
A from its internal IP:port AI invokes the STUN server. The
home gateway translates AI to the external IP:port AE . The
STUN server sends back AE to node A. Node B then performs
the same steps and gets the external port BE . By means of a
central server, nodes A and B now exchange their public ports.
They then each connect to the public ports of the other peer.
Since each node’s respective home gateways have a mapping
for these public ports, they allow the packets to get through to
the respective node.

3) Traveral Using Relays around NAT (TURN) [10]: is
a NAT traversal protocol that can work with most NATs,
including symmetric NATs. At a high level, a TURN server
essentially acts as a relay between the two nodes, i.e. all
communication between the nodes go through the TURN
server. TURN is a more complex protocol than STUN and
incurs heavy load on the TURN server. It is only used as a
last resort if STUN or direct connectivity does not work.

VII. CONCLUSION

In this paper, we set out to improve the way users can
share their content with the World. The contemporary model
of sharing content needs an overhaul, and our work is a step
in getting there. We provided a solution that lets users share
content from their devices without having to open ports or
if necessary, open only a single port. Our solution integrates
seamlessly with state of the art Web technology to provide
remote access, no matter which network the device is on.
We presented optional features that we believe can improve
the end-user experience. We wrote a client software that
is compatible with Android or any platform running JRE.
This software lets users register with pWeb and with the
system running the WRI. The performance results from our
experiments show that the solution deployed in the serving
device’s network has excellent performance with no bottleneck
caused by the WRI or home gateway, with fair upload capacity
sharing and with full upload capacity utilization regardless of
the size of the content or the request volume. To proliferate
our solution for public use, we have made the installers and
the OpenWRT VM images of both the main and the alternative
architectures available at pwebproject.net/url-forwarding. This
page also provides the device client software to the general
public for deployment in their local networks. In the next
release of the software in intend to improve security and to
provide updater module for popular operating systems.

REFERENCES

[1] R. Ahmed, S. R. Chowdhury, A. Pokluda, M. F. Bari, R. Boutaba, and
B. Mathieu. pWeb: A Personal Interface to the World Wide Web. In
IFIP Networking, 2014.

[2] L. DAcunto, J. Pouwelse, and H. Sips. A measurement of NAT and
firewall characteristics in peer-to-peer systems. In Proc. 15-th ASCI
Conference, volume 5031, pages 1–5. Advanced School for Computing
and Imaging (ASCI), 2009.

[3] Z. Haddad. Implementing a TCP Hole Punching NAT Traversal solution
for P2P applications using Netty. Master’s thesis, University of Stirling,
2010.

[4] C. Hoffman. HTG explains: Is UPnP a security risk? http:
//www.howtogeek.com/122487/htg-explains-is-upnp-a-security-risk/,
Aug. 2010. How-To Geek.

[5] M. Holdrege and P. Srisuresh. Protocol Complications with the IP
Network Address Translator. RFC-3027, Jan. 2001.

[6] Z. Hu. NAT Traversal Techniques and Peer-to-Peer Applications. In
HUT T-110.551 Seminar on Internetworking, Apr. 2005.

[7] D. Maier and O. H. amd Jurgen Wasch. NAT Hole Punching Revisited.
In IEEE Conf. On Local Computer Networks (LCN), Oct. 2011.

[8] A. Müller, A. Klenk, and G. Carle. On the applicability of knowledge
based NAT-traversal for home networks. In NETWORKING 2008 Ad
Hoc and Sensor Networks, Wireless Networks, Next Generation Internet,
pages 264–275. Springer, 2008.

[9] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the narrow waist of the
future internet. In ACM SIGCOMM Workshop HotNets, 2010.

[10] J. Rosenberg, R. Mahy, and P. Matthews. Traversal Using Relays around
NAT (TURN). RFC-5766, Apr. 2010.

[11] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal
Utilities for NAT (STUN). RFC-5389, Oct. 2008.

[12] R. Zhao and C. Yue. All your browser-saved passwords could belong
to us: A security analysis and a cloud-based new design. In Proc. ACM
DASP, pages 333–340, 2013.

