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Abstract—Software–Defined Networking promises to deliver
more flexible and manageable networks by providing a clear
decoupling between control plane and data plane and by imple-
menting the latter in a logically centralized controller. However,
if such principles are to be applied also to wireless networks, new
primitives and abstractions capable of providing programmers
with a global view of the network capturing channel quality and
interference must be devised. Moreover, the dynamic radio envi-
ronment necessitates fast adaptation of physical parameters such
as power, modulation and coding schemes. So the wireless SDN
abstractions should allow for such adaptations to happen closer to
the air interface. In this paper, we present high level abstractions
for channel quality, interference and network reconfiguration;
the latter permits operations differing in timescales to be carried
out at different controller entities. The proposed concepts have
been implemented and evaluated over a WiFi–based WLAN.
Empirical measurements show that the proposed platform can
be used to implement typical WiFi network management tasks
such as channel assignment and interference monitoring.

I. INTRODUCTION

Mobile networks are currently faced with a steep increase
in data traffic generated by modern mobile applications. Op-
erators are coping with this trend by deploying denser and
heterogeneous radio access network (RAN) and by utilizing
WiFi as a traffic offloading technology. Until a few years
ago WiFi deployments used to be unplanned, however lower
equipments costs and ease of setup has led to a vast number
of uncoordinated and mutually interfering deployments. As
a result, novel WLAN network planning tools have emerged
while fully distributed WLANs are being replaced, especially
in large enterprises, with centralized setups where a network
controller is in charge of managing the network. Recently, an-
other trend has emerged in the network management scenario
calling for more flexibility in the way networks are managed.
Such trend, named Software–Defined Networking (SDN) aims
at clearly separating policies from mechanisms and at putting
the former in the hands of network developers through a set
of high–level and possibly open APIs.

However, despite several examples of SDN concepts applied
to wireless networks, the API support for monitoring and
controlling interference is still very limited. Nevertheless, such
knowledge is extremely valuable for implementing network
management solutions capable of adapting in response to time-
varying interference conditions. Moreover, there is the need
for a high–level network reconfiguration model that clearly
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distinguishes the latency–bound control policies executed at
the edges of the network from monitoring and reconfiguration
tasks implemented at the (possibly) centralized controller.

In our previous work [1] we presented a set of SDN abstrac-
tions specifically tailored for the WiFi networking domain.
These abstractions have been implemented in a prototype
SD–RAN Controller and are exposed trough a Python–based
SDK. However, that work did not investigate how network
interference shall be abstracted and presented to the network
programmer, and also it did not consider how network pro-
grammers can reconfigure or replace autonomic network con-
trol policies. In this work we take a first step in that direction
by: (i) extending the APIs with new interference modeling
primitives; (ii) proposing a network reconfiguration model
clearly separating network control from network management;
and (iii) testing the new primitives over a small scale testbed.

The next section briefly summarizes our original work [1]
and introduces the new abstractions. Section III provides the
SD–RAN Controller implementation details together with an
overview of the new SDK. Section IV reports on the evaluation
campaign. Finally, we discuss the related work in Sec. V and
then we draw our conclusions in Sec. VI.

II. REVISITING NETWORK CONTROL AND MANAGEMENT

In this work then we draw a clear line between network
control and network management. The former (control) deals
with fast timescale operations executed by the elements at the
edges of the network, such as scheduling in LTE networks
or transmission rate selection in WiFi networks. The latter
(management) is in charge of checking whether the operating
conditions for a certain policy are still met, and, if this is not
the case, of reconfiguring or replacing the policies.

Figure 1 sketches the reference network architecture and in-
troduces the terminology used throughout the paper. We name
Wireless Termination Points (WTPs), the physical devices that
form the RAN providing clients with wireless connectivity.
WTPs basically coincide with Access Points (APs) in a WiFi
network or eNodeBs (eNBs) in a LTE network. The WTP
are connected to the SD–RAN Controller trought a secure
channel. Network App run in their own slice of resources
on top of the SD–RAN Controller. The RAN exploits a
(possibly) programmable backhaul in order to reach the public
Internet. Finally, although OpenFlow is a candidate backhaul
technology, the abstractions proposed in our work do not rely
on it and are effectively backhaul agnostic.
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Fig. 1: The reference network architecture.
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Fig. 2: The abstractions class–diagram.

In this section we briefly summarize our previous work [1]
(II-A and II-B) before describing the new abstractions pro-
posed in this paper (II-C and II-D). Figure 2 depicts the rela-
tionship between the four abstractions (LVAP, Resource Pool,
Channel Quality Map, and Port) using an UML class–diagram.
Here, a Resource Block represents the minimum chunk of
wireless resources that can be assigned to a wireless client
while the LVAP represents the state of a UE scheduled on a
set of Resource Blocks. Both LVAPs and WTPs support a set of
Resource Blocks, named Resource Pool. The Port abstraction
models the dynamic and reconfigurable characteristics of the
link between WTP and LVAP on a set of Resource Blocks.
A relationship exists between LVAPs and WTPs and between
WTPs modeling the link quality between the two entities. This
latter relationship constitute the Channel Quality Map.

A. Light Virtual Access Point

The LVAP abstraction [1], [2], [3] provides a high–level
interface for wireless clients state management. The imple-
mentation of such an interface handles all the technology–
dependent details such as association, authentication, han-
dover, and resource scheduling. A client attempting to join the
network, will trigger the creation of a new LVAP. Conversely
each WTP will host as many LVAPs as the number of wireless
clients that are currently under its control. Such LVAP has
an ID that is specific to the newly associated UE (in a WiFi
network the LVAP can be thought as a Virtual AP with its own
BSSID). Removing an LVAP from a WTP and instantiating it
on another WTP effectively results in a handover.

B. Resource Pool

The Resource Pool abstraction is tightly coupled with the
LVAP abstraction and goes into the direction of abandoning
the concept of cell and exposing the network programmer with
the collective resources in time, frequency, and space that are
available in the network. The minimum allocation unit in the
Resource Pool is the Resource Block and is identified by a
frequency band, a time interval, and the WTP at which it is
available. The Resource Pool is exposed to the programmer
through a set P where each Resource Block i ∈ P is a
2–tuple 〈f, t〉, where f is the frequency band, and t is the
time slot. A frequency band is a 2–tuple 〈c, b〉 where c and
b are, respectively, the center frequency and the bandwidth.
For example, the Resource Pool made available by a legacy
802.11g AP tuned on channel 1 would be represented by
the tuple ((1, 20),∞). Here 1 is the channel, and 20 is
the bandwidth (in MHz). Notice that no time dimension is
provided or, more precisely, the Resource Blocks are allocated
for all the time modeling WiFi random channel access scheme.
Finally, Resource Blocks can also be blacklisted preventing
applications from using them.

C. Channel Quality and Interference Maps

The Channel Quality Map abstraction provides network
programmers with a full view of the network state in terms of
channel quality between LVAPs and WTPs over the available
Resource Blocks. Let G = (V,E) be an directed graph, where
V = VWTP ∪ VLV AP is the set of v1 = |VWTP | WTPs and
v2 = |VLV AP | LVAPs in the network, and E is the set of
edges or links. An edge en,m,i ∈ E with n,m ∈ V exists
if m is within communication range of n over the Resource
Block i ∈ P . A weight q(en,m,i) is assigned to each link
en,m,i ∈ E : q(en,m,i) ∈ N+ represents the channel quality of
the link between the two nodes.

A link interference (conflict) graph or Interference Map
GI = (V I , EI) can be also constructed in such a way that
we have a vertex vI ∈ V I for each communication link in
E. A directed edge eIn,m,i ∈ EI if the transmitter of the link
nI ∈ V I is within the interference range of the receiver of
the link mI ∈ V I over the Resource Block i ∈ P . A weight
qI(eIn,m,i) is assigned to each link eIn,m,i ∈ EI : qI(eIn,m,i) ∈
N+ represents the interference level between the two links.

The Channel Quality Map is exposed to the network pro-
grammer by means of two data structures: the User Channel
Quality Map (UCQM) and the Network Channel Quality Map
(NCQM). Both are 3-dimensional matrices where each entry
is the channel quality (in dBm) over one Resource Block
between: an LVAP and a WTP in the case of the UCQM;
and between two WTPs in the case of the NCQM.

These channel quality and interference map abstractions
can be used to select the Resource Blocks that can satisfy
the QoS requirements of an LVAP by intersecting the set
of available Resource Blocks in the network (PN ) and the
requested Resource Blocks (PL). The set of available Resource
Blocks is obtained as union of the Resource Blocks supported
by all the WTPs: PN = W1 ∪W2 ∪ · · · ∪WN . The matching
Resource Blocks M are then given by: M = PN ∩PL. The list



of Resource Blocks M ′ that satisfy a certain interference level
condition, such as the signal to interference plus noise ratio
(SINR) between the LVAP n and the WTP m on the Resource
Block i being greater than a certain threshold t, is given by:
M ′ = {i ∈ M : SINR(en,m,i) > t} where SINR(en,m,i)
can be estimated via edge weights in Channel Quality Map and
in the Interference Map. M ′ is the empty set if a valid resource
allocation is not found. Allocating the valid Resource Blocks
is simply a matter of assigning one or more Resource Blocks
from M ′ to the LVAP, which may result in an LVAP handover
if the new Resource Block(s) are handled by a different WTP.

D. Port
Links in a wired network, e.g. a switched Ethernet LAN, are

essentially deterministic and the status of a port in a switch is
binary, i.e. active or not active. While some Ethernet switches
can select the transmission rate (10, 100, 1000 Mb/s), this
feature is aimed at reducing power consumption when the
traffic load is low and not a mechanism for coping with
fluctuations in the channel quality. In contrast, links in a
wireless network are stochastic and, as a result, the physical
layer parameters that characterize the radio link between an
LVAP and a WTP, such as transmission power, modulation and
coding schemes, and MIMO configuration must be adapted
according to the actual channel conditions.

Such level of adaptation requires real–time coordination
between LVAPs and WTPs and can only be implemented near
the air interface. The Port abstraction allows the SD–RAN
Controller to reconfigure or replace a certain control policy if
its optimal operating conditions are not met. A port is defined
by a 3–tuple 〈p,m, a〉 where p is the transmission power, m is
the set of available Modulation and Coding Schemes (MCS),
and a is the MIMO configuration (number of spatial streams).
For example, in the case of an 802.11n network, assigning the
port configuration: l

〈30,(0:7),1〉←−−−−−−− M ′ to an LVAP means that
the WTP will use a fixed transmission power of 30 dBm, the
set of MCS between 0 and 7, and single antenna configuration
for its communication toward the LVAP. This port abstraction
thus allows fast timescale adaptations (MCS adaptation in this
example) to be delegated to a local controller located near
(from the latency standpoint) the WTP [4], [5] or to the WTP
itself. In this work we assume the latter. Finally, since a Port
specifies the configuration of the link between a WTP and an
LVAP over a certain Resource Block, a WTP will have as many
Port configurations as the number of LVAPs it is currently
managing.

III. IMPLEMENTATION DETAILS

This section briefly summarize the SD–RAN Controller
main features [1]. More information on the software/hardware
platform, named EmPOWER can be found in online1. Notice
how, since in its current implementation the SD–RAN Con-
troller supports only WiFi–based WTPs, Resource Blocks are
identified by the 2–tuple 〈c, b〉 (i.e.: no temporal dimension).

The SD–RAN Controller is built using the Tornado Web
Server framework [6]. The main reason for choosing Tornado

1Available at: http://empower.create-net.org

is its non–blocking network I/O which allows to continue serv-
ing incoming requests while the others are being processed.
The SD–RAN Controller can run multiple virtual networks, or
slices, on top of the same physical infrastructure. A network
slice is a virtual network with a specific SSID and its own set
of WTPs. Clients can opt–in a certain slice by associating to
its SSID. Network Apps run on top of the SD–RAN Controller
in their own slice of resources and exploit the programming
primitives trough either a RESTful interface or a native Python
API (bindings for other programming languages can be easily
added). The SD–RAN Controller ensures that an Network App
is only presented a view of the network corresponding to its
slice. Notice that in this architecture the term Network App is
used to address any consumer of the SD–RAN Controller API
such as OpenDaylight and Openstack.

WTPs are built around the PCEngines ALIX platform and
run the latest version of the OpenWRT operating system
(Chaos Calmer r42609). Each WTP runs an instance of the
Click modular router [7] implementing the WiFi datapath.
Communications between Click and the SD–RAN Controller
takes place over a persistent TCP connection. WTPs are
equipped with two WiFi interfaces both leveraging a patched
ath9k driver for their operations. Such modifications include
the LVAP logic and the per–packet configuration of parameters
such as transmission rate and power delegated via the Port
abstraction.

A. Port

The LVAP and the Port abstractions are exposed to the
programmers through a Python dictionary2 mapping Resource
Blocks to Ports. The programmers can fetch the Resource
Block(s) on which an LVAP is currently scheduled together
with its Port configuration by accessing the assigned to prop-
erty of an LVAP object. For example:

>>>l v a p . a s s i g n e d t o
{ ( 0 4 : F0 : 2 1 : 0 9 : F9 : 9 6 , 36 , L20 ) :

(0C: 3 E : 9 F : 5 7 : 1A: B6 , <6 ,12 ,24 ,36 ,48 ,54 > , 27 dBm, 1)}

As it can be seen, the dictionary above contains a single
entry mapping a Resource Block with a Port configuration.
In this example, the LVAP 0C:3E:9F:57:1A:B6 has been as-
signed to the Resource Block 〈36, L20〉 scheduled at the WTP
04:F0:21:09:F9:96. The Port configuration specifies which
range of parameters the WTP can use for its communication
with the LVAP, in this case: single spatial stream, fixed trans-
mission power, and adaptive transmission rates selection (with
a constraint on the possible MCS). The current implementation
of the Port abstraction supports the following parameters:
• TX Power. Fixed transmission power (in dB).
• Modulation and Coding Scheme (MCS). List of MCS

values that can be used by the rate selection algorithm.
• MIMO Configuration. Number of spatial streams.
• RTS/CTS Threshold. Frame length value above which the

RTS/CTS handshake must be used.
• No ACK. The WTP will not wait for ACKs.

2Python dictionaries are associative arrays mapping key to values.



To/From DS Type Sub–type STA/AP
0 / 0 Data Any STA
0 / 0 Mngt Beacon, Probe Response AP
0 / 0 Mngt Probe Request, Disassociation STA

(Re) Authentication Request
(Re) Association Request
Authentication, De–Authentication

1 / 0 Any Any STA
0 / 1 Any Any AP
1 / 1 Any Any AP

TABLE I: Station/Access Point classification criteria.

Notice that, although semantically the model allows manip-
ulating both the downlink and the uplink connections, in the
current implementation only the downlink, i.e. from the WTP
to the client, parameters can be configured.

B. Channel Quality and Interference Maps
In our implementation of the Channel Quality Map we use

the RSSI measured at each WTP as an approximation of the
channel quality. A monitor interface is created on top of each
physical radio available at each WTP. The monitor interface
extracts the signal strength field present in the radiotap header
for every decoded WiFi frame. In order to separately build
the UCQM and the NCQM, the To–DS and the From–DS bits
present in the 802.11 header are used. The frame type and
sub–type are also used for determining the transmitter type.
Table I summarizes the classification criteria.

The sniffer computes the average of the received signal
over windows of 500ms, moreover, an exponential weighted
moving average (EWMA) and a smoothing moving average
(SMA) are also maintained for each neighbor. Both filters have
been selected in that they can reduce noise while keeping the
sharpest step response, i.e. they are fast to react to changes
in the input signal. Such property is particularly useful when
dealing with RSSI signals in that they are severely affected
by white noise due to fast–fading. At the same time a fast
response is required in order to react promptly to changes in
the interference conditions.

The Channel Quality Map can be leveraged by the pro-
grammers using either a reactive or a proactive programming
model. The RSSI triggers allow programmers to generate a
callback when a certain condition is verified at any WTP in
the network. Consider for example the following statement:

r s s i ( l v a p s = ’ 1 1 : 2 2 : 3 3 : 4 4 : 5 5 : 6 6 ’ ,
r e l a t i o n = ’LT ’ ,
v a l u e =−70,
s s i d = ’ Gu es t s ’ ,
c a l l b a c k = r s s i c a l l b a c k )

Listing 1: Create an RSSI trigger.

The statement above generates a callback the first time the
RSSI of the specified LVAP goes below −70 dB at any WTP
in network. After the trigger has fired the first time and as long
as the RSSI remains below −70 dB, the callback method is
not called again by the same WTP, however the same callback
may be triggered by other WTPs. In order to detect RSSIs that
are going above −70 dBm another trigger must be created.
Specifying FF:FF:FF:FF:FF:FF as LVAP will trigger the

callback when the RSSI of any LVAP at any WTP is below
−70 dBm.

Moreover, the Channel Quality Map allows developers to
track the RSSI levels of any WiFi device within decoding
range of a WTP. For example, the code below periodically
queries the specified WTP for its neighboring stations.

ucqm ( a d d r s = ’ f f : f f : f f : f f : f f : f f ’ ,
b l o c k =( ’ 0 4 : F0 : 2 1 : 0 9 : F9 : 9 6 ’ , 36 , L20 )
e v e r y =5000 ,
s s i d = ’ Gu es t s ’ ,
c a l l b a c k = ucqm ca l l back )

Listing 2: UCQM query creation.

The query is executed periodically with the period set by
the every parameter (in ms)3. Similarly, the RSSI from
neighboring WiFi Access Points can be tracked using the
ncqm primitive. In the above example, as before, specifying
FF:FF:FF:FF:FF:FF will return the RSSI of any station
within decoding range of WTP 04:F0:21:09:F9:96 on the
legacy channel 36 (i.e., an 802.11g channel). It is worth
noticing that, we are using the general term stations and access
points instead of, respectively, LVAPs and WTPs, in that the
Channel Quality Map tracks the RSSI level of any active WiFi
device including the ones belonging to networks that are not
under the administrative domain of our SD–RAN Controller.
This includes wireless clients that are not associated to any
network but have their wireless interface active. This is due to
the fact that such clients periodically broadcast Probe Requests
messages in order to discover available APs. As all queries are
non–blocking and it is possible to specify an optional callback
method to be executed when the query response is available
at the controller.

IV. EVALUATION

In this section, we present three case studies of our proposed
WiFi SDN abstractions. In the first case study, we show how
Interference Map and Channel Quality Map abstractions can
be used to perform interference–aware channel assignment
and thereby balance load across cells. Second case study
demonstrates how time-varying channel quality can be tracked
via the Channel Quality Map abstraction. Finally, we show
how to leverage the Channel Quality Map to implement a
simple proximity detection Network App.

The system has been evaluated over a simple testbed com-
posed of three WTPs and two clients (Dell D630 notebooks).
Each WTP is equipped with two Wirelss NIC tuned on
different channels, namely 6 (2.4 GHz band), and 36 (5 GHz
band). Notice that channel 36 is not shared with any other
network, while channel 6 is used by several other access points
(test are carried out in a typical office environment). Iperf [8]
is used in order to generate synthetic traffic.

A. Interference–Aware Channel Assignment

An efficient channel assignment can dramatically improve
network performance in dense WLANs. In this section we

3Specifying every = −1 will result in a single query being issued
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Fig. 3: Interference–Aware Channel Assignment. WTPs are
represented as squares while LVAPs are represented as circles.
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Fig. 4: Instantaneous aggregated client throughput before
(w/o CF ) and after (w/ CF ) channel assignment.

shall demonstrate how the Channel Quality Map and Inter-
ference Map abstractions can be leveraged for this purpose.
Note that the definition of Interference Map from section II-C
can be extended to result in a more realistic interference map
including external but nearby WiFi APs and stations.

Figure 3a sketches the Channel Quality Map for the setup
used in this experiment whereas a graphical representation of
the Interference Map is shown in Fig. 3b. The solid lines in
Fig. 3a represent network connectivity while the dashed lines
are the weighted edges in the UCQM for a given Resource
Block. As it can be seen given the fact that all the nodes
are within decoding range the resulting conflict graph is
almost fully connected. No edge exists between the nodes Aa
and Bb in Fig. 3b because due to limitations in the current
implementation it is not possible to gather the list of interfering
devices at the client.

The knowledge contained in the conflict graph can be
effectively leveraged to improve network performance by
implementing suitable load–balancing and channel assignment
algorithms. A simple implementation of the DSATUR [9] algo-
rithm has been implemented as proof–of–concept (due to space
constraints the code is not reported). The system performance
have been tested before and after the channel assignment.
Traffic consists of two saturated TCP connections generated at
the two clients toward a node which shares the backhaul with
the two WTPs. Figure 4 reports the instantaneous aggregated
client throughput before (w/o CF ) and after (w/ CF ) channel
assignment. As expected given the very simple topology, when
channel assignment is performed the aggregated throughout
improves significantly as well as its stability. The latter effect
can be better seen in Fig. 5 where the empirical CDF of the
throughput samples is plotted.

B. Channel Quality Monitoring
In this section we discuss the evaluation of the interference

tracking mechanism. RSSI values are monitored at different
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Fig. 6: Wireless client RSSI at two different WTPs over a
10–hours lonk measurement campaign.

WTPs. A drop in signal strength measured at a single WTP
can be due to a deterioration in channel performances due
to for example fading. On the other hand, a concurrent drop
of signal strength at different WTPs could be traced back to
hardware failures and/or mis–configuration.

Figure 6 shows the signal strength of a wireless client at two
different WTPs here named Sensor A and Sensor B during a
10–hours measurement campaign. As it can be seen a drop
in RSSI can be observed at hour 4 for WTP A. This event
is due to localized channel fading simulated by removing the
antenna of one WTP. Conversely a concurrent drop of RSSI
at both WTPs can be observed at hour 8. This event is due to
a simulated hardware failure at the wireless client simulated
by reducing the transmission power to 0 dB.

C. Proximity Detection

Modern location–based applications and services rely on the
possibility to know in real–time the geographical position of
customers. While GPS–based localization can provide precise
and real–time geo–localization, its reliability drops dramati-
cally in indoor settings. Several indoor localization solutions
leveraging various technologies (WiFi, Bluetooth, acoustic,
etc.) are currently commercially available. While some of
them are characterized by sub–m precision, their cost could
be prohibitive for many deployments. Moreover, for several
use cases proximity based localization is sufficient instead of
precise indoor geo–localization. By proximity detection, we
refer to the capability of knowing if a certain wireless client
is within a few meters from an anchor point (a WTP in this
case). Notice that the assumption here is that anchor points are
deployed in close proximity of points of interests in a certain
venue, such as check–in desks or shops in an airport.

The RSSI tracking capabilities allowed by the Channel
Quality Map can be effectively leveraged to implement such a
proximity detection system. A simple RSSI tracking Network
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App has been implemented as proof–of–concept. The Network
App tracks in real–time the RSSI of wireless clients at different
WTPs in the network.

Figure 7 depicts the floor layout and the position of the
WTPs used in order to evaluate the proximity detection Net-
work App. The scenario consists of three WTP deployed across
single floor in a typical office building.

RSSI samples are collected for a stationary wireless client
performing standard internet browsing tasks. Three reference
positions were considered, labeled as P1, P2, and P3 in
Fig. 7. The client was stationary at each position for about
5 mins and then moved to the position. Figure 8 show the
instantaneous RSSI of the wireless client at the three WTPs.
As it can be seen the RSSI values measured by the WTPs can
provide a reliable proximity information of the wireless client.

V. RELATED WORK

Due to the vast literature on interference monitoring and
management, in this section we will focus only on empirical
approaches with a real–world evaluation. For a broad survey
on interference modeling techniques in 802.11 networks we
refer the reader to [10].

Passive and/or active measurements are leveraged by several
authors to derive either the conflict graph or the interference
graph of a wireless network. In [11], [12] active measurements
are exploited in order to study how mutual link interference
affects packet delivery ratio and throughput. In [13] micro–
probing (i.e. active measurements lasting few milliseconds) is
used in order to detect conflicts between links. Passive interfer-
ence graph construction techniques are presented in [14], [15].

A framework capable of performing root cause analysis in
WiFi networks is presented in [16]. WIT [17] and Jigsaw [18]
another two examples of passive interference monitoring tech-
niques aiming at modeling cross–link interference.

Conflict graphs are leveraged in [19] to manage the effect
of interference when multiple transmitters employ variable
channel widths. An architecture using micro–probing to jointly
address channel assignment and transmission power control is
presented in [20]. Centralized scheduling is exploited by the
authors of [21] in order to mitigate hidden and exposed ter-
minals issues in WiFi–based networks. Interference modeling
plays a key role in the client scheduling problem. Finally, a
distributed anomaly detection system for WiFI networks is
presented in [22].

The argument for handling fast timescale events as close
as possible to the place where they are originated is made
in [4], [5]. However, both works do not address the way
global channel quality information shall be exposed to the
nertwork programmer (the Channel Quality Mapabstraction)
nor they propose a viable network reconfiguration model (the
Port abstraction).

The works above show how interference modeling and
network reconfiguration are receiving continuing interest from
the research community. Nevertheless none of them has the
goal of providing programmers with an high–level interface
to access network interference information, nor they define a
scalable network reconfiguration model that clearly separates
autonomic control policies from other network management
tasks. Our work is instead aimed at defining high–level pro-
gramming primitives for both representing and manipulating
the network state [23], [24], [25], [26], [27], [28], [29].
Unlike them however, our work focuses on modeling the
most critical aspects of a WiFi–based RAN (gathering net-
work state, interference-aware resource allocation and network
reconfiguration and adaptation) and exposing them to the
network programmers through a set of technology agnostic
programming primitives.

VI. CONCLUSIONS

In this paper, we have examined the set of high–level
programming abstractions and primitives needed for effec-
tive interference management in Software–Defined Wireless
Networks. The proposed primitives are designed around the
consideration that a clear line must be drawn between net-
work control and network management. The former involves
autonomic control policies operating at network edges while
the latter include slower timescale network management tasks.
A preliminary implementation of the proposed abstractions has
been evaluated over a small scale WiFi testbed. Results show
that the programming primitives can actually be used to realize
practical resource allocation algorithms. As a future work we
plan to validate the programming primitives over a wider
deployment as well as to open–source the entire software
stack, from the WTP firmware to the SD–RAN Controller
and the Python SDK, making it available to the research
community under a permissive license.
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