
Distributed Decision Engine – An Information
Management Architecture for Autonomic Wireless

Networking

Markus Luoto, Teemu Rautio, Tiia Ojanperä and Jukka Mäkelä
VTT Technical Research Centre of Finland

Kaitoväylä 1, 90100 Oulu, Finland
Email: firstname.lastname@vtt.fi

Abstract—With wireless networks becoming ever more ubiqui-
tous and the capabilities of the devices connected to them rivalling
those of desktop computers, there is an acute need for the com-
munications in these networks to be managed as efficiently and
autonomously as possible. Moreover, as the number of connected
devices is rapidly increasing, the problem is becoming all the
more complex and the amount of up-to-date status information
needed for the management is multiplying. In order to meet
the needs of future network management in terms of knowledge
building and dissemination, this paper presents an architecture
for collecting, processing, and disseminating vast amounts of
network management information efficiently in wireless networks.
The information may originate from the different layers of the
networking protocol stack either on the wireless clients or net-
work devices, and the architecture facilitates its signalling within
a distributed network management system. Also, as described in
this paper with practical examples, the architecture has been
validated in a laboratory with real devices in the context of
multiple use cases ranging from enhanced multimedia delivery
for mobile clients to balancing the workload of network nodes.
In addition, this paper evaluates the performance of the Event
Cache prototype in terms of its capability of handling event
dissemination in a real testbed environment.

I. INTRODUCTION

Providing satisfactory Quality of Experience (QoE) cost-
efficiently to wireless clients in the future will require highly
optimized usage of network resources. As wireless networks
are diverging into multiple access technologies with overlap-
ping coverages and providing a diverse set of features, the
optimization of this system presents a complex problem. The
problem is further aggravated on one hand by the evolution of
very powerful handsets able to stream high resolution video
content in both up- and downlink directions, and on the other
hand by the emergence of Internet of Things (IoT) and the
multitude of connected devices it brings along.

Nevertheless, these challenges also provide new possibili-
ties for network management. The diverse operation environ-
ment and the rich set of wireless devices provides a basis
for a very productive optimization of the resource usage. By
automatically learning from past experience the characteristics
and usage patterns of the connected devices can be somewhat
predicted. This will enable better QoE with a lower cost. All
this can be done with cognitive network management, which
has been widely proposed as a solution to combat complexity
and replace the current systems relying on human expertise
or simple self* mechanisms. This further automation of the

network management operations will be the key to building
viable networks in the future.

In order to function effectively and reliably, cognitive
network management requires vast collaboration between the
devices connected to the network as the best sources of
information are scattered throughout the network and ranging
from the core devices to the wireless end nodes. One key
enabler for the distributed cognitive network management is
to solve the issue of simple and efficient dissemination of
information. This calls for a thought out architecture designed
to disseminate diverse information of the different aspects of
the network conditions from different perspectives.

In this paper, we present the Distributed Decision Engine
(DDE) – an architecture designed to disseminate information
and manage multiple optimization functions in a controlled
and coordinated manner in a cognitive network management
system. We describe how DDE is able to collect, process, and
disseminate vast amounts of network management information
efficiently. Furthermore, we also present the evaluation results
for performance of the DDE prototype in terms of its capability
of handling event dissemination in a real testbed environment.
Finally, we present with practical examples, how the architec-
ture has been validated in the contexts of enhanced multimedia
delivery for mobile clients and balancing the workload of
network nodes.

The rest of the paper is organized as follows. Section II
gives an overview of the related work. Section III presents the
concept of DDE. The main entity in the DDE architecture,
namely Event Cache, is discussed in detail in section IV. The
current prototype of the system is presented in section V and
experimentation results are discussed in section VI. Finally,
section VII concludes the paper.

II. RELATED WORK

The work described in this paper falls mostly in the
category of autonomic or cognitive network management. The
majority of approaches in this area are based on the principles
of autonomic computing published by Kephart et al. in [1]. The
main principles are self-management by self-configuration,
self-optimisation, self-healing and self-protection as well as
the MAPE-K autonomic control loop consisting of monitor-
ing, analysing, planning and execution phases linking to a
knowledge-base. As with related research, these influences can
also be found in our work.



The work on autonomic or cognitive network management
can be roughly divided in to evolutionary and revolutionary
approaches. As an example of the revolutionary approaches,
the most ambitious proposals have aimed for a completely
redesigned network architecture such as the clean slate 4D
architecture proposed by Greenberg et al. in [2] or the 4WARD
architecture proposed by Niebert et al. in [3]. In many of
the more recent proposals, such as the GARSON architecture
proposed by Kuklinski et al. in [4], the Unified Management
Framework proposed by Tsagkaris et al. in [5], and the
SEMAFOUR vision described by Litjens et al. in [6], the
authors have taken a more evolutionary path and the approach
is more virtual. As such, the architecture can be built on top
of current infrastructure and is thus much easier to implement
in reality. Our approach also follows this evolutionary path.

In addition to full scale network management solutions our
work is also closely related to other frameworks also mediating
information and taking advantage of cross-layer design such
as Media Independent Handover (MIH) [7]. Presented DDE
concept and its functionalities follows the principles of the
complex event processing (CEP) [8] concept. CEP is intro-
duced as a set of techniques and tools to control event driven
information systems and usually consists a mix of different
mechansims, old and new. CEP tries to help to understand
and control different event-driven information systems.

The implementation choices made in our work have been
aimed at providing fast prototyping and easy portability for
research purposes. As such, we have mostly opted to use the
Python [9] scripting language and simple socket-based inter-
faces for communication between entities instead of choosing
a more efficient language such as C/C++ [10] or a standard
messaging system such as D-Bus [11].

III. DISTRIBUTED DECISION ENGINE CONCEPT

The Distributed Decision Engine, depicted in Figure 1, is a
concept that enables building a cognitive network management
system with components ranging from simple information pro-
ducers and actors to cognitive algorithms. The DDE concept
comprises of three kinds of entities, namely (a) the Event
Producers, which feed DDE with information; (b) the Event
Consumers, which receive information in the form of events
they have subscribed; and (c) Event Caches that orchestrate this
information exchange and can be interconnected in cascade
fashion. An algorithm is considered to be both an Event
Consumer for its inputs and an Event Producer for its outputs
in the DDE concept.

The main entities in the system are the Event Caches
which enable short time storage and delivery of events between
different entities. The Event Cache has been designed to imple-
ment a distributed publish-subscribe message delivery system
and defines a common interface for different information
producers, decision algorithms and actors. It also implements
an information caching functionality, in order to keep the latest
information available and up-to-date, as well as information
processing for minimizing the data to be sent over the network.
Furthermore, it can perform information filtering based on
policies.

In comparison to TRG [12], from which the concept
of DDE has evolved, the design of DDE has improved on

Fig. 1. Distributed Decision Engine

many levels. For example, the message format in DDE is
much more flexible, enabling a more diverse set of use cases.
Also, more security aspects have been taken into account in
development of DDE from the very beginning. For example,
all the messaging in DDE is signed with digital signatures. In
addition, the DDE also has a management and a visualization
interface defined as part of the Event Cache to enable better
control and management of the system.

As an example of basic message exchange in DDE, a
short sequence diagram is depicted in Figure 2. This example
includes all the main types of entities in a DDE system and
simple messaging scenario between them. In this scenario,
the Event Cache facilitates a message exchange in which the
Algorithm requires a piece of information from the Event
Producer (Event 1) to calculate another piece of information
(Event 2) that Event Consumer is interested in.

Fig. 2. DDE signalling

IV. DDE EVENT CACHE

The Event Cache is the key component of the DDE concept
as all the other entities use the services of the Event Cache
for communication. In this section, we describe the services it
provides in more detail.



TABLE I. MESSAGE FORMATS IN DDE ARCHITECTURE.

Type of Message Fields of the message
Registration Message Type Producer ID Producer Name Event ID Event Name Digital Signature
Subscription Message Type Consumer ID Consumer Name Consumer Address Event ID Type Filter Producer Filter Digital Signature
Event Message Type Producer ID Event ID Event Type Time-to-Live Payload Length Payload Digital Signature
Policy Message Type Updater ID Event ID Consumer ID Producer ID Digital Signature

A. Messaging

The messages in DDE are encoded using XDR [13].
Information fields in different messages are shown in Table I.
As shown in the table there are four types of messages used
in DDE, namely Registration, Subscription, Event and Policy
messages. The message type field in each message is an integer
that denotes the type of the message to the Event Cache.

To be able to send events, a producer sends a Registration
message identifying itself to the Event Cache. Respectively,
when leaving the system, the producer sends a Registration
message with different Message Type to inform the Event
Cache of this. The Producer ID field in the Registration
message represents the public key of the producer and the
Event ID field is an integer identifying the registered event
while producer name and event name fields are human readable
information about the producer and event. Additionally, there
is a digital signature to verify the message. A consumer can
order events with a Subscription message from the Event
Cache. In addition to fields similar to a Registration message,
a Subscription message also contains the address in which the
consumer listens for the events it subscribed, two filter fields
to restrict the type and producer of the event.

Event messages carry the actual information disseminated
by DDE. An Event message includes an Event Type field
which specifies a subtype of a certain Event ID, a Time-to-
Live field which contains the validity time of the event in
seconds and naturally the Payload Length and Payload fields.
The contents and the purpose of a policy message is considered
in Section IV-C.

In the DDE concept, a typical use case for collecting and
distributing events is to distribute the functions among different
network entities. Consequently, the events will occasionally be
delivered over the network, which raises concerns of malicious
modifications or creation of events. Therefore, DDE builds
trust between different entities by supporting self-certifiable
Event, Registration, Subscription and Policy messages by
following similar principle as for information in [14].

In practise, this is implemented by digital signatures in
the respective DDE messages. A public key of the message
origin is carried in the corresponding field of the message. For
example, in a case of event, producer id stores public key of
that information producer, which can be then used to verify that
the message content really corresponds to the signature, i.e. all
information needed to verify message integrity is carried by
the message itself. In addition, since the public key is included
into message (as an identifier), also the message origin can
be confirmed. Basically, another entity cannot create verifiable
message for the certain public key unless it also knows the
private key. As said, DDE has self-certification function for
registration, subscription, event and policy messages.

The minimum size of the Event messages and the related
overhead in DDE can be calculated with the values in Table II.

As can bee seen from the table, for a message with a single
element payload the minimum message size is effectively 164
bytes in addition to payload and it grows by 4 bytes per every
additional element in the payload. Nevertheless, it must be
noted that when using a Producer/Consumer/Updater ID of
realistic size, their size will become dominating compared to
static reservation of other fields in all the messages within
DDE. Additionally, the Payload in the Event message domi-
nates the message size in most normal usage scenarios and the
overhead from the other fields becomes negligible.

B. Management

The main configuration options of the Event Cache can
be set through a configuration file. The basic options include
parameters such as the address and port on which to listen
for messages on and the address for sending Visualization
messages. Also, more advanced options such as cascading
multiple Event Caches through cascade registrations and sub-
scriptions between Event Caches, can be configured in the
configuration file. Finally, the configuration file also includes
security parameters such as allowed originating ID for policy
updates, whether or not a signature check is enforced on
different messages and preferred algorithms and key lengths
for message signing.

The Event Cache includes an embedded web server pro-
viding a run-time user interface for its management purposes.
Through the user interface, the operator of the Event Cache
can view details about the current information in the Event
Cache, such as registrations, subscriptions and policies. Each
registration, subscription or a policy that exist in the Event
Cache, may be added, edited or removed through the user in-
terface. Editing, for instance, filters of the existing subscription
on the fly can be used as a very practical tool in testing the
performance of an intelligent algorithm with various inputs. In
addition, the contents of an individual database may be flushed
by clicking a single button.

By default, the Event Cache saves the information con-
tained in its main databases also to files and loads the in-
formation stored in the files when starting up. This allows
the Event Cache or the node running the Event Cache to
be restarted during operation without the need to send again
the registrations, subscriptions and policies contained in the
databases.

C. Policies

Policies used in the DDE and enforced by the Event Cache
are access policies. If the policies are enabled in the settings,
they are permissive by nature. This means, that all event
communication is prohibited unless explicitly permitted by a
policy. These policies are communicated to the Event Cache
via Policy Messages, see structure in Table I.



TABLE II. SIZE OF A DDE EVENT MESSAGE.

Field Message Type Producer ID Event ID Event Type Time-to-Live Payload Length Payload Digital Signature
Type integer string integer integer integer integer array with n elements string
Size 4 bytes 4+64 bytes

(minimum)
4 bytes 4 bytes 4 bytes 4 bytes 4*n + payload bytes 20+4+48 bytes

(minimum)

Policies may be added or deleted by a message with the
specific Message Type. Updater ID indicates the identity of the
updater in the same way as a Producer ID does in an Event
Message. Events affected by the policy are specified by the
Event ID. Producer and Consumer IDs provide a way to target
the policy to allow just certain producers and consumers. For
example, that a specific producer can (or cannot anymore) send
events with that Event ID to the Event Cache; or that a specific
consumer can now on receive events with a specific Event ID.
The policy message is proofed by a digital signature to ensure
message integrity. A producer or a consumer can always try to
make a registration or a subscription to an Event Cache, but
the absence of a policy allowing the action leads to the Event
Cache discarding the incoming message from the producer, or
prevents the event from being sent to the consumer.

At the time of writing, only policies at the consumer
end are supported in the prototype but nothing prevents the
support to be easily extended also to the producer side. In
practise, consumers cannot obtain events before a policy is
added for that specific event and for that specific consumer.
Policy messages are only accepted from an authorised policy
updater, which is specified by the Updater ID in the Event
Cache configuration file (and seen in the policy message as
well). The updater can be either the same operator of the Event
Cache that is able to control the contents of the databases
also through the web-based management interfaces, or it can
be a custom built autonomic algorithm implemented for that
purpose.

V. PROTOTYPING

This section gives a short description of the current pro-
totype implementation we have of the DDE architecture. The
description focuses mainly on the Event Cache as it forms
the backbone for the whole architecture. We also present
our visualization implementation as it is an essential tool in
understanding the prototype and the whole architecture.

A. Prototype

The main component of the framework, that is, the Event
Cache is implemented in Python, and while most of the
development is done in Linux, it can also be run in Windows
and OSX environments. There are reference implementations
of Event Producer and Event Consumer in Python, C and C++,
as well as, a reference implementation of an Algorithm in
Python, which connects to the DDE both as a consumer for
its inputs and as a producer for its outputs.

The reference implementations of the Event Producer, the
Event Consumer and the Algorithm are also modular by de-
sign. As such, they are easily customized for various purposes.
The Producer and Consumer also have simple functionality that
allows them to be used as debugging tools configured to send
or receive and print Events via command line arguments or
configuration files.

B. Visualization

In order to visualize the operation of the DDE architecture
for demonstration and evaluation purposes, visualization soft-
ware has also been developed and has proven to be indispens-
able in understanding and debugging as well as demonstrating
the DDE functionality in a laboratory environment. The latest
generation of the software, shown in Figure 3, is capable of
showing a system of two Event Caches and their clients. The
visualization tool is also implemented in Python using Cocos2d
and Pyglet visualization libraries and they get the information
to be visualized through the visualization interface of the Event
Cache.

Fig. 3. Visualization of a system with two Event Caches in cascade.

Contents of the different visualization messages provided
by the Event Cache Visualization Interface are listed in Table
III. This table provides insight on what is possible to be visual-
ized with the current version of the interface. The visualization
message fields Name, Sender ID and Receiver ID are optional
in the sense that they only carry values when appropriate. The
Name field can contain a human readable name string of the
visualization element and the Sender and Receiver IDs are
also used as Producer and Consumer IDs respectively when
appropriate.

TABLE III. VISUALIZATION MESSAGES

Meaning Type Name Sender ID Receiver ID Event ID Event Name
add producer 7 Value Value - Value Value
delete producer 8 Value Value - Value Value
add consumer 7 Value - Value - -
delete consumer 8 Value - Value - -
event from producer 7 - Value - Value -
event to consumer 7 - - Value Value -
event to history 8 - - - Value -

VI. EXPERIMENTS

As we have a working prototype of the DDE architecture,
we have been already able to apply the architecture to multiple
use cases in a laboratory environment and evaluate the perfor-
mance. We present the newest measurements on performance
of the Event Cache prototype in VI-A. Two of the use case



Fig. 4. Event delivery delays in laboratory measurements

evaluations are also summarized shortly in this section, namely
a use case related to adaptive media delivery in VI-B and a
use case related to load balancing in VI-C.

A. Event Cache

The Event Cache facilitates communication between all the
components in the DDE architecture and as such is the most
critical component in the system. In the following the Event
Cache is evaluated in terms of scalability and reliability. The
testing was done with two 2.6GHz computers with 8GB of
RAM running Ubuntu 12.04 LTS connected to a single 802.11g
Cisco Aironet 1242AG Wi-Fi access point, although in terms
of performance the tests could have been run on a much lighter
hardware as the Event Cache is not resource intensive. The
Event Cache is located on one of the computers and both
computers have ten event producers and ten event consumers,
which are activated as required by the test cases. The testing of
the Event Cache performance was carried out with 9 different
test cases listed below:

1) 1 local producer and 1 local consumer
2) 1 local producer and 1 Wi-Fi consumer
3) 1 Wi-Fi producer and 1 local consumer
4) 1 local producer and 10 local consumers
5) 1 local producer and 10 Wi-Fi consumers
6) 1 Wi-Fi producer and 10 local consumers
7) 10 local producers and 1 local consumer
8) 10 local producers and 1 Wi-Fi consumer
9) 10 Wi-Fi producers and 1 local consumer

The aim for these tests was to assess the ability of the cur-
rent Event Cache prototype to handle different types of event
loads in different situations. In each case the producer(s) were
producing 10000 events with generation intervals between 1
to 0.001 seconds according to the formula 1

n = t, where n is
event number and t time delay after the previous event. In the
measurements, the time for the event to reach the consumer(s)
was logged. Although the actual spacing between events in
time does not strictly follow the formula as the generation and
sending of the event also takes a small amount of time, this
testing gives valuable information on the scalability and the

reliability of the current Event Cache prototype. The following
presents the evaluation results by grouping the nine test cases
in three groups with similar cases.

Cases 1-3: In cases 1-3 single producer and consumer were
tested both locally and wirelessly over a Wi-Fi (802.11g) link.
Figure 4 (A) shows the delay experienced by the events. All
the events were delivered in cases 1 and 2. In case 3 one event
out of the 10000 was lost.

Cases 4-6: In cases 4-6 10 simultaneous producers and a
single consumer were tested both locally and wirelessly over a
Wi-Fi (802.11g) link. Figure 4 (B) shows the delay experienced
by the events. The tests show, that up until the 10 producers are
sending 20 events per second each (around event number 200
in the figure), the delay behavior is consistent and all the events
are delivered. After this point, as the event flow increases; the
delay behavior of the Event Cache becomes more erratic which
can be seen from the delay figure. In addition, events are lost
with a rate of 15% in case 4, 78% in case 5 and 2% in case 6.
This behavior suggests that problems originate from the fact
that Event Cache isnt able to process the events fast enough
as the number of events lost is the smallest in the case that the
producers are behind the Wi-Fi link and as such are not able
to overload the Event Cache as much.

Cases 7-9: In cases 7-9 a single producer and 10 simultane-
ous consumers were tested both locally and wirelessly over a
Wi-Fi (802.11g) link. Figure 4 (C) shows the delay experienced
by the events. In case 7, with both local producer and local
consumers, all the events get delivered and the delay behavior
is logical. Case 9, with the wireless producer, gives similar
results with only 30 (out of 100000) lost events and quite
even delays. Case 8, with the 10 wireless consumers, has over
50% packet loss and erratic delay behavior during the higher
event flow. This is similar in behavior to case 5.

Based on these test we can conclude that both the Event
Cache and the DDE architecture scale as expected in all cases
except when a high volume of events must be sent to a
consumer through a slow (wireless) link. However, this kind
of situation would be impolitic in the DDE architecture and
can as such be neglected, as the aim of the architecture is to



handle the event flow over wireless links by interconnecting
two Event Caches and minimizing the number of sent events.

B. Adaptive media delivery

Internet-based multimedia services today incorporate flex-
ible coding and transmission technologies, such as Scalable
Video Coding (SVC) and adaptive streaming, in order to
cope with heterogeneous and fluctuating network capacity. The
decision-making in current solutions, including for example
MPEG’s Dynamic Adaptive Streaming over HTTP (DASH)
and Apple HTTP Live Streaming (HLS), nevertheless, is solely
based on application layer monitoring of media streaming
performance. That is, based on metrics such as receiver buffer
status or perceived media throughput. Additionally, the media
stream may initially be adjusted to the theoretical capacity of
the used access network technology (e.g. WLAN or mobile).
This can be done by selecting the most suitable streaming rate
ether manually by the user or automatically by the application
during start-up.

Nevertheless, adaptive media streaming would benefit from
more extensive cross-layer information in its decision-making,
especially in heterogeneous wireless network environments.
Also, automated management should be incorporated in or-
der to free humans from any bitrate selection responsibility.
Enabling such informed decision-making based on cross-layer
and cross-domain metrics that reflect the actual transmission
conditions as well as the multimedia application’s require-
ments, nevertheless, calls for an efficient and extensive sig-
nalling framework.

The DDE framework has been utilized for providing the re-
quired knowledge building and decision-making for intelligent
management of adaptive video streaming in a heterogeneous
multi-access network environment in [15], [16]. For the man-
agement system presented in these papers, DDE allows for
incorporating multiple terminal or network-side event sources
and hierarchical decision algorithms for dynamic controlling
of video streaming bitrate under network impairments and han-
dovers. The prototype implementation of the proposed system
uses a HLS-based video streaming client that was integrated
with DDE for the required signalling. The experimental evalua-
tion performed on the prototype in the two papers attested the
benefits of using advanced cognitive decision algorithms for
the controlling of the video streaming bitrate in the considered
multi-access scenario. The management system was shown to
improve the QoE for the video user as well as to enhance
the stability and performance of the decision-making in the
dynamic network environment. These results were enabled by
the advanced signalling and event management capabilities of
the DDE framework, which are not supported by the current
technologies.

C. Load balancing

The extensive growth of mobile data traffic will most likely
to be distributed inequally between network resources. Some
of the network equipments and paths will be therefore used
more than they can efficiently serve, whereas some of them
are barely used at all. Today’s end-user equipments are quite
often equipped with multiple network interfaces, which could
be potentially be used even at the same time if possible.

But without any knowledge on current network conditions,
for example, different content distribution systems can cause
issues in wireless environment and experienced quality of other
users.

DDE has been used for building multiaccess capable access
selection and load balancing proof-of-concept prototype, as de-
scribed in [17]. The prototype brought end-user a possibility to
use multiple wireless network connections at the same time for
file download, but was doing this without causing significant
quality impairments to the other user, which was using one
of access points for video streaming service. The prototype
employed DDE for collecting information from various sources
at different network locations, for delivering the information
for a distributed classification system and for delivering the
final classification outcome to be used as a basis for autonomic
network management decisions for load balancing. With a help
of DDE, the prototype outperformed the reference system,
which was without the network awareness, in access point
overloading situations. Moreover, the prototype proved that
DDE can provide easily deployable common interface for
distributing event between different scenarios in realistic real-
time environments.

VII. CONCLUSION

As wireless networks have become ubiquitous and ca-
pabilities of the devices connected to those networks are
rivalling the capabilities of desktop computers, the need for the
communications in these networks to be managed as efficiently
as possible has become imperative. One key aspect in this
distributed cognitive network management is to the solve the
issue of simple and efficient dissemination of information.

In this paper, we presented Distributed Decision Engine
which is an architecture designed to disseminate information
and manage multiple optimization functions in a controlled
and coordinated manner in a cognitive network management
system. We concluded that in our analysis both the Event
Cache and the DDE architecture scale well considering the
intended deployment architecture. The results from two tested
use cases ranging from enhancing multimedia delivery for a
mobile client to balancing the workload of the network nodes
were also presented and these proved that DDE can provide
easily deployable common interface for distributing events
between different entities in realistic real-time environments.

As future work, the authors plan to investigate open issues
such as the organization of the naming scheme for the events
and their producers and consumers as well as conduct wider
scaling studies in a real networking environment.

ACKNOWLEDGMENT

The work reported in this paper was partly supported by
the Finnish Funding Agency for Technology and Innovation
(Tekes) in the framework of the EUREKA/Celtic Cogni-
tive Network Management under Uncertainty (COMMUNE)
project and partly supported by the VTT Technical Research
Centre of Finland in the framework of the AWARENESS:
Energy Aware Learning in Cognitive Radios and Networks
project. The authors would like to thank their colleagues who
have contributed to the projects and especially those who have
participated in the implementation of the prototype.



REFERENCES

[1] J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan 2003.

[2] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4d approach
to network control and management,” SIGCOMM Comput. Commun.
Rev., vol. 35, no. 5, pp. 41–54, Oct. 2005.

[3] N. Niebert, S. Baucke, I. El-Khayat, M. Johnsson, B. Ohlman,
H. Abramowicz, K. Wuenstel, H. Woesner, J. Quittek, and L. Correia,
“The way 4ward to the creation of a future internet,” in Personal, Indoor
and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th
International Symposium on, Sept 2008, pp. 1–5.

[4] S. Kuklinski, M. Skrocki, L. Rajewski, J. Meseguer Llopis, and
Z. Wereszczynski, “Garson: Management performance aware approach
to autonomic and cognitive networks,” in Globecom Workshops (GC
Wkshps), 2012 IEEE, Dec 2012, pp. 914–918.

[5] K. Tsagkaris, P. Vlacheas, A. Bantouna, P. Demestichas, G. Nguengang,
M. Bouet, L. Ciavaglia, P. Peloso, I. Grida Ben Yahia, and C. Destre,
“Operator-driven framework for establishing and unifying autonomic
network and service management solutions,” in GLOBECOM Work-
shops (GC Wkshps), 2011 IEEE, Dec 2011, pp. 684–689.

[6] R. Litjens, F. Gunnarsson, B. Sayrac, K. Spaey, C. Willcock, A. Eisen-
blatter, B. Gonzalez Rodriguez, and T. Kurner, “Self-management for
unified heterogeneous radio access networks,” in Vehicular Technology
Conference (VTC Spring), 2013 IEEE 77th, June 2013, pp. 1–5.

[7] IEEE, “Standard for local and metropolitan area networks - media
independent handover services,” IEEE Std 802.21-2008, pp. 1–0, Jan
2009.

[8] D. C. Luckham, The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2001.

[9] G. v. Rossum and F. L. Drake, “Python reference manual,” Virginia,
USA, 2001. [Online]. Available: http://www.python.org

[10] B. Stroustrup, The C++ Programming Language, 3rd ed. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[11] H. Pennington, A. Carlsson, A. adn Larsson, S. Herzberg, S. McVittie,
and D. Zeuthen, “D-bus specification.” [Online]. Available: http:
//dbus.freedesktop.org/doc/dbus-specification.html

[12] J. Makela and K. Pentikousis, “Trigger management mechanisms,” in
Proceedings of the International Symposium on Wireless Pervasive
Computing, San Juan, Puerto Rico, February 2007, pp. 378–383.

[13] M. Eisler, “Xdr: External data representation standard,” RFC 4506
(INTERNET STANDARD), Internet Engineering Task Force, may
2006.

[14] C. Dannewitz, J. Golic, B. Ohlman, and B. Ahlgren, “Secure naming
for a network of information,” in 13th Global Internet Symposium, 2011
IEEE, Mar 2010, pp. 1–6.

[15] T. Ojanperä, M. Luoto, M. Uitto, and H. Kokkoniemi-Tarkkanen,
“Hierarchical management architecture and testbed for mobile video
service optimization,” in ICNC 2014, Feb 2014, pp. 999–1005.

[16] T. Ojanperä, M. Luoto, M. Majanen, P. Mannersalo, and P. Savolainen,
“Cognitive network management framework and approach for video
streaming optimization in heterogeneous networks,” Submitted, 2015.

[17] T. Rautio, M. Luoto, J. Mäkelä, and P. Mannersalo, “Evaluation of
autonomic load balancing in wireless multiaccess environment,” in
IEEE Wireless Communications and Networking Conference (WCNC),
2013, April 2013, pp. 1416 – 1421.


