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Abstract—Carrying out network monitoring tasks remains a 

continuous challenge, partially because the line rate reaches and 

exceeds 100 Gbit/s. Besides the increasing data rate, the advent of 

programmable networks necessitates efficient solutions for 

supporting packet processing tasks in an adaptive way. 

Introducing a modification of a protocol or any new protocol in 

such a flexible infrastructure implies a novel management 

approach incorporating network monitoring equipment with 

reconfigurable architecture. The requirement for high 

throughput and high level of reconfiguration together put Field 

Programmable Gate Array (FPGA) technology into the focus of 

high performance networking. 

In this paper, we introduce a programmable, multi-purpose 

network platform called C-GEP that is based on a reconfigurable 

architecture. The system consists of two main building blocks: a 

high performance FPGA-based custom hardware platform and a 

firmware dedicated for network monitoring. We present the 

architecture focusing on the system-level integration of specific 

packet processors. The integration of processing building blocks 

into one high performance system has great challenges. These   

are primarily related to specific, limiting factors of system 

resources – which we discuss also in this paper. 
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I.  INTRODUCTION 

Core network infrastructures are one of the first adopters of 
high performance transmission technologies. The primary 
factor that drives the evolution of these critical infrastructures 
is the emergence of new services requiring increased 
bandwidth. These days, considering the global Internet traffic 
mix, real time media services (e.g., VoD, IPTV, OTT video, 
video conferencing, etc) are the top consumers of network 
capacity. Due to the real time requirement of these services, 
there is a raised expectation about network performance. It is 
not just the capacity, but other transmission properties that 
should be kept under tight control, i.e., loss, delay and delay 
variation. In order to provide an uninterrupted, high quality 
service, providers apply a wide scale of monitoring tools and 
metrics to measure the network performance. There are many 
critical network management tasks that require packet level 
network monitoring: detecting and localizing network faults 
and bottlenecks, measuring quality of service (QoS) metrics 

(packet delay, loss, jitter and reordering), performance analysis, 
misbehavior detection, etc. To assess quality of service (QoS) 
level for real time applications, a continuous packet-level flow 
monitoring is a common practice. In order to control the 
transmission properties throughout the network for an 
increasing scale of time sensitive applications, distributed 
monitoring of a predefined set of network links and nodes 
became an essential element of professional network 
management.  

In this paper, we introduce a high performance, lossless 
network monitoring system called C-GEP that is based on a 
reconfigurable architecture. The system consists of two main 
building blocks: a high performance Field Programmable Gate 
Array (FPGA)-based custom hardware platform and a 
firmware dedicated for network monitoring. The 
reconfigurable property of the FPGA chip enables to turn the 
C-GEP hardware platform into a high performance networking 
device, e.g., network monitor, switch, router, firewall or 
intrusion detection system. Nevertheless, as a network 
monitoring system, it supports distributed and lossless packet 
level monitoring of Ethernet links up to 100 Gbit/s. 

Distributed monitoring implies multiple synchronized 
instances of the C-GEP device that we call probes in the 
context of network measurement. Reconfiguration of any part 
of a hardware-based network monitor got more focus by the 
emergence of Software Defined Network (SDN) infrastructures 
with the primary design principle of network programmability. 
Introducing a modification of a protocol or any new protocol in 
such a flexible infrastructure is a vendor independent task. This 
raises the necessity of an adaptive network management 
approach that features network monitoring devices 
incorporating reconfigurable hardware elements. The 
requirement for high throughput and high level of 
reconfiguration together ended up in the design and 
implementation of the presented system.  

The rest of the paper is organized as follows. Section II 
reviews the previous works related to high performance 
network monitoring, including research results and hardware 
accelerated implementations. In Section III, we introduce the 
monitoring system detailing its architecture, functions and 
performance parameters. Section IV gives an overview of the 
challenges related to system level integration of the processing 
stages, i.e., lossless packet capture, high precision clock 



synchronization, packet parsing and classification, and 
reduction of measurement data.  Finally, we conclude the 
results and experiences in Section V. 

II. RELATED WORK 

There is only a limited number of publications that involve 
system level presentation of high-performance network 
monitor architectures based on reconfigurable hardware. 
Typically these are about packet processing tasks (i.e., packet 
parsing, packet classification and payload inspection) that are 
part of some specific networking equipment (e.g., network 
monitor, firewall, IDS, etc.) form their own specific research 
fields, with very small system level integration effort. 
Nevertheless, the system level integration of specific packet 
processors introduces new challenges. These are primarily 
related to system resources that often set up constraints to the 
integration of processing building blocks into one high 
performance system. Handling the increasing data rate of the 
evolved transmission technologies emphasizes the requirement 
for an integrated approach of hardware-based packet 
processing. In this section, we review major contributions of 
the mentioned research fields and show some examples of the 
integration efforts related to reconfigurable architectures and 
network measurement.  

Michael Attig et al. [1] introduced a high-level parsing 
description language. Source codes can be compiled to a 
Virtex-7 FPGA device to perform packet parsing at 400 Gbit/s 
data rate. Viktor Pus et al. [2] proposed a parser that is 
manually optimized for latency and chip area, operating at 
more than 100 Gbit/s data rate. Their introduced parsing engine 
provides the classic 5-tuple protocol metadata for each 
processed packet. Gordon Brebner et al. [3] proposed an 
object-oriented language for the compilation of high 
throughput packet processing engines. The compiler generates 
a pipeline architecture, which supports operation at 100 Gbit/s 
data rate. Thilan Ganegedara et al. [4] presented a 400 Gbit/s 
throughput capable architecture for a 5-tuple based 
classification module. The work uses four instances of a 
100 Gbit/s engine, where each engine is also based on pipeline 
architecture. Weirong Jiang et al. [5] introduced a 12-tuple 
based classifier solution. The FPGA implementation is able to 
operate at 40 Gbit/s line rate combined with a 1k-element rule 
set. The proposed system is based on a multi-pipeline 
architecture. Jeffrey Fong et al. [6] proposed a one-chip 
solution for a complex classifier system, namely ParaSplit. The 
implementation can operate even at 1 Tbit/s throughput using 
multiple module instances. NetFPGA [7] is an open platform 
for prototyping line-rate packet processing systems. The 
NetFPGA-10G board is based on a Virtex-5 device, which 
features four 10 Gbit/s interfaces. Since the platform is 
primarily dedicated for research purposes, it provides base for 
many publications. The main NetFPGA-10G projects 
implement switch [8] functions operating at 10 Gbit/s data rate. 
These solutions are based on Microblaze to perform header 
field extraction and packet modification tasks. Microblaze [9] 
is an FPGA-based, 32-bit RISC architecture soft-processor. 
NetFPGA is an efficient hardware platform for monitoring 
systems. However, the presented works operate at 1 or 10 
Gbit/s. Buffer monitoring system [10] is designed to monitor 
the utilization of packet buffers in switches and routers. The 

open source work monitors the packet arrival/departure/drop 
events on the incoming queues, and sends it to a software 
module. Alfio Lambardo et al. [11] developed a traffic monitor 
system to measure the amount and type of packets carried over 
a network. The incoming traffic is routed to the CPU, and the 
type of packets is determined based on the IPv4 header 
protocol field. Gianni Antichi et al. [12] designed a passive 
monitoring system, providing accurate timestamping 
(nanosecond accuracy). The system contains a 5-tuple based 
classification engine, where the fitted packets are routed to the 
CPU for further processing. Beyond the presented publications, 
major vendors of network measurement equipment also 
involve the FPGA technology to implement hardware 
accelerated packet-level monitoring. For 100 Gbit/s networks, 
Endace designed a system called Network Visibility Headend 
[13] that de-multiplexes 100 Gbit/s ingress traffic to multiple 
10 Gbit/s egress interfaces. However, their solution requires 
multiple 10 Gbit/s monitor probes to accept distributed packets 
and perform packet parsing and classification – meaning that 
the 100 Gbit/s device merely serves as a 100/10 de-multiplexer. 

III. ARCHITECTURE OF THE C-GEP MONITORING SYSTEM 

C-GEP is a multi-purpose, programmable, FPGA-based 
Gigabit Ethernet Platform – the successor of C-Board [14]. Its 
main purpose is to provide means for handling 1, 10, 40 and 
100 Gbit/s Ethernet traffic in a flexible manner. The 
architecture allows various networking applications for 
implementation – from SDN devices to media gateways; from 
traffic generators to DPI (Deep Packet Inspection) support. The 
first prototypes were programmed to work as monitoring 
probes for traffic measurement. The C-GEP functions well in 
this environment, due to its capabilities for lossless packet 
capture (even at 100 Gbit/s); ns-precise timestamping (when 
equipped with a built-in atomic clock); and packet filtering / 
forwarding based on complex rules (see Fig. 1). 

 
Fig. 1. Logical layout of the C-GEP monitoring system 

A. Implementing 100 Gbit/s Physical Layer and Media Access 

Control in a reconfigurable architecture 

Based on a reconfigurable architecture such as an FPGA, we 
have the possibility to design and implement even the lowest 
level packet processing tasks. In such a way, we can provide 
custom functions and I/Os to retrieve low-level, packet-related 



information to determine arrival time on wire, for example. 
Accordingly, we implemented the Physical Coding Sublayer 
(PCS) and the Media Access Control (MAC) inside the FPGA 
chip, which are the first stages within the internal data path. 
Nevertheless, there are many FPGA-based Intellectual Property 
(IP) cores on the market implementing 100 Gbit/s Ethernet 
MAC. Such IP-cores (considering today’s price level), are very 
expensive and therefore contribute significantly to the price of 
the monitoring device.  

The C-GEP board connects to the 100 Gbit/s core network 
using a CFP (C Form-factor Pluggable) transceiver. The CFP 
module is directly wired to the pins of the FPGA chip on the 
board. Within the Virtex-6 chip the high-throughput capable 
lines are handled with GTH I/O interfaces. The MAC module 
operates in non-segmented mode, using 512-bit wide data path 
combined with 312.5 MHz core frequency. In this operation 
mode, each start byte of the outgoing data is synchronized to 
the first byte of the 512-bit word. The segmented operation 
mode, as alternative for a lower frequency design, enables a 
packet to start in every 8-byte boundary of the 512-bit word. 
Since the subsequent processing phases operate on predefined 
packet header fields, segmented mode requires complex 
synchronization logic during metadata propagation. On the 
other hand,, the internal design of a non-segmented MAC 
module occupies more buffer logic than the segmented mode.   

B. Distributed Monitoring: Synchronizing Probes’ Clocks 

In traffic analysis, high resolution and high precision 
timestamping is a basic requirement to evaluate QoS metrics 
(such as one way and round trip delays and delay variation in a 
network path) and to precisely detect or reconstruct network 
events (i.e., request-response pairs). 

 All of these management tasks get extreme importance 
when evaluating network performance against Service Level 
Agreements (SLAs). Another example of high synchronization 
accuracy is monitoring multiple links of a router. This is the 
case of the performance evaluation of a routing device. In this 
arrangement, each link is measured by a dedicated monitoring 
probe. A packet seen by one probe may be forwarded to an 
outgoing interface of the router that is monitored by another 
probe. Typical order of the forwarding delay in today’s core 
routers is in the 0.5-5 microseconds range.  This low level of 
delay demands for highly accurate clock synchronization 
between monitoring probes. 

Monitoring systems should be prepared for the worst case 
scenario, and therefore internal clocks have to be synchronized 
so that the order of message pairs can be clearly determined. 
There are several solutions for this purpose (e.g., Network 
Time Protocol - NTP, Precision Time Protocol - PTP and 
Global Positioning System - GPS), providing different levels of 
accuracy. Since NTP is typically implemented as a software 
solution, it is not capable to provide synchronization accuracy 
better that 1 ms in LAN environment, and 100-1000 ms in 

longer distances. Accordingly, the software- and network-
related constraints do not enable its application in high 
performance measurement systems. In contrast to NTP, PTP 
has significantly higher accuracy, but requires hardware 
support in each device throughout the network path. 
Monitoring systems involve both GPS and PTP as an enabling 
technology to support high accuracy clock synchronization 
throughout the distributed system.  

Considering network monitoring, the properties and the 
performance of a timestamping engine is determined by the 
maximum rate of packet arrivals and the type of measurements. 
In the presented monitoring system we implemented GPS- and 
PTP-based clock synchronization supported by a high precision 
on-board atomic clock device. The C-GEP system is able to 
synchronize its high precision local clock with a PTPv1 (IEEE 
1588-2002 compliant [15]) master device. The monitor probe 
operates as slave in the PTPv1 communication and uses one of 
its Gigabit Ethernet interfaces for this purpose. Clock 
synchronization mechanism was tested through software as 
well as hardware solutions. The software solution was a free 
PTPv1 Master implementation, namely ptpd [16]. In addition, 
our research group implemented a hardware solution for the 
PTPv1 tests, using a NetFPGA-1G board [7] and a chip scale 
atomic clock [17]. 

C. Parsing Packet Headers 

The second stage within FPGA’s internal data path is the 
packet parser module, which maintains the 512-bit wide path in 
each of its sub-modules. To achieve the target throughput, the 
parser engine has to operate at a core frequency of 312.5 MHz. 
Since the architecture of the FPGA devices is designed to 
support a wide range of processing tasks, its physical resources 
may set up  limitations for certain type of applications. One of 
these drawbacks is the maximum operating frequency for the 
connection path, which is typically not higher than 400 MHz, 
even in a high-end device. This limit is against a high-
throughput design goal, and requires target specific design 
perspective. 

The operation of the parser engine is based on a parse 
graph, which is a combination of predefined header structures. 
The parse graph defines the possible state transitions during the 
parsing process (see Fig. 3). According to the scalability of the 
parse graph, the engine can be reconfigured at compilation or 
run time. Publications related to high performance packet 
parsing [1][2][3] commonly propose solutions based on 
reconfigurable parse graphs, in which the identifiable protocol-
structure is reconfigurable through offline algorithms using a 
specified object oriented language. These header definition 
languages are designed for handling protocol structures with 
high-level programming tools. Reconfiguring the parse graph 
during online operation requires a synchronized update of the 
filter rules inside the classification engine. As an example, let’s 
assume that IPv4 header extraction is replaced with IPv6 
header recognition.  

 

Fig. 2. Example for the header structure of a supported multi-encapsulated packet 



After the end of the upgrade process, the parser engine 
provides IPv6 address fields instead of IPv4 ones. This 
operation turns the parser and classifier engines into an 
inconsistent state relative to each other, since the 
classification engine is still prepared for IPv4 filtering. To 
avoid packet loss due to the inconsistent processing state, the 
monitored links have to be redirected to a bypass route 
during the reconfiguration process. This solution may result 
in a false analysis result since unrelated traffic can be 
processed as part of a monitored flow, for example. In 
addition, the suddenly increased amount of data has to be 
stored and processed, otherwise packet loss occurs. To avoid 
the inconsistency, our packet parser graph is reconfigurable 
in compilation time only. 

 

Fig. 3. Packet parser graph 

Considering today’s networking trends, evolving network 
services result in the appearance of new protocols or protocol 
fields at an increasing frequency. To cover the spectrum of 
network protocols present in core IP networks, our parser 
engine enables to identify multi-encapsulated packets 
beyond decoding the classical 5-tuple, i.e., IP address pair, 
port pair and transport protocol. Therefore, the engine 
extracts 14-tuple (protocol fields), which are: outer VLAN 
tag, inner VLAN tag (QinQ), MPLS tags (two levels), 
EoMPLS, VLAN tag in EoMPLS, IPv4 header, UDP or TCP 
header (see Fig. 2). The dynamic length of the IPv4 header 
using optional fields is also handled during the parsing 
process. The decoded protocol metadata are synchronized to 
the original packet, and buffered for further processing. 

For assessing QoS of a network service, lossless packet 
processing is an essential requirement. Since the 100 Gbit/s 
MAC module operates in non-segmented mode, every 512-
bit word (and therefore every clock cycle) can contain a new, 
minimum-sized packet. This property dictates a very strict 
timing constraint for the parser engine, which has to decode 
the header structure within one clock cycle. Using buffers or 
storage memory is not a viable option at this core frequency, 
because the intra-chip routing to the memory elements is 
often a timing critical point. In addition, memory modules 
are just temporal solutions, since transient traffic – such as a 
burst of minimum-sized packets – can cause overflow and 
packet drop. According to the chip limitations and the target 
tasks, the processing steps of the parsing engine are designed 
and integrated into a pipelined architecture. Each pipeline 
stage has a well-defined task during packet parsing to handle 

the identification and extraction of an embedded header. 
Since the core frequency is critical, one stage must contain 
simple operations on a predefined header. The pipeline 
structure in the C-GEP is also fixed at compilation time. To 
manage and follow the start of the headers, simple indices 
are calculated and propagated through the processing phases. 
At the end of the pipeline, a read stage protects the parse 
engine against overflow. 

The output (i.e., the pre-processed traffic) of a 
monitoring system is always stored in a database for post-
processing and statistics calculation. To decrease the amount 
of stored data, cutting the packet payload is a common 
solution. Since the protocol embedding is a complex and 
unknown property of the incoming packets, static cutting 
(static snap length) is widely used in practice. This method 
ignores private user data, which is out of the static window. 
However, it can happen, that the private data remains visible, 
or the important header information are not stored because of 
the static cutting. An advantage of a complex parse engine is 
the knowledge of the header structure, which is an important 
and required factor for dynamic snap length calculation. This 
property of the parser process ensures that all header 
information can be stored without private user data. 

D. Packet Filtering and Classification 

Packet classification is one of the main processes in a 
monitoring system, which is the third phase of the internal 
processing path. It expects input metadata about the 
incoming packet and about the base of the classification. The 
former is the extracted header field-set, coming from the 
packet parsing stage. The number and size of these header 
fields determine the complexity of the lookup engine. The 
latter is a field-set, namely rule, in which the highest priority 
match gives the result of the classification process. Rules are 
based on the extracted header information, namely tuples. 
The classical solutions are 5-tuple methods.  

Convergence of mobile networks to IP, and the 
emergence of complex, more than 5-tuple classification get 
importance and became active research areas lately. To 
perform fine grained filtering, C-GEP operates with a 14-
tuple classification engine. The classifier module of the C-
GEP system continues the packet parser engine’s data flow, 
including the data path width and frequency requirements.  

E. Transparent Reconfiguration of Filtering Rules 

One of the main design drives of a packet classification 
engine is on-the-fly, transparent reconfiguration without 
temporal redirection of the packet flow to a bypass path. 
Acquired packets are filtered based on the old rule until the 
update mechanism overwrites it.. The architecture of the 
filter module relies on the same principle as the parser 
engine, namely the pipelining. This feature implies a stage-
by-stage update mechanism and a dedicated path for the 
configuration data. The filter process is synchronized with 
the update algorithm to perform real-time processing. 

To assist the update mechanism, the system includes a 
graphical rule-generation software. Figure 4 shows this 
program that generates a configuration file, which contains 
the binary form of the rules in a special header format.  



 

Fig. 4. Configuration file generator 

The binary files can be reopened or exported to block 
RAM initialization files. This mechanism was useful during 
the validation of the prototypes. After generating the 
configuration file, new rules can be uploaded to the FPGA 
chip. The embedded Linux OS of the C-GEP platform 
contains functions for the rule update mechanism, which are 
written in C. The update functions use PCIe interface to 
reconfigure the classifier engine. The PCIe module at the 
FPGA side operates at 125 MHz core frequency, in contrast 
with the filter module. The clock domain crossing is solved 
by FIFOs to collect and synchronize new rules. 

The classifier engine operates on the protocol metadata 
extracted by the parser module. Each rule contains 14 
elementary conditions, which conditions can be concatenated 
using AND or NOT AND operations. 

With the presented structure of the classifier engine (see 
Fig. 5), the C-GEP monitor platform is able to operate with 
16 hardware-based filter rules. The number of rules in this 
architecture is limited because of the FPGA chip resource 
constraints. To increase the number of filtering rules, we 
designed and implemented a new block RAM based filtering 
solution (see Fig. 6). As a new approach, we choose a 
previous work from the decomposition-based classification 
engines, as the base of our filtering function [18]. Field-split  
bit vector (FSBV) is a parallel, lookup-based filtering 
method, using subfields from the original header 
information. Since it operates only at 167 MHz core 
frequency, it does not meet our frequency constraints. To 
enhance the FSBV algorithm, we optimized it to support 
312.5 MHz operational frequency. Our solution is verified in 
simulation tests; the integration and firmware generation 
phase was not yet performed. Nevertheless, the optimized 
classifier engine is able to operate on n x 72 rules, similar to 
the FSBV solution. The extracted header information, 
coming from the parser engine, is split to 9-bit addresses for 
the block RAMs. Each address represents a 72-bit value, in 
which each bit belongs to one rule. If the 9-bit part of the 
actual rule fits on the 9-bit part of the extracted header 
information, it is represented by 1 at the given index 
otherwise the bit is set to 0. Each block RAM is addressed in 
parallel, where partial results are AND-ed for the final result. 
The drawback of this architecture is the lack of real-time 
reconfiguration. The rule fitting is an invalid operation 
during a writing clock cycle. 

F. System Integration: One Chip, One System 

The integration phase of the full system required hard 
cooperation between the presented processing engines, 
because of several implementation features and FPGA 
resource limitations. 

 

Fig. 5. Pipeline-based packet classifier 

 

Fig. 6. Block RAM-based packet classifier 

While packet parsing and packet classification are active 
research fields, both with a large number of contributions, 
there are only a few publications discussing the challenges of 
integrating these functionalities in a high performance 
monitoring system.  

The size of the MAC module was a constraining factor of 
the system integration. The prototype board of C-GEP 
designed with an XC6VHX255T FPGA chip, in which the 
100 Gbit/s Ethernet MAC occupies 30% of the logical 
routes. Adding the parser engine to the data path, the design 
occupies about 45% of the chip. Adding the basic Gigabit 
Media Independent (GMI)  interface and PCIe modules, but 
excluding the classification engine, the half of the chip was 
allocated.  

Considering physical resources, there is a trade-off 
between the size of the filter rule set and the complexity of 
the rules. In the C-GEP platform, we tried to balance 
between these two properties to cover common 
requirements. Besides line-rate classification, real-time rule 
update was another challenge of the implementation. To omit 
the bypass route for the captured packets during the 



reconfiguring phase, the classification engine was extended 
with an additional update path. This path occupies extra logic 
and results in a lower number of filter rules.  

Beyond the integration of the basic processing modules 
(i.e., 100 Gbits/s Ethernet PCS/MAC, packet parser, packet 
classifier), another engineering task was to properly handle 
different clock domains within the system. There are four 
clock domains (e.g., 1 Gbit/s Ethernet, PCIe, clock 
synchronization and 100 Gbit/s packet processing) in the 
monitor architecture, requiring synchronization and clock 
domain crossing mechanisms. 

A monitoring probe provides outgoing traffic flows based 
on specified criteria. Typically, the packets are routed to 
predefined output interfaces, where the routing method can 
be based on (i) matched filter rule, (ii) flow (conversation 
based routing), or (iii) per-packet round robin. 

If the operator would like to monitor a sub-network, a 
filter rule based monitoring can be an effective solution. The 
flow-based monitoring is suitable for QoS measurement or 
DPI. Round robin – or balanced packet distribution – is the 
third routing method, which is appropriate for balancing the 
captured traffic between agents on per-packet basis. Lossless 
operation is not just a requirement for incoming packets, but 
also for outgoing traffic. TCP is a well-known solution for 
connection-oriented operation, which provides lossless 
packet transfer between two network nodes. However, TCP 
requires a significantly big chip area in a hardware 
implementation, and each interface instance requires a 
dedicated instance of the TCP module. To handle the lossless 
packet transmission with low hardware resources, our 
research group designed an UDP-based transport protocol, 
namely Rate Control Transport Protocol (RCTP) [19]. The 
advantage of this protocol lies in a flow control mechanism, 
which works at the recipient side, and the sender is based on 
simple logic to care about the FPGA resource limitation. 

IV. CONCLUSION 

While the evolution of network infrastructures is driven by 
two factors: the increasing amount of user data and the 
emergence of new services, there is a novel paradigm, 
namely the concept of programmable networks that shapes 
and redefines the architecture of IP-based network 
infrastructures. All of the mentioned changes together 
necessitate a new adaptive way of network management. To 
give performance as well as flexibility, reconfigurable 
hardware may appear as the central building block of a high 
performance network management system. In this paper, we 
introduced a multi-purpose, programmable, FPGA-based 
hardware platform that supports the mentioned new concept 
in many ways. Its main purpose is to provide means for 
handling 1, 10, 40 and 100 Gbit/s Ethernet traffic in a 
flexible manner. As Proof-of-Concept, we showed an FPGA 
firmware operating at 100 Gbit/s line rate and involving 
hardware-accelerated packet capturing, parsing, 
classification and clock synchronization engines. In this 
paper, we investigate the challenges of the integration of 
packet processing engines into one reconfigurable integrated 
circuit, and focus on major design and implementation trade-
offs related to chip-level physical resources. 
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