
GreenSDN: Bringing Energy Efficiency to an SDN
Emulation Environment

Bruno B. Rodrigues∗, Ana C. Riekstin†,
Guilherme C. Januário†, Viviane T. Nascimento∗

and Tereza C. M. B. Carvalho†
University of São Paulo

São Paulo, Brazil
Email: †{carolina.riekstin, gcjanuario, tereza.carvalho}@usp.br,

∗{brodrigues, vianetn}@larc.usp.br

Catalin Meirosu
Ericsson Research

Stockholm, Sweden
Email: catalin.meirosu@ericsson.com

Abstract—A significant number of green, energy-saving net-
work protocols have been invented in recent years in response
to demand for reducing the amount of energy consumed by
network infrastructure. In this paper, we report on the difficulties
we encountered when building an SDN environment that could
emulate energy saving protocols operating at different layers
of the network. We propose solutions, based on the Mininet
environment and the POX Openflow controller, that emulate the
effects of three different energy saving protocols. Our approach
is validated by comparing energy savings obtained by activating
these protocols in an emulated network topology inspired by the
Brazilian Research Network.

I. INTRODUCTION

Datacenter and telecom service providers are struggling
with the growing energy spending and associated growth of
operational costs and greenhouse gases (GHG) emissions. The
annual/yearly ICT energy consumption is forecasted to in-
crease nearly 60% until 2020, reaching almost 1,100 TWh [1].
Networking is a considerable source of energy demand both
in datacenters, where it accounts for 10 to 20% of the energy
consumption, and operators, to whom networking accounted
for more than 260 TWh in 2012 [2]. To reduce the power
demand from networking, several energy efficiency capabilities
(also called green capabilities) have been proposed, ranging
from chip level capabilities to network management tools.
However, environments to emulate these energy efficiency
solutions have not been discussed as much as the green capa-
bilities. Building an energy efficiency emulation environment
using on IETF MIB models and SNMP as the management
protocol was discussed in [3]. Nevertheless, that solution does
not address challenges specific to Openflow-based Software
Defined Networks (SDN), such as how to include autonomic
green capabilities in the dataplane that are not aware of flow
descriptors.

This paper proposes GreenSDN, an SDN emulation en-
vironment based on the Mininet and the POX controller,
providing also the necessary extensions to emulate energy
efficiency capabilities. To the best of authors knowledge it
is the first work to provide an SDN environment easy to
deploy and replicate in order to emulate green capabilities.
The remainder of this work is organized as follows: Section
II reviews the selected state of the art of green capabilities,
as well as the Mininet network emulator and the monitoring

extension. Section III details how we implemented the selected
green capabilities and extended the POX controller. Section IV
describes the system architecture that assembles together green
capabilities emulated at dataplane and network levels. Section
V presents results from the emulation environment, validating
our method and technical choices. Finally, Section VI presents
our conclusion and future works.

II. STATE OF THE ART

In this section we review the selected state of the art in
energy efficiency capabilities, emulation tools and OpenFlow-
based network monitoring. We describe the functioning and
details about green capabilities and extensions required to build
GreenSDN.

A. Energy Efficiency Capabilities

Several energy efficiency capabilities have been developed
focusing on the increase of the energy efficiency of network
infrastructures. These capabilities are usually categorized in
accordance with the scope in which they are applied on the
network infrastructure. For instance Adaptive Link Rate (ALR)
[4] and Advanced Configuration and Power Interface (ACPI)
[5] are examples of capabilities applied on specific chip-
level components of network devices. Synchronized Coalesc-
ing (SC) [6] and IEEE 802.3az [7] work at the node-level.
Other capabilities are employed at the network level, such as
Green Traffic Engineering (GreenTE) [8], SustNMS [9] and
ElasticTree [10]. Only ElasticTree was developed for SDNs,
but we understood that the implementation is proprietary.

Considering the several capabilities available in the dif-
ferent network levels, we selected three green capabilities to
be implemented in GreenSDN. Each of them is representative
for one of the following network layers: ALR (transceiver
chip-level - Layer 1), SC (node-level - Layer 2) and Sust-
NMS (network-level - Layer 3). The literature contains good
technical descriptions of ALR and SC to help us with the
implementation, while SustNMS is a previous work performed
in the research group so the source code was made available
to us.

ALR (Transceiver chip-level - Layer 1) is an transceiver-
level capability that copes with the underutilization and over-
provisioning of Ethernet links by dynamically changing data



rates in response to traffic levels [4]. It is designed to modulate
the capacity of network interfaces by scaling up or down
existing Ethernet data rates. It consists of a mechanism and
a policy. The mechanism determines how the data rate is
changed through a link negotiation. The policy determines
when to change the data rate, aiming to maximize the time
spent in a low data rate and saving energy without packet
losses [4]. For instance, if a low traffic level is detected, a low
data rate should be used. For high traffic levels, a high link
data rate is necessary.

SC (Node-level - Layer 2) is a capability based on the
Low Power Idle (LPI) mode for Ethernet links (defined by
IEEE 802.3az) [7]. LPI is a mode used for reducing the energy
consumption of interfaces in a switch or router when no data
is being transmitted. SC uses a mechanism to orchestrate LPI
modes of all individual interfaces, coalescing the packets such
that an entire switch may be put into LPI mode. The capa-
bility improves the efficiency of IEEE 802.3az by coalescing
outgoing packets into bursts, making the number of transitions
between LPI and active modes decrease [6].

SustNMS (Network-level - Layer 3) has the objective to
allow operators to strike a balance between the assurance
of QoS and green traffic engineering (TE) and ensures fast
response to either failure or sudden traffic increase [9]. It
operates through high-level policies, requiring a monitoring
system to be aware of the bandwidth consumption, and the
definition by a network operator of the set of paths to be used.
SustNMS can be active in two different ways depending on
the bandwidth usage, a sustainability mode (SustNMS-S) max-
imizing the number of nodes in sleep mode by concentrating
traffic, and a performance mode (SustNMS-P), which routes
the network prioritizing performance.

B. Mininet and POX Controller

Since the growth of virtualization in network infrastruc-
tures, there are efforts to emulate or simulate programmable
networks in order to provide environments supporting realistic
user traffic, at scale, and with interactive behavior (e.g. ns
[11], Emulab [12], GENI [13], Mininet [14]). Among the
available solutions to emulate a programmable OpenFlow net-
work, Mininet combines the desirable features of simulators,
testbeds and emulators, being considered the most popular
and easier to use due to its capability to execute locally
into a virtual machine, allowing also faster implementations
[14]. It is readily available as open source and experiments
replication is one of its main strengths. Mininet includes data
plane switching functionality from Open vSwitch (OVS) [15].
However, for a research project, the Open vSwitch code is
fairly complex and therefore difficult to modify. Instead, we
opted for implementing the interface and node-level green
capabilities emulation on the SDN controller, details are given
in Section III.

While Mininet is the most popular SDN emulation tool,
POX [16] is one of the most popular OpenFlow Controller. It
is a python-based controller which has gained popularity due
to its easiness of use and available documentation. Its open
source code makes it easier to modify and add features.

C. OpenFlow Network Monitoring

A key requirement in order to satisfy QoS (Quality
of Service), efficient TE (traffic engineering) and the mea-
surement of energy consumption is accurate network mon-
itoring [17]. Considering a controller running green capa-
bilities, such requirement gains importance. Network-level
capabilities such as SustNMS imposes a need to evaluate
constantly throughput in order to adapt the network to a
load proportional usage. For this, the OpenFlow protocol
provides a good support providing the required information
through the messages OFPT FEATURES REQUEST
and OFPT FEATURES REPLY . With these messages
is possible to query counters about ports, flows and flow-tables
[18]. For instance, the bandwidth of a switch is calculated as
the sum of the received bytes (rx bytes) counter of its ports,
and by extension, we can measure the bandwidth of a path as
an average of the rx bytes of flows installed in switches of
the path. Therefore, we can update SustNMS with the current
workload in a switch or path.

III. GREENSDN IMPLEMENTATION DETAILS

We developed GreenSDN considering the following pro-
cess: implement a mechanism to collect traffic statistics; imple-
ment the power profiles taking into account traffic statistics to
emulate switch energy consumption; and implement the energy
efficiency capabilities.

A. Monitoring Traffic Statistics

To query nodes information regarding flows and ports
usage we use the requests OFPC−FLOW−STATS and
OFPC−PORT−STATS that are used as the body of the
message OFPT FEATURES REQUEST . Each features
request message is requested as a polling and is composed
either by a flow or port stats request, generating in response a
OFPT FEATURES REQUEST message. The response
contains flows or port statistics provided by the OpenFlow
protocol being handled in separated methods. However, a
straight polling of all nodes, although precise, has the potential
to generate large amounts of control traffic and consequently
to increase overall network energy consumption. We address
this problem in a similar way as [17] and [19], by adapting
our polling. Initially, to detect incoming workload we query the
edge-nodes, which are connected to the hosts. Once a workload
is detected, nodes through the used paths are also queried.
The paths are obtained either from an initial proactive flow
instantiation or from the SustNMS output to change a path, in
case it is active.

B. Power Profiles Implementation

As stated in [3] in a sustainable-oriented environment,
routers or switches must support different power profiles and
provide energy consumption information [3]. Virtual switches
such as OVS have no capabilities to provide power consump-
tion information neither at the port level, nor at the overall
process level. As the SDN controller has an inventory of
all switches in the network, we defined power management
application comprising power profiles as a way to parameterize
energy consumption in accordance with the bandwidth utiliza-
tion. Two types of power profiles were defined to simulate



real equipment: a load proportional, that is more energy
efficient and desirable, and a linear, most common in legacy
equipment, with a constant energy consumption independent
of the workload. Load proportional power profiles have a fixed
and a variable part as described in [20].

We used one of the load proportional power profiles from
[3] for switches powered on and sleeping, as described in
Equations (1) and (2). The power profile for powered on
switches was combined with extra savings specific from the
link rate reduction. In this case, we considered measurements
made by [21], and reduced 15% when ALR is active as
described in Equation (3). For SC, we combined the power
profile with the time the SC is on or off as described by [6]
in Equation (4). Despite considering a homogeneous network
using the specific equations described herein, the environment
could be easily adapted to use any other power profile or a
combination of power profiles in different switches.

PP = 200 +

(
500

30

)
∗ workload (1)

PPsleeping = 120 (2)

PPALR = 200 +

(
500

30

)
∗ workload− 15% ∗ALR (3)

PPSC = PPsleeping ∗ tOff + PP ∗ tOn (4)

C. Implementing Green Capabilities

As mentioned in Section II-A, three capabilities were
selected to validate GreenSDN: SustNMS, SC and ALR.
This subsection provides details on how the capabilities were
implemented in the GreenSDN environment.

1) ALR implementation strategy: The ALR capability uses
a policy and a mechanism to adjust the link rate. As we use
OVS and do not modify its behavior, and neither OVS or
OpenFlow provide support for changing link rates as proposed
originally by [4], we emulate ALR as detailed in Figure 1.

3

4

3

4

Flow-Table X:
1:qAnythingqtoqYqgoesqtoqportq3
2: Anything to Y goes to port 4

Flow-Table X:
1: Anything to Y goes to port 3
2:qAnythingqtoqYqgoesqtoqportq4

“modify-stateqmsg”

X X YY

Controller

“ofp_flow_statsq
request/response”

ALR

Fig. 1. ALR Emulation Scheme.

In Mininet, the data rate of each link is enforced by Linux
Traffic Control, which has a number of schedulers to shape
the traffic to a configured rate [22]. Based on this, we defined
parallel links between each pair of nodes to emulate the ALR
mechanism. A standard link, represented in the Figure 1 as
the continuous line, was configured with a 30 Mbps rate limit,
and a parallel link represented by the dotted line, configured
with 10 Mbps. Only one of these links forwards traffic at
a given point in time. The ALR policies were implemented

inside the controller, which receives requests from applications
to enable/disable ALR and determine the best moment when
to reduce or increase the link rate. Algorithm 1 presents the
implementation.

Algorithm 1: ALR Implementation.

If (ALR == ON) do:
For each port ∈ switch do:

If (port is not attached to host) do:
out port← out port+ 1
OFmsg ← odd port to 30Mbps
sendOpenFlowMsg()

Else:
For each port ∈ switch do:

If (port is not attached to host) do:
out port← out port− 1
OFmsg ← even port to 10Mbps
sendOpenFlowMsg()

To make the traffic engineering easier, the standard path
was configured to use the odd ports of the switch, while the
alternative path was configured to use the even ports. Every
time ALR is enabled, our application increments the out port
on all the rules associated with the switch. To disable ALR,
the same process is executed, but decrementing out port, so
that the traffic is forwarded to the normal path.

2) SC implementation strategy: There is no way to im-
plement SC without altering OVS functioning, since it does
not natively support traffic bursts. An alternative would be to
send packets from data level to the controller. The controller
would simulate the buffer/queueing functionality, but this is not
feasible since the controller cannot handle all the dataplane
traffic. The approach we took was to emulate the energy-
related effects of SC as an application on the controller based
on information from the power profiles, as depicted in Figure
2.

Controller

“ofp_flow_stats request/
response”

Power Profiles
Bandwidth

Consumption
PPsc

P
P

PPalr

PPsleep

SC
adaptive

Fig. 2. SC Emulation Scheme.

The adaptive part of SC is implemented as described in
the Algorithm 2. It has the objective to check if the gathered
number of packets per second, is higher than a pre-determined
buffer. If higher, the capability is disabled and the switch
enters in a standard mode of operation in order to handle the
workload without losing packets. While the number of packets
per second still lower than the buffer, incoming packets are
coalesced maximizing savings.

3) SustNMS implementation strategy: SustNMS demands
the identification of predefined tunnels in order to be efficient.



Algorithm 2: SC Implementation.

DutyCycle, buffer ← parameters
For each switch ∈ topology do:

If (SC == ON) do:
packets/second← port stats
If (packets/second > buffer) do:

SC ← OFF
return

Watts← (tOn/DutyCycle− tOn)
Losses← packets/second− buffer ∗ tOff

Else:
calculate(WattsSC −ON )
Losses← 0

The idea of the algorithm is to perform the green traffic
engineering considering all flows being executed in a moment
T , paths to be used, and the set of switches to be in sleep
mode based on a set of predefined tunnels. The controller
side of SustNMS identify the flows being executed using the
OpenFlow messages, as described in Section II-B. As a previ-
ous work of our research group, the algorithm implemented in
GreenSDN is similar to the one presented in [3]. Modifications
were made to adjust the predefined set of tunnels and switches
to be in sleep state in accordance to the topology used in the
validation (Section V).

IV. ARCHITECTURE

The system architecture is depicted in Figure 3. It is
composed by the controller application and adjacent worker
modules to support applications and the green capabilities. The
controller uses the following modules:

• Topology Manager: deals with the network man-
agement operating switches and ports. It implements
methods to manage flow-tables, installing or removing
flows whenever SustNMS requests a new path, also
defining switches and port states in order to measure
energy consumption through the Power Manager;

• QoS Services: is responsible for the monitoring task,
handling the response of flow and port status events.
It updates the controller about active paths, providing
bandwidth and losses;

• Power Manager: is used to implement the ALR
emulation mechanism, the adaptive part of SC and
the power profiles. In conjunction with the Topology
Manager, it is able to modify flow-tables;

• Graphical User Interface (GUI): gathers information
from the controller and displays information about the
topology, overall network consumption, packet loss
and green capabilities applied;

• Green Application Control: implemented as a button,
is used to enable or disable green capabilities. Also has
part of its implementation in the Controller in order
to apply the selected capability;

• Controller: the main component in the architecture,
manages the exchange of information among modules,
applications and capabilities.

Green Application Control

Open vSwitch

QoS Services
Topology 
Manager

Network Scope Energy Efficiency 
Capabilities Manager (SustNMS)

GUI

C
o

n
tr

o
lle

r

Open vSwitch

Open vSwitch

Open vSwitchSw
it

ch
e

s

SC 
Adaptive

ALR

ALR

Power 
Profiles

ALR Routing

Power Manager

OpenFlow v1.0

Fig. 3. Emulation Environment Architecture.

Algorithm 3 describes the Controller functionality in order
to apply green capabilities that was requested by the Green
Application Control, considering also a topology created be-
forehand. First, the controller creates instances of components
to operate the network using their methods. Topology and
flows are obtained via XML (eXtensible Markup Language),
the same file used to create the topology in Mininet and check
the edge-nodes. After setting instances and flow-tables, the
controller start to monitor the network.

Algorithm 3: POX Controller Implementation.

tm← topoManager.createTM()
QoS ← qos.createQosServices()
pm← PowerManager.createPM()
activeF lows← readXML(“proactiveF lows.xml”)
tm.l2mSpanningTree(“topo.xml”)
tm.installF lows(activeF lows, edgeNodes)
QoS.netMonitor(edgeNodes, activeF lows)
While True do:

activeF lows← QoS.checkActiveF lows()
For each path ∈ activeF lows do:

mpbs, loss← QoS.info(path)
funct← getCapabilityApp()
If funct = SustNMS do:

flows[]← SustNMS(path,mbps)
activeF lows← tm.setF lows(flows)

Else If funct = ALR do:
For each switch ∈ path do:

pm.enableALR(switch)
End for

Else If funct = SC do:
For each switch ∈ path do:

pm.enableSC(switch)
End for

Else If funct = None do:
pm.disableSC(path)
pm.disableALR(path)

End If
End For
consumption, loss← QoS.networkInfo()
GUI ← consumption, loss

End While

The While loop in Algorithm 3 represents the Controller
side of the Green Application Control, receiving capabilities
to be applied. In our case, the return of ”getCapabilityApp” is
None case the network is already running efficiently, or a string
to apply determined capability, otherwise each capability is



treated separately by the Controller, adjusting the network and
updating the power profiles. The Power Manager component
is used to emulate the nodes consumption due the OVS
restriction, as described in Section III-B.

V. VALIDATION

In this section we present the topology and an evaluation
to check if the capabilities meet our expectations based on
previous works on SustNMS [3], ALR [4] and SC [6]. Since
capabilities configuration relies on specific requirements of
each network, we aim to validate that GreenSDN is capable
of emulate energy efficiency capabilities. We used as the host
machine an Intel Core(TM) i5-3570 @ 3.40GHz with 8 GB
RAM, and, aiming to use the processor at its full capacity, we
disabled the processor low power mode (C-States) in the BIOS
(Basic Input/Output System).

15 16 14 3

2

17

4

6

5

78910

13 11

12

1

30 Mbps
10 Mbps

Edge

Sink

Sink

Source

Source

Fig. 4. Topology inspired by the RNP.

The topology in GreenSDN is inspired on the 10 Gigabyte
RNP (Rede Nacional de Ensino e Pesquisa)1 backbone. It
was reproduced in GreenSDN using seventeen emulated nodes
running OVS in kernel mode to switch packets across the
interfaces, the Figure 4 present the topoly. Each pair of nodes is
interconnected using parallel links, which are configured with
different rate limits. In order to send data across the network,
GreenSDN considers two main flows, from north to south and
west to east, placing two Sources in north extremes and two
Sinks in south extremes. The generation of traffic between the
hosts is in charge of the Iperf tool, which is already available
in Mininet.

Once paths are determined and considering that most
of north-bound applications tend to impose excessive traffic
control overhead, flows are installed proactively in flow-tables
when the controller starts. By pre-defining flows and actions
ahead of time in flow-tables, Packet − In messages never
occurs. As result every incoming packet is forwarded through a
simple lookup in flow-table, minimizing the latency induced by
Packet− In messages. Reactive modifications in flow-tables
are performed in accordance of applications requirements.

1The Brazilian National Education and Research Network

Considering this, a Control Green Application is imple-
mented to simulate requests to apply green capabilities. It
consists of two parts, a simple GUI with buttons to request the
execution of capabilities, and the Controller side as observed in
Algorithm 3, to apply the selected capability. Also, we kept the
same configuration of power profiles and capabilities as a way
to analyze the capabilities behavior based on a specific network
configuration. Results of the 10 and 30 Mbps workloads are
depicted in Figure 5.

10000

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Co
ns

um
pt

io
n 

(W
at

ts
)

Figure 5.a 2 flows @ 10Mbps

Baseline

SustNMS

ALR

SC

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Co
ns

um
pt

io
n 

(W
at

ts
)

Figure 5.b 2 flows @ 30Mbps

Baseline

SustNMS

ALR *65% loss

SC

Fig. 5. Energy Savings Evaluation considering 2 Flows.

The baseline consumption represent the ordinary network
operation, with all switches operating using the regular power
profiles. The 10 Mbps evaluation, Figure 5.A, present savings
of ALR and SustNMS were similar, with both presenting
savings around 15% with a small difference. However, this
scenario is different in accordance with another configuration,
as observed in Figure 5.B.

Aware of links capacity, SustNMS modifies the routing for
workloads bigger than 15 Mbps in order to avoid consequently
losses by flows sharing switches, such as switch 14 of Figure 4.
For workloads smaller than 15 Mbps, in our case the 10 Mbps
evaluation, SustNMS maximized the savings concentrating
traffic on the defined flows. Considering that ALR is intended
for Ethernet speeds and we are working with 30 Mbps link
capacity, it worked as expected. ALR presented savings in 10
Mbps and huge packet losses in 30 Mbps evaluation. The SC
capability was the most aggressive functionality in terms of
savings, in our evaluation it was configured with a DutyCycle
of 50%, meaning that switches were 50% of time on and off,
also the packet threshold (1000 packets/second) and buffer size
(80 packets). With this configuration SC did not present losses
in the evaluations. The GreenSDN GUI with the configured
paths highlighted is depicted in Figure 6.

VI. FINAL CONSIDERATIONS

In this paper, we presented GreenSDN, an emulation
environment for network energy efficiency capabilities. The
system comprises three green capabilities and the necessary
extensions to the controller in order to collect and provide
the related network information, as well as apply the green



Fig. 6. RNP Topology in the GreenSDN GUI.

capabilities.SustNMS was the more difficult capability to be
emulated, once it requires network awareness in terms of routes
and current workloads, its complexity grows in accordance
with the topology size. In contrast ALR and SC were simpler
to be implemented through extensions in the controller emu-
lating their mechanisms and policies. In this sense, the most
important feature in GreenSDN is the QoS Services module.
Accurate network information was the key to assure a good
balance between QoS and energy efficiency, avoiding wrong
routing decisions or inadvertently put a device to sleep.

The energy savings results presented in the validation
section were in accordance with our expectations based on
previous works with SustNMS, ALR and SC. GreenSDN was
a first step towards an SDN environment designed to emulate
different green capabilities. As future works, we believe that
GreenSDN may lead to others interesting points of research,
such as the orchestration of green capabilities, the development
of new capabilities and protocols and a validation of the
controller in a real network environment comparing with the
evaluations from the emulation environment.

ACKNOWLEDGMENTS

This work was supported by the Innovation Center, Eric-
sson Telecomunicações S.A., Brazil. Additionally, we would
like to thank Marco A. T. Rojas for the insightful comments
during the development of this work.

REFERENCES

[1] Ericsson, “Ericsson Energy and Carbon Report - On the Impact of
the Networked Society,” Ericsson, Tech. Rep., July 2013. [Online].
Available: http://www.ericsson.com/res/docs/2013/ericsson-energy-and-
carbon-report.pdf

[2] S. Lambert, W. V. Heddeghem, W. Vereecken, B. Lannoo, D. Colle,
and M. Pickavet, “Worldwide electricity consumption of communication
networks,” Opt. Express, vol. 20, no. 26, pp. B513–B524, Dec 2012.

[3] G. C. Januario, C. H. Costa, M. C. Amaral, A. C. Riekstin, T. C.
Carvalho, and C. Meirosu, “Evaluation of a policy-based network
management system for energy-efficiency,” in Integrated Network Man-
agement (IM 2013), 2013 IFIP/IEEE International Symposium on.
IEEE, 2013, pp. 596–602.

[4] C. Gunaratne, K. Christensen, B. Nordman, and S. Suen, “Reducing
the Energy Consumption of Ethernet with Adaptive Link Rate (ALR),”
Computers, IEEE Transactions on, vol. 57, no. 4, pp. 448–461, Apr
2008.

[5] R. Bolla, R. Bruschi, and A. Ranieri, “Performance and
power consumption modeling for green cots software router,” in
Proceedings of the First International Conference on COMmunication
Systems And NETworks, ser. COMSNETS’09. Piscataway, NJ,
USA: IEEE Press, 2009, pp. 420–427. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1702135.1702189

[6] M. Mostowfi and K. Christensen, “Saving energy in LAN switches:
New methods of packet coalescing for Energy Efficient Ethernet,” in
IGCC’11, 2011, pp. 1–8.

[7] K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi,
and J. Maestro, “IEEE 802.3az: the road to energy efficient ethernet,”
Communications Magazine, IEEE, vol. 48, no. 11, pp. 50–56, Nov 2010.

[8] M. Zhang, C. Yi, B. Liu, and B. Zhang, “GreenTE: Power-aware
traffic engineering,” in Network Protocols (ICNP), 2010 18th IEEE
International Conference on. IEEE, 2010, pp. 21–30.

[9] C. H. Costa, M. C. Amaral, G. C. Januario, T. C. Carvalho, and
C. Meirosu, “SustNMS: Towards service oriented policy-based network
management for energy-efficiency,” in SustainIT’12, 2012, pp. 1–5.

[10] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “Elastictree: Saving energy in data
center networks,” in NSDI’10, 2010, pp. 17–17.

[11] NS, “The network simulator, url = http://www.isi.edu/nsnam/ns/.”
[12] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,

M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” Boston, MA, Dec.
2002, pp. 255–270.

[13] GENI, “Global environment for network innovations, url =
http://www.geni.net/.”

[14] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,
ser. Hotnets-IX. New York, NY, USA: ACM, 2010, pp. 19:1–19:6.
[Online]. Available: http://doi.acm.org/10.1145/1868447.1868466

[15] B. Pfaff, J. Pettit, and S. Shenker, “Extending networking into the
virtualization layer.”

[16] POX, “Python-based openflow controller, url =
http://www.noxrepo.org/pox/about-pox/.”

[17] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in Net-
work Operations and Management Symposium (NOMS). IEEE, 2014,
pp. 1–8.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[19] S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba, “Payless: A low
cost network monitoring framework for software defined networks,” in
Network Operations and Management Symposium (NOMS), 2014 IEEE,
May 2014, pp. 1–9.

[20] M. Ricca, A. Francini, S. Fortune, and T. Klein, “An assessment of
power-load proportionality in network systems,” in Sustainable Internet
and ICT for Sustainability (SustainIT), 2013, Oct 2013, pp. 1–8.

[21] S. Ricciardi, D. Careglio, U. Fiore, F. Palmieri, G. Santos-Boada,
and J. Solé-Pareta, “Analyzing local strategies for energy-efficient
networking,” in Proceedings of the IFIP TC 6th International
Conference on Networking, ser. NETWORKING’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 291–300. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2039912.2039944

[22] L. Nussbaum and O. Richard, “A comparative study of network
link emulators,” in Proceedings of the 2009 Spring Simulation
Multiconference, ser. SpringSim ’09. San Diego, CA, USA: Society
for Computer Simulation International, 2009, pp. 85:1–85:8. [Online].
Available: http://dl.acm.org/citation.cfm?id=1639809.1639898


