
Application-Aware Adaptive Provisioning in
Virtualized Networks

Rafael Pereira Esteves, Lisandro Zambenedetti Granville
Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Brazil

Abstract—Network virtualization is a feasible solution to tackle
the so-called Internet ossification by enabling multiple virtual
networks (VNs) running simultaneously on top of a shared
physical infrastructure. Network management with virtualization
support, however, poses challenges that need to be addressed
in order to fully achieve an effective and reliable networking
environment. One of the main aspects related to the management
of network virtualization environments is virtual network provi-
sioning. Unfortunately, current provisioning solutions focus on a
single or a limited set of objectives that may not simultaneously
match the requirements of an increasing number of applications
deployed in networks everyday.

In this thesis, we formulate the Application-Aware Virtual
Network Provisioning Problem (AVNP) and propose an adaptive
provisioning framework for virtualized networks that takes into
consideration the characteristics of multiple applications and
their distinct performance objectives. The proposed framework
is based on the concept of allocation paradigm, which is de-
fined as a set of provisioning policies that guide the resource
allocation process. A paradigm translates objectives from both
Infrastructure Providers (InPs) and Service Providers (SPs) to
individual allocation actions that actually provision VNs. To
determine the efficiency of a particular paradigm, we propose
a virtual network performance computation model to quantify
the performance of allocated VNs and guide paradigm changing
decisions. Simulation results show the feasibility of allocation
paradigms in helping network providers to select the best
provisioning strategy given a set of InP/SP objectives.

I. INTRODUCTION

Network virtualization has been considered a viable alter-
native to guide the development of new network architectures
and to overcome the Internet ossification [1] [2] [3]. In
a network virtualization environment (NVE) the underlying
physical infrastructure, commonly referred to as substrate, is
shared among different users who create customized virtual
networks (VNs). Among the technical challenges to enable
NVEs, management has a special importance. Management
of NVEs is crucial to guarantee the proper operation of the
physical infrastructure, of the hosted VNs, and of the services
supported by the VNs. Management in NVEs can be classified
in provisioning, monitoring, and interfacing [4]. Provisioning
consists of allocating VNs to SPs by defining the mapping
of VN resources to the physical counterparts. Monitoring
involves gathering updated status of physical resources and
their associated VNs. Interfacing is required for InPs and SPs
to respectively access, operate, maintain, and administer the
physical and virtual nodes and links.

Typically, in an NVE, an infrastructure provider (InP) offers
virtual network resources to multiple service providers (SPs)

that deploy a variety of applications on top of virtual networks
(VNs). The provisioning of VNs must consider requirements
of both InPs and SPs. While the main objective of InPs is to
generate revenue by accommodating a large number of VNs,
SPs, on the other hand, have specific needs, such as guaranteed
bandwidth among virtual machines, load balancing, and high
availability. Inefficiencies in the provisioning process can
lead to disastrous consequences for infrastructure providers
including reduced number of SPs, monetary penalties (e.g., fi-
nancial credit) when Service Level Agreements (SLAs) are not
satisfied, and low utilization of the physical infrastructure.

Current NVE provisioning systems allow SPs to request
different resource configurations (e.g., CPU, memory, disk) to
build a VN. The SP is the main responsible for requesting
resources that will better fit its applications. The InP then
either allocates resources for the VN in the physical network
or rejects the allocation if there are not enough resources to
satisfy the SP’s request. InPs run allocation algorithms to find
the best mapping of VNs onto the physical substrate according
to well-defined objectives, such as minimizing the allocation
cost, reducing energy consumption, or maximizing the residual
capacity of the infrastructure. Mapping virtual to physical
resources is commonly referred to as embedding and has been
extensively studied in recent years [5] [6] [7].

Despite the existence of a variety of VN embedding strate-
gies, there are common limitations shared by most approaches.
First, current embedding strategies are static. InPs cannot
switch from an embedding strategy to another to satisfy a
particular objective, such as energy efficiency or load balanc-
ing, nor they can support specific application requirements,
such as fault-tolerance or exclusivity over resources. Second,
current VN provisioning approaches consider VN embedding
as an atomic operation, i.e., the complete mapping of virtual to
physical resources is defined prior to VN deployment, which in
some cases may not capture the dynamics of the substrate. For
example, when a VN expires, it releases resources that could
be used by an ongoing VN request because they are better
options towards a given objective (e.g., reduce communication
cost). In current embedding approaches, if the InP wants to
optimize resource allocation and leverage the existence of
better mapping alternatives, it has to migrate already deployed
VNs to new locations, which increases operational costs.

In this work, we address the problem of provisioning
VNs considering multiple (possibly conflicting) InP and SP
objectives to define how virtual resources are mapped in
the substrate. To enable such flexible resource allocation,

978-3-901882-76-0 @2015 IFIP 1107

we propose an architecture of a provisioning system for
virtualized networks that allows InP and SPs to express high-
level requirements for the requested VNs, which ultimately
influence how VNs should be allocated in the physical sub-
strate. The proposed provisioning approach is based on the
concept of allocation paradigms. A paradigm encompasses
goals associated with the high-level objectives of the InP and
of the SPs. Each goal is realized by allocation actions executed
within a window (one per goal), which is defined in real-
time according to the current status of the substrate. This
approach allows rapid adaptation of the provisioning process
to the dynamics of the substrate and to the characteristics of
the deployed applications.

The rest of this paper is organized as follows. Sections II and
III describe the concept of allocation paradigms and a method-
ology to determine the efficiency of allocation paradigms,
respectively. Section IV presents representative results from
our evaluation of the proposed provisioning approach. We then
conclude in Section V.

II. APPLICATION-AWARE VIRTUAL NETWORK
PROVISIONING USING ALLOCATION PARADIGMS

In this section, we begin by defining the basic concepts
and the formal problem formulation of our paradigm-based
adaptive provisioning approach. Next, we then describe a
policy language used to describe allocation paradigms.

A. Basic concepts

A paradigm defines how VNs are allocated in the physical
substrate. Each paradigm comprises a set of goals associated
with application requirements. A goal is derived in actions,
which, in turn, allocate individual VN resources. The main
concepts of the paradigm-based provisioning approach are
described below.
• Paradigm: a paradigm P represents a group of goals

(G1, G2, ..., Gn) that are considered in the provisioning
of VNs;

• Goal: a goal G is a single high-level objective that
is defined by the InP or requested by the SP in the
provisioning of VNs;

• Action: an action A is a single provisioning operation
executed to achieve a goal G.

• Window: a window W is a set of allocation Actions
(A1, A2, ..., An) executed sequentially according to a
goal G. A paradigm P is thus realized by a set of
windows (W1,W2, ...,Wn) associated with the objectives
(G1, G2, ..., Gn) of the paradigm;

• Allocator: an allocator Alloc executes provisioning of
VNs through an allocation window W defined by a goal
G. There is one allocator Alloc entity associated with
each goal G of a paradigm P .

When provisioning VNs, each goal G is translated into a list
of actions (A1, A2, ..., An) that will be executed sequentially
within a window W . Several goals can be combined together
in the provisioning of a VN. The choice for specific allocation
actions depends on the InP objectives and on the characteristics

of the applications to be deployed over the requested VN,
on the active paradigm P , and on the current status of
the physical substrate (e.g., available servers/links). Unlike
current multi-objective VN provisioning proposals, allocation
paradigms allow InP operators to modify the VN allocation
“on-the-fly” by using different goals for each request. This
flexibility is important to make VN provisioning systems
adaptable to a large diversity of VNs, where each one may
run different applications. Figure 1 depicts the relationship
between paradigms, goals, and actions.

��

Window 1

Action

Action

Action

Allocator 1

Goal 1

��

Window 2

Action

Action

Action

Allocator 2

Goal 2

��

Window N

Action

Action

Action

Allocator N

Goal N

Paradigm

Fig. 1. Allocation paradigms, goals, and actions

B. Design characteristics

Allocation paradigms have two main design characteristics
that make them suitable to guide resource allocation in NVEs:

1) Application Awareness: The paradigm model allows
the InP to define the relationship between VNs and the
applications that ultimately will run on them through three
basic procedures illustrated in Figure 2. The first procedure
(Figure 2(a)) allows only one goal to be associated with a VN.
Different VNs may support different goals. Such procedure
is better suited when there is one application per VN or
when multiple similar applications share a single VN. In the
second procedure (Figure 2(b)), all goals of an allocation
paradigm are applied simultaneously during the allocation of
a VN, resulting in hybrid VNs tailored for different goals.
It is important to note that, in this procedure, some goals can
predominate over others, depending on how the corresponding
policies are defined [8]. Such policy adjustment can be used to
handle conflicts between different goals. The third procedure
(Figure 2(c)) reflects how VN allocation is tackled by current
provisioning systems, where one goal is applied to all VNs. In
summary, allocation paradigms aim to cope with the diversity
of applications inherent in NVEs that require a variety of
strategies to coexist under a single provisioning framework.

2) Adaptive Provisioning: Typical VN embedding schemes
map the whole VN on the physical substrate, at once, upon
receiving a VN request. Mapping all resources of a VN in
an atomic operation is straightforward because the InP has

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper1108

VN1

VN2

VNn

Goal1

Goal2

Goaln

(a) One goal per VN

VN1

Goal1

Goal2

Goaln

(b) Multiple goals per VN

VN1

VN2

VNn

Goal1

(c) One goal, multiple VNs

Fig. 2. VN allocation procedures

the complete view of the substrate network and the associated
capacities. However, some approaches assume that individual
resources (i.e., virtual nodes) of the same VN request cannot
share a physical one and have to be mapped at distinct
locations [5] [9]. This limitation may reduce the chances of
a successful embedding. In addition, most VN embedding
approaches do not properly tackle the case where multiple
VN requests arrive simultaneously, which is the typical case
in realistic scenarios. Therefore, two or more ongoing VN
requests can compete for the same physical resource increasing
the chances of failed VN requests.

To overcome the aforementioned problems and allow rapid
adaptation of current provisioning approaches to the dynamics
of the physical substrate, we argue that a VN request should
be mapped in parts. To realize such concept we propose the
use of allocation windows and rounds. One allocation window
encompasses a fixed number of individual allocation actions
defined in real-time by the current allocation paradigm, such
as virtual machine creation. The execution of the actions
within an allocation window is called a round. Several rounds
may be needed in order to complete the full allocation of a
VN. In each round, the corresponding window executes the
appropriate allocation actions defined by the active paradigm.
Figure 3 illustrates how a VN would be mapped using the
concepts of windows and rounds. The numbers represent the
order virtual resources (i.e., nodes and links) are allocated. The
order actions are executed is defined by the policies included
in the active paradigm.

The benefits of this partial and multi-iteration mapping is
threefold. First, it allows multiple virtual resources of the
same VN request to be mapped on the same physical asset.
Second, windows allow rapid adaptation to changing network
conditions. Two consecutive allocation rounds can result in
different mappings compared to mapping all resources at once.
For example, after the first round, the mapping of virtual

machines can be modified dynamically to select a physical
server that turned out to be a better mapping option for a given
objective (e.g., reduce number of active physical servers) and
that was not available at the first round. Finally, a window can
run actions from different VN requests making the problem
of managing multiple ongoing VN requests more tractable.

1 2 3 4 5

10

11 12

Round 1

Round 2

Round N

6

7 8 9
1

2 3

4

5 6

7

8

9

10

11

12

Fig. 3. Allocation windows and rounds

Possible disadvantages of this paradigm-based allocation
may appear in small-sized static scenarios (i.e., VNs hav-
ing long duration, InP or SP objectives not changing over
time) because in such scenarios it is unlikely that allocating
VNs in parts will produce a different (and better) result
compared to a single round allocation and can potentially
increase provisioning times. Besides, it may be not feasible to
accommodate conflicting goals in a single paradigm without
harming application performance. Partial allocation can also
produce incomplete VNs if there are not available resources
to complete the request in the subsequent rounds.

C. AVNP Problem Formulation

In this subsection we formulate the application-aware virtual
network provisioning (AVNP) problem. We model the phys-
ical network, the virtual network request, and the allocation
paradigm, respectively.

1) Physical Network: We model the physical network as
a weighted undirected graph Np = (Mp, Rp, Lp, Op), where
Mp is the set of physical machines, RP is the set of physical
network elements (e.g., routers and switches), Lp is the set of
physical links used to connect physical machines and network
elements, and Op is the set of InP objectives that can be
considered during VN provisioning. Each physical machine
mp ∈ Mp has an associated CPU capacity c(mp) ∈ R+.
Each physical link lpij ∈ Lp connecting two physical machines
i, j ∈Mp ∪Rp has an associated bandwidth b(lpij) ∈ R+. An
objective op ∈ Op is an overall goal that can be chosen by the
InP. Each objective is associated with target index t(op) ∈ N.
Possible values that t(op) can take are listed in Table I. New
objectives can be defined by the InP resulting in additional op

and t(op) values.
2) Virtual Network Request: In our model, a virtual net-

work (VN) request is defined as a weighted undirected graph
Nv = (Mv, Lv, P v), where Mv is the set of virtual machines,
Lv is the set of virtual links, and P v is the set of properties
desired for the applications running on the VN. Different than
the physical network, a virtual network has no intermediate
nodes for routing or switching; virtual links are requested,
however, in order to have allocated bandwidth between key
virtual machines. Similar to the physical network, each virtual

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper 1109

machine mv ∈ Mv requests an amount of CPU capacity
c(mv) ∈ R+, and each virtual link lvij ∈ Lv connecting
two virtual machines i, j ∈Mv has a bandwidth requirement
denoted by b(lvij) ∈ R+. A property pv ∈ P v is a non-
functional requirement defined by the applications running
on the VN. Each property has a corresponding target index
t(pv) ∈ N that is associated with a high-level requirement
requested for the VN. For now, the values that t(pv) can take
are listed in Table II. These values are used as reference. The
model can be easily extended to include as many properties as
supported by the InP. In this case, if the InP supports a new
VN property (e.g., , low price) a new pv and a corresponding
t(pv) value have to be included in the model.

TABLE I
INP OBJECTIVES EXAMPLES

Target Goal Description
0 Green Virtual machines and links should

be mapped on the smallest set of
physical assets

1 Load balancing Virtual machines and links should
be mapped in distinct locations and
cannot share the same physical re-
source

2 Low communication cost Virtual machines with more capac-
ity should be placed close to each
other

3 High server utilization Virtual machines of the same re-
quest should be grouped in the
same server

4 Random Picks random physical resources to
host virtual ones. Used for testing

3) Allocation paradigm: An allocation paradigm P is de-
fined by a set of goals (G1, G2, ..., Gn) that are considered in
VN provisioning. Each goal Gi ∈ P reflects an InP objective
or a characteristic desired for an application running in the
VN, having the same meaning of an objective op ∈ Op

supported by the InP or a property pv ∈ P v defined in a VN
request, respectively. An individual goal Gi is realized by a
set of allocation actions (A1, A2, ..., An) executed sequentially
within a window Wi. Each window Wi has a size attribute
s(Wi) ∈ N+ corresponding to the number of actions that
are executed in each round. An allocator entity Alloc is
responsible to trigger each window W . Multiple allocators can
run in parallel to speed up the provisioning process.

The provisioning of a VN is thus a function of: the number
of resources (i.e., virtual machines and virtual links) that need
to be allocated for the requested VN, the number of allocators
deployed, and the maximum size of the window of each
allocator, which can be dynamically adjusted in each round.

The size of allocation windows can vary according to the
current provisioning status of the requested VNs. If a VN is
already deployed and no changes are expected in the short
run, the size of the allocation window for that VN is zero.
On the other hand, if the VN provisioning has just started
or modifications on a previously allocated VN are scheduled,
then the size of the window is greater than zero. The size of an
allocation window can also be adjusted to prioritize one goal
over the others. The higher the priority of a goal, the larger

TABLE II
VN PROPERTIES EXAMPLES

Target Property Description
0 Reliability Replicas of allocated resources

should be placed in different loca-
tions

1 Security A virtual machine should not share
the same physical machine of an-
other SP

2 Best-effort Virtual machines can be placed at
any location

3 Cheap cheap physical machines should be
selected to host virtual ones

4 Low latency Virtual links should be mapped on
physical paths with small hop num-
ber

the size of its corresponding allocation window because more
actions of the goal are executed in a single round. There is
a clear tradeoff between the size of the allocation windows
and the provisioning time. A large paradigm window requires
fewer rounds to allocate a whole VN, but it is unlikely to take
advantage of a better allocation option that becomes available.
On the other hand, a small paradigm window is more adaptable
to dynamic environments at the price of higher overhead,
which can result in larger provisioning times.

D. Paradigm Policy Specification

As a part of our paradigm-based provisioning approach, we
have developed a policy language to allow InP operators to
specify the relationship between paradigms, objectives, and
allocation actions. Although there are many policies avail-
able [10] designed for a variety of purposes, none of them
define adequate constructs to allow InP operators expressing
allocation paradigms. The main constructs of the proposed
paradigm policy language are presented below and an example
of paradigm policy is given in Figure 4.
• objective: an objective o defines a customized allocation

objective for a paradigm p. Each objective o has a corre-
sponding window attribute w specifying the identifier of
the allocation window hosting the actions (a1, a2, ..., an)
associated with the objective;

• action: an action a specifies an individual allocation.
Each action a is defined by an identifier, a list of
conditions (c1, c2, ..., cn) that trigger the action, and an
operation that actually implements the action, such as
SelectServer or MoveToServer that are used to place or
migrate a VM to a given physical machine, respectively;

• window: a window w is a logical structure hosting
actions that are executed sequentially. A window w has
a size attribute s that defines the number of actions that
are executed before the next scheduling. A window also
defines the order on which the actions are verified in each
turn.

An action is triggered when a set of associated conditions is
satisfied. The action is then realized by a low-level operation
(e.g., create a VM) supported by the substrate. The window
construct defines the size of allocation windows and the

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper1110

Protected_redundant {

 objective Protected {

 action Protected-CreateVM-new {

 conditions = {VMs_toAllocate > 0}

 operation = {SelectServer : empty(all)}

 }

 action Protected-CreateVM-shared {

 conditions = {VMs_toAllocate > 0}

 operation = {SelectServer : used_servers(request)}

 }

 window Protected {

 size = 2

order = {Protected-CreateVM-new, Protected-CreateVM-shared}

 }

 }

 objective Redundant {

 action Redundant-CreateVM {

 conditions = {VMs_toAllocate > 0}

 operation = {SelectServer : empty(all)}

 operation = {SelectServer : unused_servers(request)}

 }

window Redundant {

 size = 3

order = {Redundant-CreateVM}

}

 }

}

Fig. 4. Example of paradigm policy - Protected + redundant

order that the actions of a policy are evaluated. In addition
to the main constructs, the paradigm policy language can
use a set of auxiliary functions provided by the underlying
virtualization platform to realize provisioning actions such as
virtual machine creation and virtual machine migration.

III. DETERMINING THE EFFICIENCY OF ALLOCATION
PARADIGMS

Evaluating the efficiency of an allocation paradigm and
determining the associated conditions for paradigm switching
is a critical task. That is highly dependent on the performance
achieved by the applications running on top of a VN, which
requires proper feedback from SPs. In this section, we propose
a VN computation model that considers all the applications
running in a VN and whose output is used to guide paradigm
switching.

A. VN Scoring Methodology

The VN computation model is based on the concepts of
tiles and scores, typically found in benchmarking systems
[11] [12]. A tile is a fixed-size group of virtual machines
running multiple applications. The score is a numerical value
attributed to the VN reflecting the combined performance of
all tiles (and applications). Our score calculation is adapted
from the VMMark benchmarking system [11] [13], used to
measure the performance of applications running in virtualized
environments. The score metric S for a VN is calculated as
follows:

S =
τ∑
i=1

Ti (1)

where Ti is the performance of the tile i and τ is the total
number of tiles a VN supports. The total score of a VN is thus
the sum of the performance of all its tiles. The performance
of a individual tile T is defined by:

T = (

n∏
j=1

Appj
Refj

)
1
n (2)

where Appj refers to the performance achieved by the
jth application in terms of metrics defined by VMMark, for
example, operations per minute for Web 2.0 applications,
Refj is the reference value for the application Appj , and n
is the total number of applications of the tile. The T value is
thus the geometric mean of the normalized performance of all
applications of a tile.

B. VN Performance Prediction Model

In order to evaluate the efficiency of an allocation paradigm
in terms of application performance, the InP operator needs
to monitor the performance of the applications running on a
VN. However, such reactive evaluation may result in excessive
monitoring traffic in large NVE scenarios and in performance
degradation of short-lived applications. Therefore, predicting
the performance of the applications to be deployed over a VN
and evaluating allocation paradigms in advance can improve
overall VN performance. By using the R statistical package
[14] to analyze the data submitted to the VMmark Web site
[11] we found that the overall score of a VN grows linearly
with the number of tiles [15]. Therefore, a simple linear
regression model can be used to predict the performance of
a VN given the number of tiles. The predicted score S ′ of a
VN can be defined as:

S ′ = 0.1573 + τ × 1.0206 (3)

where τ is the number of tiles. The adjusted R-squared is
0.973.

C. Efficiency of an Allocation Paradigm

The efficiency of an allocation paradigm is influenced by
two main factors: the number of rounds required to complete
the provisioning of a VN and the predicted score of the
allocated VNs. The number of rounds is directly related to
the provisioning time of the VN. The score, in turn, reflects
the quality of the allocation paradigm because VNs with
high score indicate that hosted applications experience good
performance and the VN is unlikely to change in the short
run. The quality of an allocation paradigm Q is given by:

Q =
S′

U
(4)

where U is the performance of the reference system obtained
when applying Equations 1 and 2 to the reference values
defined by VMmark guide [13].

The ultimate goal of an allocation paradigm is to reduce
the number of necessary rounds to allocate a VN, which
impacts VN deployment time, and avoid excessive paradigm
changes, which is related to the stability of the provisioning
system. A paradigm change can occur when the score of the
provisioned VNs are below a threshold defined by the InP
operator. Therefore, the efficiency an allocation paradigm is
defined as:

E =
1

αR+ β(1−Q)
(5)

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper 1111

0

1

2

3

4

5

6

21
7

21
73

43
47

71
05

97
36

12
17

3

14
34

7

16
90

4

19
28

5

22
10

5

24
73

6

27
17

3

29
34

7

31
66

6

33
75

0

36
00

0

38
00

0

40
19

2

42
11

5

44
03

8

46
57

8

49
21

0

51
11

1

52
50

0

53
88

8

55
55

5

Q
ua

lit
y

Time

Green LB Green+LB

(a) s(W) = 1

0

1

2

3

4

5

6

21
7

21
73

43
47

71
05

97
36

12
17

3

14
34

7

16
90

4

19
28

5

22
10

5

24
73

6

27
17

3

29
34

7

31
66

6

33
75

0

36
00

0

38
00

0

40
19

2

42
11

5

44
03

8

46
57

8

49
21

0

51
11

1

52
50

0

53
88

8

55
55

5

Q
ua

lit
y

Time

Green LB Green+LB

(b) s(W) = 2

0

1

2

3

4

5

6

21
7

21
73

43
47

71
05

97
36

12
17

3

14
34

7

16
90

4

19
28

5

22
10

5

24
73

6

27
17

3

29
34

7

31
66

6

33
75

0

36
00

0

38
00

0

40
19

2

42
11

5

44
03

8

46
57

8

49
21

0

51
11

1

52
50

0

53
88

8

55
55

5

Q
ua

lit
y

Time

Green LB Green+LB

(c) s(W) = 3

Fig. 5. Paradigm quality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43
47

71
05

97
36

12
17

3

14
34

7

16
90

4

19
28

5

22
10

5

24
73

6

27
17

3

29
34

7

31
66

6

33
75

0

36
00

0

38
00

0

40
19

2

42
11

5

44
03

8

46
57

8

49
21

0

51
11

1

52
50

0

53
88

8

55
55

5

Time

s(W) = 1

(a) s(W) = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43
47

71
05

97
36

12
17

3

14
34

7

16
90

4

19
28

5

22
10

5

24
73

6

27
17

3

29
34

7

31
66

6

33
75

0

36
00

0

38
00

0

40
19

2

42
11

5

44
03

8

46
57

8

49
21

0

51
11

1

52
50

0

53
88

8

55
55

5

Time

s(W) = 2

(b) s(W) = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

21
7

21
73

43
47

71
05

97
36

12
17

3

14
34

7

16
90

4

19
28

5

22
10

5

24
73

6

27
17

3

29
34

7

31
66

6

33
75

0

36
00

0

38
00

0

40
19

2

42
11

5

44
03

8

46
57

8

49
21

0

51
11

1

52
50

0

53
88

8

55
55

5

Time

s(W) = 3

(c) s(W) = 3

Fig. 6. Paradigm efficiency - Paradigm switching

whereR is the number of rounds, Q is the paradigm quality,
α and β are adjusting factors to weigh the influence of R and
Q in the paradigm efficiency E .

IV. EVALUATION

We evaluate our paradigm-based provisioning in terms of
paradigm quality, which reflects the quality of an allocation
paradigm in terms of the score predicted for the provisioned
VNs and paradigm efficiency that combines both paradigm
quality and number of rounds according to Equation 5. For
each experiment, we evaluate two allocation paradigms com-
posed of single goals: Green and Load Balancing (LB) defined
in Table I and a combination of the two. We also vary the size
of the allocation window from 1 to 3. We also investigate the
impact of switching one paradigm (Green) to another (LB) in
the half of the simulation.

When analyzing paradigm efficiency, the LB goal presents
better performance in terms of paradigm quality (Fig. 5) when
compared to the Green goal. This happens because LB tries to
spread VN requests over a high number of physical resources,
thus increasing the acceptance ratio, which reflects in the
quality of the provisioned VNs. When s(W) = 1 the number
of rounds required to provision VN is higher, which means
that VNs will take longer time to be fully allocated.

When we increase the window size to 2 we observe that the
quality of the provisioned VNs decreases. The explanation for
lower quality of the allocated VNs when the window size is
higher relies on the fact that simultaneous mapping of multiple

resources increases the chances of failed requests. On the other
hand, the number of rounds is smaller, which results in VNs
that are rapidly deployed. This behavior is more evident when
we increase the window size to 3.

Paradigm efficiency (Fig. 6) combines both paradigm qual-
ity and number of rounds. When s(W) = 1 the paradigm
efficiency presents high variability and is exactly the efficiency
obtained by the Green goal. This happens because the number
of rounds also changes more often in this case. For s(W) =
2, the number of rounds is stable most of time, which reflects
in the paradigm efficiency. The quality reduction observed
for s(W) = 3 also impacts the overall paradigm efficiency,
indicating that paradigm quality and number of rounds have
to be considered together. After the paradigm switches from
Green to LB, the efficiency resembles the values achieved by
the LB goal. The same behavior can be observed for s(W) =
2 and s(W) = 3.

V. CONCLUSION

Accommodating multiple InP and SP objectives in VN
provisioning is a challenging task. In this thesis we have
proposed an adaptive provisioning framework that considers
multiple InP and SP objectives and specific application char-
acteristics. Our proposal is based on the concept of allocation
paradigms, which are groups of application-related policies
that guide resource allocation. In addition, we also proposed
a virtual network performance computation model to evaluate
the efficiency of paradigm-based allocations.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper1112

VI. FINAL REMARKS

This thesis can be downloaded from
http://www.inf.ufrgs.br/~rpesteves/thesis.pdf. The work
conducted during the course of research has been published
in [4], [8], and [15].

REFERENCES

[1] N. Chowdhury and R. Boutaba, “Network Virtualization: State of the Art
and Research Challenges,” IEEE Communications Magazine, vol. 47,
no. 7, pp. 20–26, July 2009.

[2] J. Carapinha and J. Jiménez, “Network Virtualization: a View From the
Bottom,” in ACM SIGCOMM Workshop on Virtualized Infrastructure
Systems and Architectures, August 2009, pp. 73–80.

[3] A. Khan, A. Zugenmaier, D. Jurca, and W. Kellerer, “Network Vir-
tualization: a Hypervisor for the Internet?” IEEE Communications
Magazine, vol. 50, no. 1, pp. 136–143, January 2012.

[4] R. P. Esteves, L. Z. Granville, and R. Boutaba, “On the Management of
Virtual Networks,” IEEE Communications Magazine, vol. 51, no. 7, pp.
2–10, July 2013.

[5] M. Chowdhury, M. Rahman, and R. Boutaba, “ViNEYard: Virtual
Network Embedding Algorithms With Coordinated Node and Link
Mapping,” IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp.
206–219, February 2012.

[6] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking Virtual Network
Embedding - Substrate Support for Path Splitting and Migration,” ACM
Computer Communication Review, vol. 38, no. 2, pp. 17–29, April 2008.

[7] X. Cheng, S. Su, Z. Zhang, K. Shuang, F. Yang, Y. Luo, and J. Wang,
“Virtual Network Embedding Through Topology Awareness and Opti-
mization,” Computer Networks, vol. 56, no. 6, pp. 1797 – 1813, 2012.

[8] R. P. Esteves, L. Z. Granville, H. Bannazadeh, and R. Boutaba,
“Paradigm-Based Adaptive Provisioning in Virtualized Data Centers,”
in IFIP/IEEE International Symposium on Integrated Network Manage-
ment, May 2013, pp. 169–176.

[9] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “SecondNet - A Data Center Network Virtualization Ar-
chitecture with Bandwidth Guarantees,” in International Conference on
emerging Networking EXperiments and Technologies, December 2010.

[10] IETF-POLICY, Policy Languages Review - Policy Lan-
guages Interest Group, 2012. [Online]. Available:
http://http://www.w3.org/Policy/pling/wiki/PolicyLangReview

[11] VMmark. http://www.vmware.com/a/vmmark/.
[12] Standard Performance Evaluation Corporation (SPECvirt sc2010).

http://www.spec.org/virt sc2010/.
[13] VMware VMmark Benchmarking Guide.

http://www.vmware.com/go/download-vmmark/.
[14] The R Project for Statistical Computing. http://www.r-project.org.
[15] R. P. Esteves, L. Z. Granville, M. F. Zhani, and R. Boutaba, “Evaluating

Allocation Paradigms for Multi-objective Adaptive Provisioning in Vir-
tualized Networks,” in IEEE/IFIP Network Operations and Management
Symposium, May 2014, pp. 1–9.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Dissertation Paper 1113

