Roles of DevOps tools in
an automated, dynamic service creation architecture

Felician Németh!, Rebecca Steinert?, Per Kreuger?, Pontus Skoldstrom?,

1MTA-BME Information Systems Research Group, Hungary; 2SICS Swedish ICT, Sweden; 3 Acreo Swedish ICT AB, Sweden

Abstract—Software Defined Networking (SDN) and Network
Functions Virtualization facilitate, with their advanced pro-
grammability features, the design of automated dynamic service
creation platforms. Applying DevOps principles to service design
can further reduce service creation times and support continuous
operation. Monitoring, troubleshooting, and other DevOps tools
can have different roles within virtualised networks, depending
on virtualization level, type of instantiation, and user intent. We
have implemented and integrated four key DevOps tools that
are useful in their own right, but showcase also an integrated
scenario, where they form the basis for a more complete and
realistic DevOps toolkit. The current set of tools include a message
bus, a rudimentary configuration tool, a probabilistic congestion
detector, and a watchpoint mechanism. The demo also presents
potential roles and use-cases for the tools.

I. INTRODUCTION

The UNIFY project (www.fp7-unify.eu) aims at design-
ing a programmability framework for flexible and dynamic
operations of Virtual Network Functions (VNFs) on software-
defined infrastructure [1]. It explores the building blocks neces-
sary to enable dynamic and flexible service-chaining, where the
VNFs are implemented and operated following development
and operation cycles similar to those in existing production
environments. Part of the work in UNIFY therefore include
development of network management tools supporting Service
Provider DevOps processes [2], such as VNF deployment,
verification, troubleshooting, and monitoring processes.

Dynamic and flexible service-chaining can only be realised
through a high degree of automation which need to be in-
herently embedded into existing and future SDN management
frameworks. An example of an automated VNF deployment
process include steps such as verification and testing to ensure
resource availability and configuration, as well as troubleshoot-
ing when necessary. For operation, examples include automatic
mitigation of performance degradations for the purpose of
maintaining QoS, or re-scaling of virtual resources under
varying network conditions and service usage. Supporting such
management actions require methods that can provide high
network observability at varying levels of detail (depending
on use case) while operating in a scalable manner, and that
can be activated and deployed from anywhere in the network.

The demo presented here exemplifies two perspectives of
network observability and the interaction between selected
monitoring, debugging, and control messaging components
of the UNIFY architecture. It shows how detection of link
congestion triggers automated load balancing, and how the
information about the observed state and associated actions are
presented to the VNF developer and operator. The information
forwarded can be used both for supporting continuous service
development or for supporting operator management actions.

II. ARCHITECTURAL OVERVIEW

The architecture proposed by UNIFY consists of three
layers, enabling programmability at different abstraction levels:
The Service layer maps abstract service requests described
as a graphs of smaller service components into to graphs of
deployable VNFs. Service management, e.g., SLA verification
belongs to this layer as well. Based on a global network
and resource view, the Orchestrator layer is responsible for
mapping service requests to available resources and performs
real-time optimisation. The Infrastructure layer instantiates
VNFs to its physical and virtual resources including compute,
storage and networking resources, and to components required
for local resource management. Monitoring information are
necessary at every level in this architecture, and our prototype
implements key elements required to provide each layer with
a suitable view of the state of the network.

Even in a virtualised networking setting, many monitoring
functions need to be deployed on the forwarding nodes, and we
argue that the data produced by measurements also needs to be
at least partially processed and condensed locally to achieve
scalability. Other observability data needs to be propagated to
and combined in control plane components in more central
locations before decisions or action can be taken. We thus
need to supply developers and operators with the means to
specify and deploy monitoring functions, and to communicate,
analyse and aggregate the resulting information within several
parts of the network. We have prototyped the following four
components as examples on how these needs could be covered
in the UNIFY architecture.

A Message bus: We've extended the @MQ library to a
lightweight, programmable, hierarchical messaging bus de-
signed for high throughput and low latency scenarios, and
which supports both centralized broker architectures as well
as broker-less ones, and here used for communicating config-
uration, signalling, and measurement results between the mon-
itoring and troubleshooting components within and between
layers in the UNIFY architecture.

A configuration tool: Configuration of monitoring functions
is an integral part of the programmability framework, and
to support this aspect of the framework, we’ve implemented
a rudimentary interpreter for a domain specific language in
which we specify which measurement functions should be
activated and when, what and where they should measure, how
to further process the produced data, and what actions to take
based on the results.

A congestion detector: As an example of a specific monitor-
ing function, we demonstrated a scalable probabilistic conges-
tion detector [3] based on the analysis of the rate distribution
on individual links at different time scales. Querying counter
statistics locally at high rates allows for accurately capturing


www.fp7-unify.eu

. ®

2(@Qp2INMS

S .
g L1 O] %
W aas S
§ POX ©

OpenTSDB
4 o
g3 2
25 :
£ 5 C ! O S
[cl=] ey
2 Operfio | T~ E
Fig. 1. The demo setup containing the four DevOps tools. (The configuration

tool is responsible for initialising the Aggregator component.)

important aspects the traffic behaviour with significantly lower
overhead than in a centralized setting, and by varying the
querying rate we can achieve flexible high quality monitoring
without the cost of constant high rate sampling of the counters.
The counter values are used for estimating the parameters of
the rate distribution which, is in this instance, is used for
detecting increased risk of link overload by inspecting rate
distribution percentiles.

A watchpoint mechanism that intercepts the OpenFlow con-
trol channel between the controller and switches looking for
packet_in messages. If a packet matches a user-defined criteria,
then different actions can be triggered, e.g., dropping the
message, sending alarms, or creating switch-state snapshots.

III. OBSERVABILITY ASPECTS

In a service chaining architecture like UNIFY, monitoring,
troubleshooting, and messaging components can serve sev-
eral distinct purposes. They can be part of the infrastructure
layer of the programmability framework and observe physical
resources, e.g., link or node status; or they can be part of
a service chain and instantiated as VNFs for observing and
controlling service-level properties, e.g., SLA and resource
usage monitoring, or as input to autonomous reconfiguration.

Moreover, the very same component can be placed in the
infrastructure layer or the service chain based on users’ intent.
For instance, the scalable monitoring component should be part
of the infrastructure if it used for link congestion detection,
but it should be instantiated as a VNF if it measures the traffic
intensity for one particular service chain.

Finally, the users of the monitoring information can be
VNF developers or service operators. For example, a VNF
developer can use the watchpoint to detect bugs in her code
while testing a new VNF implementation, but later when the
VNF is deployed in production the watchpoint can be used
to detect configuration errors and notify an operator or an
Operations Support System. Our prototype implementation is
flexible enough to support all these aspects.

IV. DEMO

In the demo scenario as shown in Fig. 1, a Tier 1 ISP
is providing network transit for three smaller ISPs, over its
backbone SDN network. To forward the transit traffic the Tier
1 ISP has two links available, one low-latency, reliable link and
a secondary link with higher latency and low reliability. Due
to its SLA the third of the smaller ISP should never be routed
on the secondary link whereas the other two ISPs should use
the first link unless there is a significant risk of congestion,

in which case the secondary link is preferred. The Tier 1
ISP additionally wants to keep its monitoring and messaging
overhead low and avoid transferring data to central points in
its network unless necessary.

To take link congestion risk into account, the Tier 1 ISP
deploys rate monitors on the links, which calculate an estimate
every second and send it to their local aggregation point. The
local aggregation point has been dynamically programmed
in the setup phase to apply hysteresis to the overload risk
estimates and compare the results to a threshold, which if
breached will cause a signal to be sent to the load balancing
application on the SDN network controller. Additionally, the
estimates are also sent to an OpenTSDB instance. To ensure
that policies are not violated the ISP has deployed a watchpoint
beneath the SDN controller, which monitors all OpenFlow
control traffic and stops any control message which would
cause a violation of the policies. To keep network overhead
low; monitoring results, triggers, and configuration data are
sent over a hierarchical distributed messaging system which
forwards messages locally if possible.

The demo shows three data flows arriving in sequence to
the Tier 1 network, from the different ISP, which are allocated
to the primary or secondary links depending on the current
overload risk. The first flow, arriving to an empty network,
is placed on the primary link. The second flow, is placed on
the secondary link if the primary link is above a 1% risk of
overload. The third flow should always be placed on the first
link (due to the SLA), but due to a bug in the load balancing
software causing it to ignore this policy it will be assigned to
the secondary link if the overload risk on the primary exceeds
1%. This bug however will be caught by the watchpoint which
will block the traffic assignment and raise an alarm in the
NMS.

The demo is running in a virtualised environment based
on Mininet in combination with POX which provides the
SDN network and load balancing functionality. Other open
source projects used are OpenTSDB, OpenNMS, tcpreplay,
and @MQ for the messaging system. The monitoring functions,
messaging bus, and aggregation are written in Python.'

V. CONCLUDING REMARKS
We demonstrate an integrated prototype of several key
elements in a monitoring framework for virtualised networks.
This illustrates how relations and communication between
components and levels of an overall architecture could be sup-
ported. The components will continue to be developed within
the UNIFY project (e.g., with advanced conflict resolution in
case of policy violation), and should also be of more general
interest (e.g., we plan to release the extensions of the @MQ
library as open source). Finally, the congestion detector is an

example of a very general type of mechanism.

REFERENCES
[11 A. Cséaszar, W. John et al., “Unifying cloud and carrier network,” in
Proceedings of the Workshop on Distributed Cloud Computing (DCC
2013), December 2013, invited Paper, Dresden, Germany.
[2] W. John, K. Pentikousis et al., “Research directions in network service
chaining,” in Future Networks and Services (SDN4FNS), 2013 IEEE SDN
for. 1EEE, 2013, pp. 1-7.

[3] P. Kreuger and R. Steinert, “Scalable in-network rate monitoring,” in
Proc. of IM 2015, Ottawa, Canada, May 2015.

1

mininet.org, Wwww.noxrepo.org/pox, opentsdb.net,

tepreplay.synfin.net, zeromq.org

www.opeénnms.org,


http://mininet.org
www.noxrepo.org/pox
http://opentsdb.net
www.opennms.org
http://tcpreplay.synfin.net
http://zeromq.org

