
Piecing Together the NFV Provisioning Puzzle:
Efficient Placement and Chaining of

Virtual Network Functions

Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete Buriol
Marinho Pilla Barcellos, Luciano Paschoal Gaspary

Institute of Informatics – Federal University of Rio Grande do Sul (UFRGS)
{mcluizelli,lrbays,buriol,marinho,paschoal}@inf.ufrgs.br

Abstract—Network Function Virtualization (NFV) is a promis-
ing network architecture concept, in which virtualization tech-
nologies are employed to manage networking functions via
software as opposed to having to rely on hardware to handle
these functions. By shifting dedicated, hardware-based network
function processing to software running on commoditized hard-
ware, NFV has the potential to make the provisioning of network
functions more flexible and cost-effective, to mention just a few
anticipated benefits. Despite consistent initial efforts to make NFV
a reality, little has been done towards efficiently placing virtual
network functions and deploying service function chains (SFC).
With respect to this particular research problem, it is important
to make sure resource allocation is carefully performed and
orchestrated, preventing over- or under-provisioning of resources
and keeping end-to-end delays comparable to those observed in
traditional middlebox-based networks. In this paper, we formalize
the network function placement and chaining problem and
propose an Integer Linear Programming (ILP) model to solve
it. Additionally, in order to cope with large infrastructures, we
propose a heuristic procedure for efficiently guiding the ILP
solver towards feasible, near-optimal solutions. Results show
that the proposed model leads to a reduction of up to 25%
in end-to-end delays (in comparison to chainings observed in
traditional infrastructures) and an acceptable resource over-
provisioning limited to 4%. Further, we demonstrate that our
heuristic approach is able to find solutions that are very close to
optimality while delivering results in a timely manner.

I. INTRODUCTION

Middleboxes (or Network Functions - NF) play an essential
role in today’s networks, as they support a diverse set of
functions ranging from security (e.g., firewalling and intrusion
detection) to performance (e.g., caching and proxying) [1].
As currently implemented nowadays, middleboxes are difficult
to deploy and maintain. This is mainly because cumbersome
procedures need to be followed, such as dealing with a
variety of custom-made hardware interfaces and manually
chaining middleboxes to ensure the desired network behavior.
Further, recent studies show that the number of middleboxes
in enterprise networks (as well as in datacenter and ISP
networks) is similar to the number of physical routers [2]–[4].
Thus, the aforementioned difficulties are exacerbated by the
complexity imposed by the high number of network functions
that a network provider has to cope with, leading to high
operational expenditures. Moreover, in addition to costs related
to manually deploying and chaining middleboxes, the need
for frequent hardware upgrades adds up to substantial capital
investments.

Network Function Virtualization (NFV) has been proposed
to shift middlebox processing from specialized hardware appli-
ances to software running on commoditized hardware [5]. In
addition to potentially reducing acquisition and maintenance
costs, NFV is expected to allow network providers to make
most of the benefits of virtualization on the management

of network functions (e.g., elasticity, performance, flexibility,
etc.). In this context, Software-Defined Networking (SDN) can
be considered a convenient complementary technology, which,
if available, has the potential to make the chaining of the
aforementioned network functions much easier. In fact, it is
not unreasonable to state that SDN has the potential to revamp
the Service Function Chaining (SFC)1 problem. In short, the
problem consists of making sure network flows go efficiently
through end-to-end paths traversing sets of middleboxes. In the
NFV/SDN realm and considering the flexibility offered by this
environment, the problem consists of (sub)optimally defining
how many instances of virtual network functions are necessary
and where to place them in the infrastructure. Furthermore, the
problem encompasses the determination of end-to-end paths
over which known network flows have to be transmitted so as
to pass through the required placed network functions.

Despite consistent efforts to make NFV a reality [1],
[6], little has been done to efficiently perform the placement
and chaining of virtual network functions on physical in-
frastructures. This is particularly challenging mainly for two
reasons. First, depending on how virtual network functions
are positioned and chained, end-to-end latencies may become
intolerable. This problem is aggravated by the fact that pro-
cessing times tend to be higher, due to the use of virtualization,
and may vary, depending on the type of network function and
the hardware configuration of the device hosting it. Second, re-
source allocation must be performed in a cost-effective manner,
preventing over- or under-provisioning of resources. Therefore,
placing network functions and programming network flows in
a cost-effective manner while ensuring acceptable end-to-end
delays represents an essential step toward enabling the use of
NFV in production environments.

In this paper, we formalize the network function placement
and chaining problem and propose an optimization model to
solve it. Additionally, in order to cope with large infrastruc-
tures, we propose a heuristic procedure. Both optimal and
heuristic approaches are evaluated considering different use
cases and metrics, such as the number of instantiated virtual
network functions, physical and virtual resource consumption,
and end-to-end latencies. The main contributions of this paper
are then: (i) the formalization of the network function place-
ment and chaining problem by means of an ILP model; (ii) the
proposal of a heuristic solution, and (iii) the evaluation of both
proposed approaches and discussion of the obtained results.

The remainder of this paper is organized as follows. In
Section 2, we discuss related work in the area of network
function virtualization. In Section 3, we formalize the network
function placement and chaining problem and propose both
an optimal ILP model and a heuristic approach to solve it. In

1In this paper, the terms network function and service function are used
interchangeably.

Section 4, we present and discuss the results of an evaluation
of the model and heuristic. Last, in Section 5 we conclude the
paper with final remarks and perspectives for future work.

II. RELATED WORK

We now review some of the most prominent research work
related to network function virtualization and the network
function placement and chaining problem. We start the section
by discussing recent efforts aimed at evaluating the technical
feasibility of deploying network functions on top of com-
modity hardware. Then, we review preliminary studies carried
out to solve different aspects of the virtual network function
placement and chaining problem.

Hwang et al. [6] propose the NetVM platform to allow
network functions based on Intel DPDK technology to be
executed at line-speed (i.e., 10 Gb/s) on top of commodity
hardware. According to the authors, it is possible to accelerate
network processing by mapping NIC buffers to user space
memory. In another investigation, Martins et al. [1] introduce
a high-performance middlebox platform named ClickOS. It
consists of a Xen-based middlebox software, which, by means
of alterations in I/O subsystems (back-end switch, virtual
net devices and back and front-end drivers), can sustain a
throughput of up to 10 Gb/s. The authors show that ClickOS
enables the execution of hundreds of virtual network functions
concurrently without incurring significant overhead (in terms
of delay) in packet processing. The results obtained by Hwang
et al. and Martins et al. are promising and definitely represent
an important milestone to make the idea of virtual network
functions a reality.

With respect to efficient placement and chaining of network
functions, the main contribution of this paper, Barkai et al. [7]
and Basta et al. [8] have recently taken a first step toward
modeling this problem. Barkai et al., for example, propose
mechanisms to program network flows to an SDN substrate
taking into account virtual network functions through which
packets from these flows need to pass. In short, the problem
consists of mapping SDN traffic flows properly (i.e., in the
right sequence) to virtual network functions. To solve it in a
scalable manner, the authors propose a more efficient topology
awareness component, which can be used to rapidly program
network flows. Note that they do not aim at providing a
(sub)optimal solution to the network function placement and
chaining problem as we do in this paper. Instead, the scope
of their work is more of an operational nature, i.e., building
an OpenFlow-based substrate that is efficient enough to allow
flows – potentially hundred of millions, with specific function
processing requirements – to be correct and timely mapped
and programmed. Our solution could be used together with
Barkai’s and therefore help the decision on where to optimally
place network functions and how to correctly map network
flows.

The work by Basta et al., in turn, proposes an ILP model
for network function placement in the context of cellular
networks and crowd events. More specifically, the problem ad-
dressed is the question on whether or not virtualize and migrate
mobile gateway functions to datacenters. When applicable, the
model also encompasses the optimal selection of datacenters
that will host the virtualized functions and SDN controllers.
Although the paper covers optimal virtual function placement,
the proposed model is restricted, as it does not have to deal
with function chaining. Our proposal is, in comparison, a
broader, optimal solution. It can be applied to plan not only the
placement of multiple instances of virtual network functions
on demand, but also to map and chain service functions.

Before summarizing this section, we add a note on the
relation between the network function placement and chaining

problem and the Virtual Network Embedding (VNE) problem
[9]–[12]. Despite some similarities, solutions to the latter are
not appropriate to the former. The reason is twofold. First,
while in VNE we observe one-level mappings (virtual network
requests ! physical network), in NFV environments we have
two-level mappings (service function chaining requests! vir-
tual network function instances ! physical network). Second,
while the VNE problem considers only one type of physical
device (i.e., routers), a much wider number of different net-
work functions coexist in NFV environments.

As one can observe from the state-of-the-art, the area of
network function virtualization is still in its early stages. Most
of the effort has been focused on engineering ways of run-
ning network functions on top of commodity hardware while
keeping performance roughly the same as the one obtained
when deploying traditional middlebox-based setups. As far as
we are aware of, this paper consolidates a first consistent step
towards placing virtual network functions and mapping service
function chains. Besides, it captures and discusses the trade-
off between resources employed and performance gains in the
particular context of NFV.

III. THE NETWORK FUNCTION PLACEMENT AND
CHAINING PROBLEM

In this section, we describe the network function placement
and chaining problem and introduce our proposed solution.
Next, we formalize it as an Integer Linear Programming model,
followed by an algorithmic approach.

A. Problem Overview
As briefly explained earlier, network function placement

and chaining consists of interconnecting a set of network func-
tions (e.g., firewall, load balancer, etc.) through the network
to ensure network flows are given the correct treatment. These
flows must go through end-to-end paths traversing a specific set
of functions. In essence, this problem can be decomposed into
three phases: (i) placement, (ii) assignment, and (iii) chaining.

The placement phase consists of determining how many
network function instances are necessary to meet the cur-
rent/expected demand and where to place them in the infras-
tructure. Virtual network functions are expected to be placed
on network points of presence (N-PoPs), which represent
groups of (commodity) servers in specific locations of the
infrastructure (with processing capacity). N-PoPs, in turn,
would be potentially set up either in locations with previously
installed commuting and/or routing devices or in facilities such
as datacenters.

The assignment phase defines which placed virtual network
function instances (in the N-PoPs) will be in charge of each
flow. Based on the source and destination of a flow, instances
are assigned to it in a way that prevents processing times
from causing intolerable latencies. For example, it may be
more efficient to assign network function requests to the
nearest virtual network function instance or to simply split
the requested demand between two or more virtual network
functions (when possible).

In the third and final phase, the requested functions are
chained. This process consists of creating paths that intercon-
nect the network functions placed and assigned in the previous
phases. This phase takes into account two crucial factors,
namely end-to-end path latencies and distinct processing de-
lays added by different virtual network functions. Figure 1
depicts the main elements involved in virtual network function
placement and chaining. The physical network is composed
of N-PoPs interconnected through physical links. There is a
set of SFC requests that contain logical sequences of network

functions as well as the endpoints, which implicitly define the
paths. Additionally, the provider has a set of virtual network
function images that it can instantiate. In the figure, larger
semicircles represent instances of network functions running
on top of an N-PoP, whereas the circumscribed semicircles
represent network function requests assigned to the placed
instances. The gray area in the larger semicircles represents
processing capacity allocated to network functions that is not
currently in use. Dashed lines represent paths chaining the
requested endpoints and network functions.

Region A Region B

Region C

NF2

NF1

NF3

NF4

N-PoP

Physical link

NF instances

Assigned NF instances

(a) Physical infrastructure.

A

B

A B

SFC-1

SFC-2

SFC-3

NF2

C

NF1

NF2

NF3

AA BNF1

NF3

NF4

(b) SFC requests.

Fig. 1. Example SFC deployment on a physical infrastructure to fulfill a
number of requests.

B. Topological Components of SFC Requests
SFC requests may exhibit different characteristics de-

pending on the application or flow they must handle. More
specifically, such requests may differ topologically and/or in
size. In this paper, we consider three basic types of SFC
components, which may be combined with one another to form
more complex requests. These three variations – (i) line, (ii)
bifurcated path with different endpoints, and (iii) bifurcated
path with a single endpoint – are explained next.

The simplest topological component that may be part of
an SFC request is a line with two endpoints and one or
more network functions. This kind of component is suitable
for handling flows between two endpoints that have to pass
through a particular sequence of network functions, such as
a firewall and a Wide Area Network (WAN) accelerator.
The second and third topological components are based on
bifurcated paths. Network flows passing through bifurcated
paths may end up at the same endpoint or not. Considering
flows with different endpoints, the most basic component
contains three endpoints (one source and two destinations).
Between them, there is a network function that splits the
traffic into different paths according to a certain policy. A
classical example that fits this topological component is a load
balancer connected to two servers. As for bifurcated paths with
a single end point, we consider a scenario in which different
portions of traffic between two endpoints must be treated
differently. For example, part of the traffic has to pass through
a specific firewall, while the other part, through an encryption
function. Figure 2 illustrates these topological components.
As previously mentioned, more sophisticated SFC requests
may be created by freely combining these basic topological
components among themselves or in a recursive manner.

A NF1 BNFn

(a) Line.

A NF1

NF2

NF3

B

C

NFn

NFm

(b) Bifurcated path with
different endpoints.

A NF1 B

NFn

NFm

NF2

NF3

(c) Bifurcated path with
a single endpoint.

Fig. 2. Basic topological components of SFC requests.

C. Definitions and Modeling

Next, we detail the inputs, variables, and constraints of our
optimization model. Superscript letters represent whether a set
or variable refers to service chaining requests (S) or physical
(P) resources, or whether it relates to nodes (N) or links (L).

NFV Infrastructure and Service Function Chaining.
The topology of the NFV infrastructure, as well as that of
each SFC, is represented as a directed graph G = (N,L).
Vertices N represent network points of presence (N-PoPs) in
physical infrastructures or network functions in SFCs. Each
N-PoP represents a location where a network function may
be implemented. In turn, each edge (i, j) 2 L represents an
unidirectional link. Bidirectional links are represented as a pair
of edges in opposite directions (e.g., (a, b) and (b, a)). Thus,
the model allows the representation of any type of physical
topology, as well as any SFC forwarding graph.

In real environments, physical devices have a limited
amount of resources. In our model, the CPU capacity of
each N-PoP is represented as C

P
i . In turn, each physical link

in the infrastructure has a limited bandwidth capacity and a
particular delay, represented by B

P
i,j and D

P
i,j , respectively.

Similarly, SFCs require a given amount of resources. Network
functions require a specific amount of CPU, represented as
C

S
i . Additionally, each SFC being requested has a bandwidth

demand and a maximum delay allowed between its endpoints,
represented as B

S
i,j and D

S , respectively.

Virtual Network Functions. Set F represents possible vir-
tual network functions (e.g., firewall, load balancer, NAT, etc.)
that may be instantiated/placed by the infrastructure operator
on top of N-PoPs. Each network function can be instantiated
at most Um times, which is determined by the number of
licenses the provider has purchased. Each virtual function
instance requires a given amount of physical resources (which
are used by SFCs mapped to that instance). Each instance
provides a limited amount of resources represented by F

cpu
m .

This enables our model to represent instances of the same type
of network function with different sizes (e.g., pre-configured
instances for services with higher or lower demand). Each
function m 2 F has a processing delay associated with it,
which is represented by F

delay
m . Moreover, we consider that

each mapped network function instance may be shared by one
or more SFCs whenever possible.

SFC requests. Set Q represents SFCs that must be properly
assigned to network functions. SFCs are composed of chains of
network functions and each requested function is represented
by q. Each link interconnecting the chained functions requires a
given amount of bandwidth, represented by B

V
i,j . Furthermore,

each request has at least two endpoints, representing specific
locations on the infrastructure. The required locations of SFC
endpoints are stored in set SC . Likewise, the physical location
of each N-PoP i is represented in S

P . Since the graph of
an SFC request may represent any topology, we assume that
the set of virtual paths available to carry data between pairs
of endpoints is known in advance. As there are efficient
algorithms to compute paths, we opted to compute them in
advance without loss of generality to the model. This set is
represented by P .

Variables. The variables are the outputs of our model, and
represent the optimal solution of the service function chaining
problem for the given set of inputs. These variables indicate
in which N-PoP virtual network functions are instantiated
(placed). Further, these variables indicate the assignment of
SFCs being requested to virtual network functions placed in
the infrastructure. If a request is accepted, each of its virtual
functions is mapped to an N-POP, whereas each link in the

chain is mapped to one or more consecutive physical links
(i.e., a physical path).

• yi,m,j 2 {0, 1} – Virtual network function placement,
indicates whether instance j of network function m is
mapped to N-PoP i.

• A

N
i,q,j 2 {0, 1} – Assignment of required network

functions, indicates whether virtual network function
j, required by SFC q, is serviced by a network function
placed on N-PoP i.

• A

L
i,j,q,k,l 2 {0, 1} – Chaining allocation, indicates

whether physical link (i, j) is hosting virtual link (k, l)
from SFC q.

Based on the above inputs and outputs, we now present the
objective function and its constraints. The objective function of
our model aims at minimizing the number of virtual network
function instances mapped on the infrastructure. This objective
was chosen due to the fact that this aspect has the most
significant and direct impact on the network provider’s costs.
However, our model could be easily adapted to use other
objective functions, such as multi-objective ones that consider
different factors simultaneously (e.g., number of network func-
tion instances and end-to-end delays). The purpose of each
constraint of our model is explained next.

Objective:

Min
X

i2RP ,m2F,j2Um

yi,m,j (1)

Subject to:
X

m2F,j2Um

yi,m,j · F cpu
m,j C

P
i 8i 2 R

P (2)

X

q2Q,j2RV
q :q=Fm

C

S
q,j ·AN

i,q,j
X

j2Um

yi,m,j · F cpu
m,j (3)

8i 2 R

P
,m 2 F

A

N
i,q,k

X

m2F,j2Um:m=Fk

yi,m,j 8i 2 R

P
, q 2 Q, k 2 R

S
q

(4)
X

q2Q,(k,l)2LV

B

S
q,k,l ·AL

i,j,q,k,l B

P
i,j 8(i, j) 2 L

P (5)

X

i2RP

A

N
i,q,j = 1 8q 2 Q, k 2 R

S
q (6)

X

j2RP

A

L
i,j,q,k,l�

X

j2RP

A

L
j,i,q,k,l = A

N
i,q,k �A

N
i,q,l (7)

8q 2 Q, i 2 R

P
, (k, l) 2 L

S
q

A

N
i,q,j · j = A

N
i,q,k · l 8(i, j) 2 S

P
, q 2 Q, (k, l) 2 S

S
q (8)

X

(i,j)2LP ,(k,l)2LS
q :(k,l)2p

A

L
i,j,q,k,l ·DP

i,j

+
X

i2RP ,k2RS
q :k2p

A

N
i,q,j · F

delay
k D

S
k

8q 2 Q, p 2 Pq
(9)

Constraint 2 ensures that the sum of CPU capacities
required by network function instances mapped to N-PoP i

does not exceed the amount of available physical resources. In
turn, constraint 3 ensure that the sum of processing capacities
required by elements of SFCs does not exceed the amount
of virtual resources available on network function m mapped
to N-PoP i. Constraint 4 ensures that, if a network function
being requested by an SFC is assigned to N-PoP i, then at
least one network function instance should be running (placed)
on i. Constraint 5 ensures that the virtual path between the
required endpoints has enough available bandwidth to carry
the amount of flow required by SFCs. Constraint 6 ensures that
every required SFC (and its respective network functions) is
mapped to the infrastructure. Constraint 7 consists in building
the virtual paths between the required endpoints. Constraint 8
ensures that the required endpoints are mapped to devices in
the requested physical locations. Last, constraint 9 ensures that
end-to-end latency constraints on mapped SFC requests will be
met (the first part of the equation is a sum of the delay incurred
by end-to-end latencies between mapped endpoints, while the
second part defines the delay incurred by packet processing on
virtual network functions).

D. Proposed Heuristic
In this subsection we present our heuristic approach for

efficiently placing, assigning, and chaining virtual network
functions. We detail each specific procedure it uses to build a
feasible solution, and present an overview of its algorithmic
process.

In this particular problem, the search procedure performed
by the integer programming solver leads to an extensive num-
ber of symmetrical feasible solutions. This is mainly because
there is a considerable number of potential network function
mappings/assignments that satisfy all constraints, in addition to
the fact that search schemes conducted by commercial solvers
are not specialized for the problem in hand.

To address the aforementioned issues, our heuristic ap-
proach dynamically and efficiently guides the search for solu-
tions performed by solvers in order to quickly arrive at high
quality, feasible ones. This is done by performing a binary
search to find the lowest possible number of network function
instances that meets the current demands. In each iteration,
the heuristic employs a modified version of the proposed
ILP model in which the objective function is removed and
transformed into a constraint, resulting in a more bounded
version of the original model. This strategy takes advantage
of two facts: first, there tends to be a significant number
of feasible, symmetrical solutions that meet our criteria for
optimality, and once the lowest possible number of network
function instances is determined, only one such solution needs
to be found; and second, commercial solvers are extremely
efficient in finding feasible solutions.

Algorithm 1 presents a simplified pseudocode version of
our heuristic approach, and its details are explained next. The
heuristic performs a binary search that attempts to find a more
constrained model by dynamically adjusting the number of net-
work functions that must be instantiated on the infrastructure.
The upper bound of this search is initially set to the maximum
number of network functions that may be instantiated on the
infrastructure (line 2), while the lower bound is initialized as
1 (line 3). In each iteration, the maximum number of network
function instances allowed is represented by variable nf ,
which is increased or decreased based on the aforementioned
upper and lower bounds (line 6). After nf is updated, the
algorithm transforms the original model into the bounded one
by removing the objective function (line 7) and adding a new
constraint (line 8), considering the computed value for nf . The
added constraint is shown in Equation 10.

X

i2RP ,m2F,j2Um

yi,m,j nf (10)

In line 9, a commercial solver is used to obtain a solution
for the bounded model within an acceptable time limit. In each
iteration, the algorithm stores the best solution found so far
(i.e., the solution s with the lowest value for nf – line 11).
Afterwards, it adjusts the upper or lower bound depending on
whether the current solution is feasible or not (lines 12 and 14).
Last, it returns the best solution found (s0, which represents
variables y, AN and A

L).
Although the proposed heuristic uses an exact approach to

find a feasible solution for the problem, timeLimit (in line 9)
should be fine-tuned considering the size of the instance being
handled to ensure the tightest solution will be found. In our
experience, for example, a time limit in the order of minutes
is sufficient for dealing with infrastructures with 200 N-PoPs.

Input: Infrastructure G, set Q of SFCs, set
V NF of network functions, timeLimit

Output: V ariables yi,m,j , AN
i,q,j , AL

i,j,q,k,l
1 s, s

0 ;
2 upperBound |F |
3 lowerBound 1
4 nf (upperBound+ lowerBound)/2
5 while nf � lowerBound and nf upperBound do
6 nf (upperBound+ lowerBound)/2
7 Remove objective function

8 Add constraint :
P

i2RP ,m2F,j2Um
yi,m,j nf

9 s solveAlteredModel(timeLimit)
10 if s is feasible then
11 s

0 s

12 upperBound nf

13 else
14 lowerBound nf

15 end
16 end
17 if s0 = ; then
18 return infeasible solution

19 else
20 return s

0

21 end
Algorithm 1: Overview of the proposed heuristic.

IV. EVALUATION

In order to evaluate the provisioning of different types
of SFCs, the ILP model formalized in the previous section
was implemented and run in CPLEX Optimization Studio2

version 12.4. The heuristic, in turn, was implemented and run
in Python. All experiments were performed on a machine with
four Intel Xeon E5-2670 processors and 56 GB of RAM, using
the Ubuntu GNU/Linux Server 11.10 x86 64 operating system.

A. Workloads
We consider four different types of SFC components. Each

type uses either one of the topological components described
in Subsection III-B or a combination of them. The first com-
ponent is a line composed of a single firewall between the two

2http://www-01.ibm.com/software/integration/optimization/cplex-
optimization-studio/

endpoints (Figure 2(a)). The second component used consists
of a bifurcated path with different endpoints (Figure 2(b)).
This component is composed of a load balancer splitting the
traffic between two servers. These two types of components are
comparable since their end-to-end paths pass through exactly
one network function. The third and fourth components use the
same topologies of the previously described ones, but vary in
size. The third component is a line (like Component 1) com-
posed of two chained network functions – a firewall followed
by an encryption network function (e.g., VPN). The fourth
component is a bifurcated path (like Component 2), but after
the load balancer, traffic is forwarded to one more network
function – a firewall. These particular network functions were
chosen due to being commonly referenced in recent literature;
however, they could be easily replaced with any other functions
if so desired. All network functions requested by SFCs have
the same requirements in terms of CPU and bandwidth. Each
network function requires 12.5% of CPU, while the chainings
between network functions require 1Gbps of bandwidth. When
traffic passes through a load balancer, the required bandwidth
is split between the paths. The values for CPU and bandwidth
requirements were fixed after a preliminary evaluation, which
revealed that they did not have a significant impact on the
obtained results. Moreover, the establishment of static values
for these parameters facilitates the assessment of the impact
of other, more important factors.

The processing times of virtual network functions (i.e., the
time required by these functions to process each incoming
packet) considered in our evaluation are shown in Table I.
These values are based on the study conducted by Dobrescu et
al. [13], in which the authors determine the average processing
time of a number of software-implemented network functions.

TABLE I. PROCESSING TIMES OF PHYSICAL AND VIRTUAL NETWORK
FUNCTIONS USED IN OUR EVALUATION.

Network Function Processing Time
(physical)

Processing Time
(virtual)

Load Balancer 0.2158 sec 0.6475 sec
Firewall 2.3590 sec 7.0771 sec
VPN Function 0.5462 sec 1.6385 sec

Networks used as physical substrates were generated with
Brite3. The topology of these networks follows the Barabasi-
Albert (BA-2) [14] model. This type of topology was chosen as
an approximation of those observed in real ISP environments.
Physical networks have a total of 50 N-PoPs, each with total
CPU capacity of 100%, while the bandwidth of physical links
is 10 Gbps. The average delay of physical links is 30ms. This
value is based on the study conducted by Choi et al. [15],
which characterizes typical packet delays in ISP networks.

In order to provide a comparison between virtualized
network functions and non-virtualized ones, we consider base-
line scenarios for each type of SFC. These scenarios aim at
reproducing the behavior of environments that employ physical
middleboxes rather than NFV. Our baseline consists of a
modified version of our model, in which the total number of
network functions is exactly the number of different functions
being requested. Moreover, the objective function attempts
to find the minimum chaining length between endpoints and
network functions. In baseline scenarios, function capacities
are adjusted to meet all demands and, therefore, we do not
consider capacity constraints. Further, processing times are
three times lower than those in virtualized environments. This
is in line with the study of Basta et al. [8]. These processing

3http://www.cs.bu.edu/brite/

times, like the ones related to virtual network functions, are
shown in Table I.

In our experiments, we consider two different profiles of
network function instances. In the first one, instances may re-
quire either 12.5% or 25% of CPU, leading to smaller instance
sizes. In the second profile, instances may require 12.5% or
100%, leading to larger instances overall. We first evaluate
our optimal approach considering individual types of requests.
Next, we evaluate the effect of a mixed scenario with multiple
types of SFCs. Last, we evaluate our proposed heuristic using
large instances. Each experiment was repeated 30 times, with
each repetition using a different physical network topology.
All results have a confidence level of 90% or higher.

B. Results
First, we analyze the number of network functions in-

stances needed to cope with an increasing number of SFC
requests. Figure 3 depicts the average number of instantiated
network functions with the number of SFC requests varying
from 1 to 20. At each point on the graph, all previous SFC
requests are deployed together. It is clear that the number
of instances is proportional to the number of SFC requests.
Further, we observe that smaller instance sizes lead to a higher
number of network functions being instantiated. Considering
small instances, scenarios with Components 1 and 2 require,
on average, 10 network function instances (Figure 3(a)). In
contrast, scenarios with Components 3 and 4 require, on
average, 20 and 30 instances (Figure 3(b)), respectively. For
large instances, scenarios with Components 1 and 2 require,
respectively, 4 and 3 network function instances, while those
with Components 3 and 4 require 9 and 12 instances on
average. These results demonstrate that the number of virtual
network functions in a SFC request has a much more sig-
nificant impact on the number of instances needed to service
such requests than the chainings between network functions
and endpoints. This can be observed, for example, in Figure
3(a), in which Components 1 and 2 only differ topologically
and lead to, on average, the same number of instances. In
contrast, Figure 3(b) shows that when handling components
of type 4 (which have a higher number of network functions
than those of type 3), a significantly higher number of network
function instances is required.

 0

 5

 10

 15

 20

 25

 30

 4 8 12 16 20

N
u
m

b
er

 o
f

N
et

w
o
rk

 F
u
n
ct

io
n
s

In
st

an
ti

at
ed

SFC Requests

Component 1, small instances
Component 1, large instances

Component 1, baseline
Component 2, small instances
Component 2, large instances

Component 2, baseline

(a) Components 1 and 2.

 0

 5

 10

 15

 20

 25

 30

 4 8 12 16 20

N
u
m

b
er

 o
f

N
et

w
o
rk

 F
u
n
ct

io
n
s

In
st

an
ti

at
ed

SFC Requests

Component 3, small instances
Component 3, large instances

Component 3, baseline
Component 4, small instances
Component 4, large instances

Component 4, baseline

(b) Components 3 and 4.

Fig. 3. Average number of network function instances.

Figure 4 illustrates the average CPU overhead (i.e., al-
located but unused CPU resources) in all experiments. Each
point on the graph represents the average overhead from the
beginning of the experiment until the current point. In all
experiments, CPU overheads tend to be lower when small
instances are used. When large instances are allocated, more
resources stay idle. Considering small instances, Components
1 and 2 (Figure 4(a)) lead to, on average, CPU overhead of

7.80% and 7.28%, respectively. Components 3 and 4 (Figure
4(b)) lead to, on average, 6.58% and 3.18% CPU overhead.
In turn, for large instances, Components 1 and 2 lead to
average CPU overheads of 45.61% and 38.68%, respectively.
Components 3 and 4 lead to, on average, 40.21% and 40.36%
CPU overhead. Observed averages demonstrate that the impact
of instance sizes is notably high, with smaller instances leading
to significantly lower overheads. Further, we can observe that,
in general, CPU overheads tend to be lower when higher
numbers of SFCs are being deployed. As more requests are
being serviced simultaneously, network function instances can
be shared among multiple requests, increasing the efficiency
of CPU allocations. In these experiments, the baseline has 0%
of CPU overhead as network functions are planned in advance
to support the exact demand. Since in a NFV environment
network function instances are hosted on top of commodity
hardware (as opposed to specialized middleboxes), these over-
heads – especially those observed for small instances – are
deemed acceptable, as they do not incur high additional costs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20

C
P

U
 O

v
er

h
ea

d

SFC Requests

Component 1, small instances
Component 1, large instances

Component 1, baseline
Component 2, small instances
Component 2, large instances

Component 2, baseline

(a) Components 1 and 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20

C
P

U
 O

v
er

h
ea

d

SFC Requests

Component 3, small instances
Component 3, large instances

Component 3, baseline
Component 4, small instances
Component 4, large instances

component 4, baseline

(b) Components 3 and 4.

Fig. 4. Average CPU overhead of network function instances.

Next, Figure 5 shows the average overhead caused by
chaining network functions (through virtual links) in each
experiment. This overhead is measured as the ratio between
the effective bandwidth consumed by SFC virtual links hosted
on the physical substrate and the bandwidth requested by such
links. In general, the actual bandwidth consumption is higher
than the total bandwidth required by SFCs, due to the frequent
need to chain network functions through paths composed of
multiple physical links. The absence of overhead is observed
only when each virtual link is mapped to a single physical link
(ratio of 1.0), or when network functions are mapped to the
same devices as the requested endpoints (ratio < 1.0). Lower
overhead rates may potentially lead to lower costs and allow
more SFC requests to be serviced.

Considering large instances, the observed average overhead
is 50.49% and 69.87% for scenarios with Components 1 and
2, respectively. In turn, Components 3 and 4 lead to overhead
ratios of 116% and 72.01%. This is due to the low number
of instantiated network functions (Figure 3), which forces
instances to be chained through long paths. Instead, when
small instances are considered (i.e., more instances running
in a distributed way), overheads tend to be lower. Components
1 and 2 lead to, on average, 44.30% and 57.60% bandwidth
overhead, while Components 3 and 4, 44.53% and 53.41%,
respectively. When evaluating bandwidth overheads, we can
observe that the topological structure of SFC requests has the
most significant impact on the results (in contrast to previously
discussed experiments). More complex chainings tend to lead
to higher bandwidth overheads, although these results are also
influenced by other factors such as instance sizes and the
number of instantiated functions. In these experiments the
baseline overhead tends to be lower than the others as the

objective function prioritizes shortest paths (in terms of number
of hops) between endpoints and network functions.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 4 8 12 16 20

B
an

d
w

id
th

 O
v
er

h
ea

d

SFC Requests

Component 1, small instances
Component 1, large instances

Component 1, baseline
Component 2, small instances
Component 2, large instances

Component 2, baseline

(a) Components 1 and 2.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 4 8 12 16 20

B
an

d
w

id
th

 O
v
er

h
ea

d

SFC Requests

Component 3, small instances
Component 3, large instances

Component 3, baseline
Component 4, small instances
Component 4, large instances

Component 4, baseline

(b) Components 3 and 4.

Fig. 5. Average bandwidth overhead of SFCs deployed in the infrastructure.

Figure 6 depicts the average end-to-end delay, in millisec-
onds, observed between endpoints in all experiments. The end-
to-end delay is computed as a sum of the path delays and
network function processing times. In this figure, results for
scenarios with small and large instances are grouped together,
as average delays are the same. The observed end-to-end delay
for all components tends to be lower than the delay observed
for the baseline scenario. This is mainly due to the better
positioning of network functions and chainings between them.
Furthermore, the model promotes a better utilization of the
variety of existing paths in the infrastructure. Although the
baseline scenario aims at building minimum chainings (in
terms of hops), we observe that: (i) minimum chaining does
not always lead to global minimum delay; (ii) when baseline
scenarios overuse the shortest paths, other alternative paths
remain unused due to the depletion of resources in specific lo-
cations (mainly in the vicinity of highly interconnected nodes).
In comparison with baseline scenarios, Component 1 leads to,
on average, 25% lower delay (21.55ms compared to 29.07ms),
while Component 2 leads to, on average, 15.40% lower delay
(19.28ms compared to 22.79ms). In turn, Component 3 leads
to, on average, 13.86% lower delay than its baseline (25.15ms
compared to 29.20ms), while Component 4 leads to 15.75%
lower delay (24.89ms compared to 29.55ms). In summary,
even though our baseline scenarios are planned in advance to
support exact demands and we consider processing times of
virtual network functions to be three times those of physical
ones, end-to-end delays are still lower in virtualized scenarios.
This advantage may become even more significant as the
estimated processing times of virtual network functions get
closer in the future to those observed in physical middleboxes.

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 4 8 12 16 20

A
v
er

ag
e

E
n
d
−

to
−

en
d
 D

el
ay

 (
in

 m
il

li
se

co
n
d
s)

SFC Requests

Component 1
Component 1, baseline

Component 2
Component 2, baseline

(a) Components 1 and 2.

 22

 24

 26

 28

 30

 32

 34

 4 8 12 16 20

A
v
er

ag
e

E
n
d
−

to
−

en
d
 D

el
ay

 (
in

 m
il

li
se

co
n
d
s)

SFC Requests

Component 3
Component 3, baseline

Component 4
Component 4, baseline

(b) Components 3 and 4.

Fig. 6. Average end-to-end delay of SFCs deployed in the infrastructure.

After analyzing the behavior of SFCs considering homo-
geneous components, we now analyze the impact of a mixed
scenario. In it, Components 1, 2, and 4 are repeatedly deployed
in the infrastructure sequentially. Figure 7 presents the results
for the mixed scenario. Although there are different topolog-
ical SFC components being deployed together in the same
infrastructure, the results exhibit similar tendencies as those
of homogeneous scenarios. In Figure 7(a), we observe that the
average number of network functions (on average, 17 network
functions when considering small instances and 9 functions
considering large instances) is proportional to the obtained
average values depicted in Figures 3(a) and 3(b). The average
CPU overhead also remains similar (9.12% considering small
instances and 45.37% considering large ones). In turn, the
average overhead caused by chaining network functions in
the mixed scenario is of 59.06% and 47.51%, for small and
large instances, respectively. Despite these similarities, end-
to-end delays tend to be comparatively lower than the ones
observed in homogeneous scenarios. The delay observed in
the proposed chaining approach is 8.57% lower than that of
the baseline (22.93ms in comparison to 25.08ms). This is
due to the combination of requests with different topological
structures, which promotes the use of a wider variety of
physical paths (which, in turn, leads to lower overutilization
of paths). Similarly to homogeneous scenarios, average end-to-
end delays are the same considering small and large instances.

 0

 5

 10

 15

 20

 25

 30

 4 8 12 16 20

N
u
m

b
er

 o
f

N
et

w
o
rk

 F
u
n
ct

io
n
s

In
st

an
ti

at
ed

SFC Requests

Small instances
Large instances

Baseline

(a) Average number of network
function instances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20

C
P

U
 O

v
er

h
ea

d

SFC Requests

Small instances
Large instances

Baseline

(b) Average CPU overhead of
network function instances.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 4 8 12 16 20

B
an

d
w

id
th

 O
v
er

h
ea

d

SFC Requests

Small instances
Large instances

Baseline

(c) Average bandwidth overhead.

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 4 8 12 16 20

A
v
er

ag
e

E
n
d
−

to
−

en
d
 D

el
ay

 (
in

 m
il

li
se

co
n
d
s)

SFC Requests

Small, large instances
Baseline

(d) Average end-to-end delay.

Fig. 7. Mixed scenario including Components 1, 2, and 4.

We now proceed to the evaluation of our proposed heuristic
approach. The heuristic was subjected the same scenarios as
the ILP model, in addition to ones with a larger infrastructure.
Considering the scenarios presented so far (i.e., with physical
infrastructures with 50 nodes and 20 SFC requests), our
heuristic was able to find an optimal solution in all cases.
We omit such results due to space constraints. We emphasize,
however, that the heuristic approach was able to find an optimal
solution in a substantially shorter time frame in comparison to
the ILP model, although the solution times of both approaches
remained in the order of minutes. The average solution times
of the ILP model and the heuristic considering all scenarios
were of, respectively, 8 minutes and 41 seconds and 1 minute

and 21 seconds.

Last, we evaluate our heuristic approach on a large NFV
infrastructure. In this experiment, we consider a physical net-
work with 200 N-PoPs and a maximum of 60 SFC components
of type 4. The delay limit was scaled up to 90ms in order
to account for the larger network size. Figure 8(a) depicts
the average time needed to find a solution using both the
ILP model and the heuristic. The ILP model was not able
to find a solution in a reasonable time in scenarios with more
than 18 SFCs (the solution time was longer than 48 hours).
The heuristic approach, in turn, is able to properly scale to
cope with this large infrastructure, delivering feasible, high-
quality solutions in a time frame of less than 30 minutes. As
in previous experiments, small network function instances lead
to higher solution times than large ones. This is mainly because
smaller instances lead to a larger space of potential solutions
to be explored.

Although the heuristic does not find the optimal solution
(due to time constraints), Figures 8(b), 8(c), 8(d) and 8(e) show
that the solutions obtained through this approach present a
similar level of quality to the ones obtained optimally. Figure
8(b) depicts the average number of instantiated network func-
tions with the number of SFC requests varying from 1 to 60.
As in previous experiments, the number of instances remains
proportional to the number of SFC requests. Smaller instance
sizes lead to a higher number of network functions being
instantiated. Considering small sizes, 75 network functions
instances are required on average. In contrast, for large sizes,
40 instances are required on average. Figure 8(c), in turn,
illustrates the average CPU overhead. For small instances,
CPU overhead is limited to 18.77%, while for large instances
it reaches 48.65%. Similarly to the results concerning the
number of network function instances, CPU overheads in
these experiments also follow the trends observed in previous
ones. Next, Figure 8(d) presents bandwidth overheads. Small
instances lead to a bandwidth overhead of 300%, while for
large instances this overhead is, on average, 410%. These par-
ticularly high overheads are mainly due to the increase on the
average length of end-to-end paths, as the physical network is
significantly larger. Note that the bandwidth overhead observed
in the baseline scenario (198%) is also significantly higher
than those observed in experiments employed on the small
infrastructure. Last, Figure 8(e) depicts the average end-to-end
delay observed in large infrastructures. In line with previous
results, the end-to-end delay tends to be lower than the delay
observed in the baseline scenario. The scenario considering
Component 4 presents, on average, 17.72% lower delay than
the baseline scenario (70.30ms compared to 82.76ms). In short,
these results demonstrate that: (i) the heuristic is able to find
solutions with a very similar level of quality as the optimization
model for small infrastructures; and (ii) as both infrastructure
sizes and the number of requests increase, the heuristic is able
to maintain the expected level of quality while still finding
solutions in a short time frame.

V. CONCLUSION

NFV is a prominent network architecture concept that has
the potential to revamp the management of network functions.
Its wide adoption depends primarily on ensuring that resource
allocation is efficiently performed so as to prevent over-
or under-provisioning of resources. Thus, placing network
functions and programming network flows in a cost-effective
manner while guaranteeing acceptable end-to-end delays rep-
resents an essential step towards a broader adoption of this
concept.

In this paper, we formalized the network function place-
ment and chaining problem and proposed an optimization

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60

T
im

e
(s

ec
o
n
d
s)

SFC Requests

Heuristic, small instances
Heuristic, large instances

ILP, small instances
ILP, large instances

(a) Average time needed to find
a solution.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60

N
u
m

b
er

 o
f

N
et

w
o
rk

 F
u
n
ct

io
n
s

In
st

an
ti

at
ed

SFC Requests

Heuristic, small instances
Heuristic, large instances

ILP, small instances
ILP, large instances

Baseline

(b) Average number of network
function instances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60

C
P

U
 O

v
er

h
ea

d

SFC Requests

Heuristic, small instances
Heuristic, large instances

ILP, small instances
ILP, large instances

Baseline

(c) Average CPU Overhead of
network function instances.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10 20 30 40 50 60

B
an

d
w

id
th

 O
v
er

h
ea

d

SFC Requests

Heuristic, small instances
Heuristic, large instances

ILP, small instances
ILP, large instances

Baseline

(d) Average bandwidth overhead
of SFCs deployed in the infras-
tructure.

 60

 65

 70

 75

 80

 85

 10 20 30 40 50 60

A
v

er
ag

e
E

n
d

−
to

−
en

d
 D

el
ay

 (
in

 m
il

li
se

co
n

d
s)

SFC Requests

Heuristic
ILP

Baseline

(e) Average end-to-end delay of
SFCs deployed in the infrastruc-
ture.

Fig. 8. Scenario considering a large infrastructure and components of type 4.

model to solve it. Additionally, in order to cope with large
infrastructures, we proposed a heuristic procedure that dy-
namically and efficiently guides the search for solutions per-
formed by commercial solvers. We evaluated both optimal
and heuristic approaches considering realistic workloads and
different use cases. The obtained results show that the ILP
model leads to a reduction of up to 25% in end-to-end delays
and an acceptable resource over-provisioning limited to 4%.
Further, we demonstrate that our heuristic scales to larger
infrastructures while still finding solutions that are very close
to optimality in a timely manner.

As perspectives for future work, we envision extending
the evaluation of the proposed solutions by applying them to
other types of SFCs and ISP topologies, as well as conducting
an in-depth analysis of the inter-relationships between their
parameters. Moreover, we intend to explore mechanisms to
reoptimize network function placements, assignments, and
chainings. Further, we intend to explore exact solutions for
the problem, such as matheuristics.

REFERENCES

[1] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, 2014.

[2] D. A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching
layer for data centers,” in Proceedings of the ACM SIGCOMM Confer-
ence on Data Communication, 2008.

[3] T. Benson, A. Akella, and A. Shaikh, “Demystifying configuration
challenges and trade-offs in network-based isp services,” in Proceedings
of the ACM SIGCOMM Conference on Data Communication, 2011.

[4] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in Proceed-
ings of the 9th USENIX Conference on Networked Systems Design and
Implementation, 2012.

[5] Network Functions Industry Specification Group, “Network function
virtualisation (nfv): An introduction, benefits, enablers, challenges and
call for action,” in SDN and OpenFlow World Congress, 2012, pp. 1–16.

[6] J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: High perfor-
mance and flexible networking using virtualization on commodity plat-
forms,” in Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation, 2014.

[7] S. Barkai, R. Katz, D. Farinacci, and D. Meyer, “Software defined
flow-mapping for scaling virtualized network functions,” in Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, 2013.

[8] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann,
“Applying nfv and sdn to lte mobile core gateways, the functions

placement problem,” in Proceedings of the 4th Workshop on All Things
Cellular: Operations, Applications and Challenges, 2014.

[9] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” SIG-
COMM Computer Communication Review, vol. 38, no. 2, pp. 17–29,
Mar. 2008.

[10] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking, vol. 20, no. 99, pp. 206–219,
2012.

[11] M. Rabbani, R. Pereira Esteves, M. Podlesny, G. Simon, L. Zam-
benedetti Granville, and R. Boutaba, “On tackling virtual data center
embedding problem,” in Integrated Network Management (IM 2013),
2013 IFIP/IEEE International Symposium on, May 2013, pp. 177–184.

[12] L. R. Bays, R. R. Oliveira, L. S. Buriol, M. P. Barcellos, and L. P.
Gaspary, “A heuristic-based algorithm for privacy-oriented virtual net-
work embedding,” in IEEE/IFIP Network Operations and Management
Symposium (NOMS), Krakow, Poland, May 2014.

[13] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward predictable
performance in software packet-processing platforms,” in Proceedings
of the 9th USENIX Conference on Networked Systems Design and
Implementation, 2012.

[14] R. Albert and A.-L. Barabási, “Topology of evolving networks: Local
events and universality,” Physical Review Letters, vol. 85, pp. 5234 –
5237, Dec 2000.

[15] B.-Y. Choi, S. Moon, Z.-L. Zhang, K. Papagiannaki, and C. Diot,
“Analysis of point-to-point packet delay in an operational network,”
Computer Networks, vol. 51, pp. 3812–3827, 2007.

