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Abstract—IaaS clouds are becoming a standard way of
providing elastic compute capacity at an affordable cost. To
achieve that, VM provisioning system has to optimally allocate
I/O and compute resources. One of the significant optimization
opportunities is to leverage content similarity across VM images.
While many studies have been devoted to de-duplication of VM
images, this paper is to the best of our knowledge, the first one to
comprehensively study the relationship between the VM image
similarity structure and the runtime I/O access patterns. Our
study focuses on block-level similarity and I/O access patterns,
revealing correlations between common content of different im-
ages and application-level access semantics. Furthermore, it also
zooms on several runtime I/O access pattern aspects, such as the
similarity of the sequences in which common content is accessed.
The results show a strong tendency for access pattern locality
within common content clusters across VM images, regardless
of the rest of the composition. Furthermore, it reveals a strong
tendency for read accesses to refer to the same subsets of blocks
within the common content clusters, while preserving the same
ordering. These results provide important insights that can be
used to optimize on-demand VM image content delivery under
concurrency.

I. INTRODUCTION

One of the main features that has contributed to the grow-
ing popularity of Infrastructure clouds (Infrastructure-as-a-
Service, or IaaS clouds) is the elastic on-demand provisioning
of resources: users can bring up a whole virtual cluster made
out of virtual machine instances and reconfigure it dynamically
with a simple click of a button [32], [3]. However, behind
the simplicity exposed to the users lie difficult challenges. On
one hand, there is a need to minimize the provisioning time
and guarantee scalability despite a growing number of VMs,
otherwise users do not perceive IaaS as truly on-demand and
lose interest. At the same time, cloud providers need to store
and manipulate the VM images used to provision the VM
instances with minimal resource utilization (storage space, I/O
bandwidth), otherwise losing potential profit by not allocating
these resources to actual user workloads.

In this context, techniques to provision VM instances saw
two major developments. One way is to pre-copy the entire
image from the image repository to the local file system of
the target hypervisor before starting up a VM instance. Since
disk images can quickly grow in the order of tens of GBs,

a pre-broadcast can take in the order of tens of minutes or
even hours [35], not counting the time spent afterwards to
actually boot and run the VM instance. Most of the time, this
approach is sub-optimal because of two reasons: (1) not all
content of the image is read; and (2) reads from the image
need to wait for the whole pre-copy to finish. For this reason,
on-demand techniques were developed that bring the content
of the VM image as needed while the VM instance is running
(e.g., locally derived copy-on-write images – such as QCOW2
– that use a remotely stored VM image template as a read-only
backing file). However, despite fixing the issues of pre-copy,
on-demand techniques are not without drawbacks: reading
parts of the remote VM image is an expensive operation in
terms of latency and I/O bandwidth consumption. Even if the
performance overhead is not significant [5] for single instances,
at large scale where a large number of VM instances need to
share and access the remote VM images concurrently, there is
a high degree of I/O contention to the repository where the
images are stored.

Under such circumstances, the I/O bandwidth can be
quickly exhausted, which slows down not only the provisioning
of the VM instances itself, but all other I/O to the repository
as well (e.g. reads/writes of user datasets). This problem is
further exacerbated by the fact that VM image repositories
often apply redundancy elimination techniques based on de-
duplication to reduce the storage space and I/O bandwidth
necessary to transfer the VM image content to VM instances.
Several studies [13], [11] show a large degree of overlap of
content between VM images, which can go as high as 94%.
Thus, when storing only unique content on the repository,
contention to the same pieces of data will rise even further.

In an attempt to alleviate the I/O pressure on the repository,
peer-to-peer content delivery networks with the VM instances
have been proposed [25]. Such approaches enable hypervisors
to directly exchange the image content without involving the
repository. Also, data redundancy across images has been
exploited to optimize VM provisioning [16], which allows
to reuse locally present content from another image instead
of transferring it from the repository. In this context, the
aspect of adapting to the read access pattern is critical. It is
important to exchange only what data is needed and to do so
as early as possible in order to mask I/O latency. However,
despite extensive studies on how the content of VM images



overlaps and what de-duplication potential can be achieved,
there is little understanding in terms of how identical content
(potentially belonging to different VM instances) behaves in
relationship to the actual read access pattern issued by the VM
instances during runtime. Such understanding could provide
critical hints for the design of efficient on-demand provisioning
techniques based on content delivery networks by introducing
new optimization opportunities based on de-duplication. Thus,
it is important to reveal questions like: what pieces of unique
content are accessed in the first place? Which unique content
is accessed more frequently and can lead to contention? Are
there any orderings or temporal dependencies observable for
the unique pieces accessed by the VM instances even if the
original accesses refer to different images and different offsets?

This paper contributes with a comprehensive study that
aims to answer the questions mentioned above. To the best
of our knowledge, we are the first to explore such issues.
Specifically, the key contributions of this paper are:

• Analysis of the content overlap structure (by comput-
ing 512-byte block digests and identifying matching
blocks across VM images) for a set of representative
combinations of OS versions and applications. The
study covers several combinations of popular oper-
ating systems and middleware packages. The static
analysis is augmented by the characterization of I/O
access volumes to each of the content clusters during
a typical execution.

• Correlation of runtime I/O access patterns with con-
tent similarity clusters revealed during the similarity
analysis. In particular, we aim to understand: (1) what
blocks within a shared cluster are actually touched
during runtime; (2) whether these blocks remain the
same even when the images that share the cluster
are different; and (3) whether their offsets within the
images are the same.

• Analysis of temporal aspects exhibited by the runtime
I/O access patterns in relationship to content similarity.
In particular, we aim to understand whether different
pairs of VM instances (based on different images)
access identical blocks in a similar order. This aspect
is important in the design of on-demand run-time
optimization for the purpose of prioritizing prefetching
of blocks.

The remainder of this paper is organized as follows:
Section II discusses related work, Section III describes static
content overlap analysis. Section IV focuses on correlation of
runtime I/O access patterns with content similarity clusters,
analyzes I/O accesses within shared content clusters, and also
examines temporal access patterns. Finally, Sections V and VI
summarize our findings and outline future research directions.

II. RELATED WORK

On-demand instantiation of virtual machines based on
images stored at a remote repository was shown to incur
little runtime overhead [5] and is already an industry-standard
practice, thanks to image formats such as qcow2: the remote
image is used as a read-only template, while all modifications
are stored locally in a separate file. Using a centralized file

server as a repository is still a popular choice [28]. Decentral-
ized solutions see increasing adoption in form of parallel file
systems [29] or dedicated repositories [24].

Content similarity detection is typically performed by
means of de-duplication, which is broadly classified into static
and content-defined. Static approaches split the input data
into equally sized chunks, which are then compared among
each other (either byte-by-byte or, for increased performance,
based on their hash values) in order to identify and eliminate
duplicates. While simple and fast, static approaches suffer
from misalignment issues (i.e insertions or deletions lead to
the impossibility to detect duplicates). To deal with such
misalignment issues, content defined approaches [22] were
proposed. Essentially, they involve a sliding window over the
data and that hashes the window content at each step using
Rabin’s fingerprinting method [27]. Many storage systems
have adopted and refined de-duplication techniques [37], [8],
[9], [23].

Specifically in the context of IaaS clouds, de-duplication
techniques have proven effective at reducing the amount of
space and network bandwidth necessary to store and trans-
fer VM images. Several studies report significant reductions
that can reach up to 94% [13], [11]. This potential has
been exploited in dedicated VM image repositories such as
VMAR [30] in order to store VM images in a de-duplicated
fashion and redirect accesses for identical blocks to the same
location before going through the OS. Utilizing content sim-
ilarity in workloads from production storage systems is dis-
cussed in [17]. Several optimizations specifically targeting the
performance of reading de-duplicated data during on-demand
accesses have also been recently proposed [19]. Furthermore,
outside of storage, de-duplication has demonstrated important
benefits in the area of live migration [6], [2].

Analysis of I/O access patterns has been performed in a va-
riety of contexts and at various granularity. At block-level, sev-
eral studies [18], [34], [20] aim to discover disk I/O bottlenecks
and optimization opportunities related to caching, prefetching,
data layout and disk scheduling. At file-level, areas of interest
include: prefetching optimizations [36], placement strategies
to reduce energy consumption [10], inter-file access patterns
in the context of collective I/O [21], file-access patterns of
data-intensive workflow applications [31]. Furthermore, many
studies focus on analysis of distributed storage systems as a
whole: file popularity, temporal locality and arrival patterns for
HDFS [1], key-value stores [4], leadership class parallel file
systems [15].

This contribution focuses a particular aspect: understanding
correlations between the content similarity of VM images and
the I/O access patterns generated during the lifetime of VM
instances deployed from the VM images using on-demand
techniques. To our best knowledge, we are the first to explore
such correlations.

III. VM IMAGE COMPOSITION

The first step in our exploration is to understand how the
VM images used to launch VM instances overlap in terms of
content. To this end, we use a static de-duplication approach
that splits each image in fixed sized blocks of 512 bytes
(several studies [7], [14], [12], [26] of VM image similarity



Fig. 1. Illustration of content clusters for four VM images. Upper case letters
denote non-identical blocks. Identical blocks can appear more than once in
the same image and are differentiated by the use of subscript

have confirmed the effectiveness of fixed block de-duplication
in the context of VM images). Then, all blocks from all images
are compared with each other (based on SHA-1 digests) and
all duplicates are eliminated. The remaining unique blocks are
grouped together into clusters, with each cluster comprising
blocks that appear in a different subset of images and each
block is represented by its hash value.

We briefly detail the concept of clusters. For simplicity,
consider four partially overlapping images numbered Image-
0 through Image-3 composed out of blocks labeled by upper
case letters as shown in Fig. 1. Each upper-case letter denotes
a globally unique block with respect to content, i.e. the same
block that occurs in multiple VM images will carry the same
upper-case letter. Since the same block can occur multiple
times in the same image, each such multiple occurrence is
uniquely identified by the use of subscripts.

Each cluster comprises the maximal set of unique blocks
that occurs at the intersection of a given combination of
VM images without occurring in any other combination. It
is labeled with a four-bit signature: the least significant refers
to Image-0 while the most significant refers to Image-3. The
value of the bit indicates whether the image is considered in
the intersection or not.

There are four singleton clusters, each containing blocks
unique to their respective images: CL-0001 has block G present
only in Image-0, CL-0010 has blocks B and P present only in
Image-1, CL-0100 has block K present only in Image-2 and
finally CL-1000 has block N present only in Image-3. Block
G in singleton cluster CL-0001 occurs two times in Image-
0, as indicated by the use of subscript and represents internal
redundancy within the same image where a the same block
occurs at different offsets. The rest of the clusters are shared
between images. For example, cluster CL-0011 has blocks with
hash values E and F, both these blocks are shared by two
images Image-0 and Image-1. The block with the hash value
C is shared between E and F in Image 0. Also, Block C occurs
at three different locations in Image-0 while it occurs only once
in Image-1. Thus, blocks identified in the cluster may be non-
contiguous in any image and may occur a different number of
times in different images. Also, note that CL-1101 is empty,
i.e. there are no blocks in common between Image-0, Image-2

and Image-3.

In order to achieve this clustering, we start from an
initial cluster corresponding to the first VM image. Then, we
gradually form new clusters by adding new images one-by-one.
More specifically, when a new image is added, we compute
for each already existing cluster the intersection with the new
image to be added (in terms of unique SHA-1 fingerprints
corresponding to blocks). Next, the label of the cluster is
extended by one bit. If the intersection is empty, then the
cluster is unchanged except for the additional bit in the label,
which is set to 0. Otherwise, the cluster is split into two new
clusters: one corresponding to the intersection (additional bit
set to 1) and the other one corresponding to the content not
present in the new image (additional bit set to 0). If any
fingerprints are left over after checking against all existing
clusters, an additional cluster corresponding to the unique
content of the new image is created to hold them (additional
bit set to 1, the rest set to 0). We use several optimizations
to accelerate the cluster construction, including bloom filters
and multi-threaded parallelism. A more detailed description of
this process and its optimizations can be found in our previous
work [14].

Using this approach, we analyze several variations of VM
images that include two versions of the GNU/Linux operating
system (Fedora Core 19 and 20), IBM DB2 version 10, two
versions of Apache Tomcat application container (versions 7.0
and 8.0), as well as two versions of MySQL database engine
(versions 5.1 and 5.5). From the numerous variations and
combinations possible, these are relevant and representative
of frequent VM image content (i.e. OS, web, database stack
is very popular) and common access patterns (where an OS
always needs to boot and a database, if needed, always needs
to start). In practice, users upload a large number of VM
images and spawn multiple instances from them, yet there is
a limited number of popular choices for OS, DB engines, web
stacks, etc. that are typically used to “cook” VM images. This
introduces a high chance for similarity, which we argue offers
a large potential for runtime optimization.

Table I summarizes the observed overlap structure, where
only the non-empty clusters larger than 5 MB (a total of 24) are
included. Each row corresponds to a cluster and each column
corresponds to a VM image with a specific software stack.
The values are sizes of the content (in MB) contained within a
cluster. We drop the binary cluster naming convention we used
in Fig. 1 to identify the images present within the clusters. A
zero value in Table I implies that the cluster does not contain
content from the corresponding image. For example, cluster cl-
05 is common for all VM images in the study and corresponds
to the content present in both Fedora Core 19 and 20 (and
thus representative of any image based on these operating
systems). Cluster cl-11 contains content specific to MySQL
version 5.5 but shared across both Fedora Core (FC) 19 and 20.
On the contrary, cluster cl-10 contains content specific MySQL
version 5.5 on Fedora Core 19. A comparative illustration of
the similarity clusters grouped by the installed software stack
is depicted in Figure 2.

The analysis of the overlap structure leads to an important
observation that clusters formed by content analysis at block
device level (which does not have any semantic information
available at file system level within the VM guest) reflect very



TABLE I. CONTENT OVERLAP STRUCTURE ACROSS 12 VIRTUAL MACHINE IMAGES USED IN THE ANALYSIS. COLUMNS CORRESPOND TO SPECIFIC

SOFTWARE STACKS WHILE ROWS TO CLUSTERS SHARED ACROSS THE STACKS. SIZES IN MB.

Cluster Fedora Core 19 Fedora Core 20

OS DB2 MySQL Tomcat OS DB2 MySQL Tomcat

only 10 5.1 5.5 7.0 8.0 only 10 5.1 5.5 7.0 8.0

cl-01 0 21 0 0 0 0 0 0 0 0 0 0

cl-02 0 1952 0 0 0 0 0 1952 0 0 0 0

cl-03 27 27 0 0 27 27 0 0 0 0 0 0

cl-04 2483 2483 2483 2483 2483 2483 0 0 0 0 0 0

cl-05 825 825 825 825 825 825 825 825 825 825 825 825

cl-06 0 0 17 0 0 0 0 0 0 0 0 0

cl-07 0 0 298 0 0 0 0 0 298 0 0 0

cl-08 0 0 153 153 0 0 0 0 0 0 0 0

cl-09 0 0 78 78 0 0 0 0 78 78 0 0

cl-10 0 0 0 18 0 0 0 0 0 0 0 0

cl-11 0 0 0 415 0 0 0 0 0 415 0 0

cl-12 0 0 0 0 3 0 0 0 0 0 0 0

cl-13 0 0 0 0 8 0 0 0 0 0 8 0

cl-14 0 0 0 0 4 4 0 0 0 0 4 4

cl-15 0 0 0 0 0 5 0 0 0 0 0 0

cl-16 0 0 0 0 0 8 0 0 0 0 0 8

cl-17 0 0 0 0 0 0 0 153 0 0 0 0

cl-18 0 0 0 0 0 0 13 13 0 0 13 13

cl-19 0 0 0 0 0 0 2529 2529 2529 2529 2529 2529

cl-20 0 0 0 0 0 0 0 0 21 0 0 0

cl-21 0 0 0 0 0 0 0 0 153 153 0 0

cl-22 0 0 0 0 0 0 0 0 0 15 0 0

cl-23 0 0 0 0 0 0 0 0 0 0 4 0

cl-24 0 0 0 0 0 0 0 0 0 0 0 9

Total 3337 5311 3857 3975 3353 3354 3368 5474 3906 4018 3385 3390
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Fig. 2. Comparative illustration of the similarity clusters detailed in Table I grouped by installed software stack. Note the logscale on the Y axis.

well the application content installed within VM images. The
analysis allows to distill content fragments and relate it to
software packages. For example, for MySQL there are two
versions of software installed on two versions of the operating
system. Content related to these installations falls into four
categories. The first is content unique to 5.1 on FC 19 (17MB
in cluster cl-06), unique to 5.5 on FC 19 (18MB in cluster
cl-10, unique to 5.1 on FC 20 (21MB in cluster cl-20), unique
to 5.5 on FC 20 (18MB in cluster cl-22. Next category is
content shared between versions 5.1 and 5.5 within OS releases
(153MB in cl-08 and in cl-21 for FC 19 and 20, respectively)
and content shared both across the versions of MySQL and OS
(78MB in cl-09). Finally, there is content unique to specific
MySQL version, but common across operating system versions

(298MB in cl-07 for 5.1 and 415MB in cl-11 for 5.5). Similar
situation occurs for Tomcat 7.0 and 8.0 as well as DB2. It
shows that clustering links well to software installed within
the OS. Moreover, there is a substantial amount of content
shared across all VM images with the same OS (cluster cl-04
for Fedora Core 19 and cl-19 for Fedora Core 20) and also
across different OS releases (cl-05). The latter is due to the
code base that has not been updated between the releases.

Another interesting observation is the filesystem’s behavior
while installing MySQL packages. Observe that the cluster
cl-03 is shared among all images based on FC 19 except
for the ones with MySQL installed. That is due to the fact
that MySQL installation is done using yum package installer



which, in addition to installing MySQL rpms, also downloads
and upgrades several existing packages. As a result, it modifies
data (17MB in that case) which becomes shared by only
images with no MySQL.

IV. VM RUNTIME ACCESS PATTERNS

This section analyses the read access patterns generated
during the runtime of VM instances in the context of the image
content overlap structure described in Section III.

A. Experimental Configuration

In order to capture access patterns of the VM instances, we
implemented a FUSE-based [33] filesystem that traces all read
operations in terms of access time, the offset within the image
and the number of blocks requested. To avoid the complexity of
dealing with write operations and modifications to the image,
all VM instances use derived qcow2 copy-on-write images as
virtual disks, which in turn are based on the original images
that are stored in the FUSE filesystem in the raw format.

The experiments were conducted on physical servers leased
from SoftLayer [32] and involve booting a VM instance as
described above, then optionally launching a specific work-
load while capturing the read accesses. We use the various
configurations described in Section III as the base images.
With respect to the workloads, we have chosen three rep-
resentative use cases: (1) launching DB2, representative of
large applications that occupy a large amount of space and
exhibit a large initialization overhead; (2) launching Tomcat
and going through the typical deployment cycle of a servlet
(e.g., launch admin UI, browse documentation, issue requests,
etc.), which is representative of web service management;
(3) launching OS tools and utilities (e.g. grep, awk, find)
in various combinations, which is representative of scripting
workloads (e.g. log analysis). After obtaining the traces for
various combinations of images and workloads, we analyze
these traces both individually and in selected pairs in order to
identify correlations.

B. Runtime Read Rates

Virtual disk access patterns of VM instances are driven
primarily by the workload executing in the guest. Usually, a
relatively small set of applications from the installed content is
actually launched and executed. Similarly, even when an appli-
cation is launched, the read footprint may change significantly
based on invoked functionality.

When observing the evolution of the read throughput
during runtime, we see that on our test system it reaches up to
30MBps for well tuned VM instances. Figure 3 presents sam-
ple results for four scenarios. Figure 3a shows boot sequence
for Fedora Core 19. It lasts under 30 seconds and generates
between 2 and 30 MBps reads against the base disk (when
averaged over 1 second intervals). The launch of applications
is much shorter with the results for DB2 (Figure 3b) and
two versions of Tomcat (Figures 3c and 3d) indicating up
to 6 second bursts and a similar range for the throughput.
Figure 4a shows the read rate (averaged per second) during an
execution representative of scripting workloads and Figure 4b
shows activity for interaction with Tomcat 7.0 on FC 20,
representative of web service management. Workload specifics
are described in Section IV-A.
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Fig. 4. Read rates for activities post launch.

C. Semantic Locality to Cluster Boundaries

Next, we analyze the correlation between the read activities
and content sharing structure (clusters) identified in Section III.
We want to find out whether the activity for an application
results in reads to the cluster related only to this application
or also to other clusters. To do so, each 512-byte read operation
captured at runtime was matched with the cluster that it
belongs to.

Figure 5 presents results for launching Tomcat 7.0 on FC
19 and FC 20. Figures 5a and 5c depict fractions of clusters
that were read during the launch of Tomcat on FC 19 (a) and
FC 20 (b). Figures 5b and 5d present related volumes of
reads (in MB). The clusters accessed by starting Tomcat 7.0
are cl-4, cl-12 cl-13 and cl-14. Referring back to static overlap
structure shown in Table I we see that cl-12 contains content
unique to Tomcat 7.0 on FC 19, cl-13 contains content unique
to Tomcat 7.0 independent of OS version, and cl-14 contains
content shared between Tomcat 7.0 and 8.0 also independent
of OS version. Finally, cl-4 contains content common to FC
19 (OS blocks). Almost half of content in the shared cluster
cl-13 is used. Overall volumes of reads are relatively small
since the Tomcat installation footprint is small.

Similar situation can be observed in case of Tomcat 8.0
starting on FC 19 (Figure 6). There are two common Tomcat
clusters, cl-14 and cl-16, related to content common across
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both Tomcat versions and common to Tomcat 8.0, respectively.
Note that cl-14 was also used during launch of Tomcat 7.0
given it is shared between the two. Clusters cl-15 and cl-24 are
unique to Tomcat 8.0 on FC 19 and 20, respectively. Clusters
cl-4 and cl-19 are related to OS content for FC 19 and 20,
respectively.

Based on the two cases above, it is worth noting that the
accesses target both content specific to application being used
as well as additional content from OS that is loaded as a result
of usage of system libraries.

Next, let’s consider start of IBM DB2 version 10 on FC 19.
This scenario is depicted in Figure 7 that shows both fractions
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Fig. 8. Comparison of fraction of clusters read from base images during
launch and activities.

of clusters read in (a) and volumes read in (b). Only two
clusters are being used, cl-1 and cl-2, both directly related
to DB2. Note that cl-2 is shared across both FC 19 and FC
20. Also, only small fraction of DB2 content is used during
launch (just under 5%), however it results in more than 100MB
of reads.

Finally, let’s consider the effects of using an OS or ap-
plication in steady-state, i.e., using more OS programs or
application features. This situation for FC 20 and Tomcat 7.0
is depicted in Figure 8.

Figure 8a shows content read during OS boot itself
while 8b shows activity during launching OS tools and utilities
(as described in Section IV-A). First, all reads were issued to
the same clusters as during the boot, confirming semantic lo-
cality. Moreover, as expected, the fractions of clusters accessed
has increased significantly. For cl-19 (which contains majority
of FC 20 OS content) it more than doubled from 6.5% to 15%.
For cl-18 the increase was even larger from 2% to 15%. Both
clusters are shared across FC 20 instances (with exception of
MySQL that was explained in Section III). Similar situation is
observed for launching Tomcat and going through the typical
deployment cycle of a servlet (e.g., launch admin UI, browse
documentation, issue requests, etc.). Usage of shared clusters
cl-13 and cl-14 grew significantly. The usage in case of cl-13
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Fig. 9. Per-cluster fractional match across pairs of VM instances based on
different images.

rose from 47% to almost 90% and in case of cl-14 rose from
15% to 70%. Also usage of cluster unique to Tomcat 7.0 on
FC 20 (cl-23) rose from 6% to 10%.

D. Runtime Access Similarity

As shown in the previous section, the runtime read ac-
cesses are well localized within cluster boundaries that directly
correspond to the semantic composition of the images (i.e.
shared OS and application packages). However, one important
aspect that is not revealed by the previous study is whether the
accesses issued by different VM instances ultimately target the
same blocks within a common cluster. Furthermore, when the
instances are based on different images, the relative offsets of
identical blocks of a common cluster may be different. Thus,
it is important to understand not only how many common
blocks were accessed from the same cluster, but also to what
degree their offsets relative to the base image coincide, which
ultimately reveals how the ordering of clusters inside an image
reflects on the access pattern.

Figure 9 examines both aspects. Each plot corresponds
to one pair of runtime access traces for two VM instances
that are based on two different images that share common
clusters. Represented is the fraction of common blocks and
common offsets accessed by both instances during runtime,
broken down by cluster.

Figure 9a shows the results for launching DB2 on FC 19
FC 20 respectively. Cluster cl-2 captures most accesses (as
show in Figure 7b). Furthermore, Figure 9a shows that almost
100% of the content read from this cluster is actually common
between starting DB2 on FC 19 and 20. That confirms that in
case of DB2 the accesses are not only localized to clusters, but
also match the blocks almost exactly. Note, however, that most
offsets in the image are shifted (only under 5% match), which
stems from the fact that DB2 binaries ended up in different
sections of virtual disk even though they were content-wise the
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Fig. 10. Sequentiality match: fraction of common blocks accessed during
the runtime of two VM instances that share the same predecessor.

same. This can be explained by the fact that the file system
layout is affected by various factors, including previously
installed and removed content, filesystem type, block allocation
strategy, installed OS, etc.

Figure 9b shows comparison of launching Tomcat 7.0 and
8.0, both on FC 19. It shows that accesses on all three clusters
match in terms of which blocks within a cluster are read (i.e.,
more than 90% matches). However, the offsets of the accessed
blocks only matches for OS related clusters (cl-4 and cl-5
because both use the same base FC 19 OS image) and not
for the Tomcat shared content cluster, since it is in different
disk sections. Figures 9c and 9d show corresponding results
for Tomcat 7.0 and MySQL 5.1 started on both FC 19 and 20,
respectively. The shared clusters again match almost exactly
for content, but the offset does not. For Tomcat, the fraction of
common access between launching on FC 19 and 20 is only
70%, with the rest being unique to each launch. Similarly, the
number for MySQL 5.1 is 82%.

E. Runtime Access Order within Clusters

The last aspect we study in our work is the degree of
similarity between the access order of common blocks (as
identified in prior sections) for the VM instances that share
clusters. Such correlations are crucial in understanding how
the temporal locality of read accesses of a VM instance relate
to other instances.

In order to facilitate this understanding, we introduce a
metric we call sequentiality match. Specifically, given two read
traces of two VM instances TR-1 and TR-2 for a given cluster
cl, we examine all 512-byte blocks from cl that are read in
both TR-1 and TR-2 and keep only those blocks that share the
same predecessor in both traces. The sequentiality match itself
is the amount of the remaining blocks expressed as a fraction
of the total number of common blocks accessed during the
runtime.



Figure 10 shows the sequentiality match for several ex-
periments. Figure 10a examines the case of DB2 starting on
two different operating system versions. For cluster cl-2 that
contains DB2 specific content shared across OSes, the content
is accessed in almost identical order, with sequentiality match
measure at 98%. The second cluster has a lower but still
significant value of 78%. The conclusion is similar in case of
Tomcat on two OS versions, which is depicted in Figure 10b.
The clusters specific to Tomcat (cl-13 and cl-14) are accessed
in almost identical order (metric value of above 95%), and
the shared OS cluster cl-5 has a very high sequentiality
match that amounts to 78%. Figure 10c shows results for two
separate boots of the same FC 20 OS, which captures potential
variations during separate boots. A similar trend is observable
for the common cluster cl-5 in the case when FC 19 and FC
20 boot (Figure 10d), with the sequentiality match reaching
close to 80%.

V. SUMMARY OF THE KEY FINDINGS

In summary, we have confirmed that there is a significant
overlap across VM images due to commonality of OS and ap-
plication base. That leads to forming of an interesting sharing
structure, exemplified in Table I, which reflects potential for
runtime sharing. The fact that large fraction of content is shared
across images indicates significant optimization potential for
VM instance runtime.

Moreover, the study shows a very strong relation between
runtime read access patterns and the content commonality
structure based on clusters. More specifically, the blocks
accessed during the runtime of the VM instances for a given
workload tend to stay within the boundaries of those common
clusters that comprise the OS and application packages related
to the workloads. Also, when two VM instances access a
common block, the corresponding offsets in the base images
generally do not coincide, with exceptions observable only
in the case when the base images are both derived from a
common image, which tends to preserve the offsets in the
clustering itself. Furthermore, when two VM instances read
from the same cluster, they generally tend to access the same
blocks, with the proportion of common blocks read from the
same cluster varying between 70%-99%.

The amount of content actually accessed in each cluster
is workload specific: it relates to how much functionality
of a particular application or set of applications that fall
inside the same cluster is actually used. As expected, with
increased utilization of the same OS or application, more reads
are expected to the same clusters. At the same time, cross-
correlations between different clusters are observable as well:
reads of blocks from some clusters trigger reads of blocks in
other clusters, which can happen for example when certain
applications invoke system packages (e.g. a Java application
starts the Java Virtual Machine).

Finally, we observe that accesses tend to be sequenced in
the same order independent of the software stack combination,
with very high similarity of sequentiality observable (over
98%). Exceptions are mostly for OS content, where higher
levels of access parallelism (e.g. daemons and tools launched
in parallel) introduce more randomness. However, even for this
situation the ordering of accesses is still quite similar, reaching
80%.

VI. CONCLUSIONS AND FUTURE WORK

With a growing need to deploy more VM instances based
on increasingly larger virtual disk images, the problem of
efficient provisioning becomes a key challenge in the context
of IaaS clouds. Two important advances were made in this
regard. First, due to the high content similarity exhibited by
VM images, storage repositories have successfully employed
de-duplication techniques in order to reduce the space neces-
sary to store them. Second, based on the observation that VM
instances access only a small fraction of the virtual image con-
tent during runtime, on-demand provisioning techniques that
access the repository only when needed have seen increasingly
wider adoption compared with pre-copy techniques.

Despite important progress in both directions, most ad-
vances are targeting either one direction or another, with
little effort and understanding dedicated to the problem of
how to co-optimize de-duplication techniques and on-demand
provisioning techniques. As a first step in this direction, this
study has shown that there is a strong link between the on-
demand read access patterns issued by VM instances during
runtime and the block-level content similarity identified at
virtual disk level.

More specifically, most reads that involve a particular ap-
plication are concentrated inside the same block-level content
similarity clusters, regardless of the rest of the composition
of the virtual disk. This cluster locality extends throughout
the usage of the application, including launch and steady-state
use of various functionalities. Furthermore, the read accesses
refer to the same subsets of blocks within the clusters, while
preserving the same ordering. Again, these properties hold
regardless of the rest of the composition of the virtual disk
images, including various combinations of OS and software
stacks.

Based on these findings, we plan to explore in future
work how to design novel on-demand provisioning techniques
that leverage content and access pattern similarity in order to
reduce the performance overhead and network traffic involved
in the provisioning of a large number of VM instances at
scale under concurrency. We envision peer-to-peer content
delivery mechanisms that automatically adapt to the access
pattern and minimize any dependency on the storage repository
while emphasizing direct content exchange in a decentralized
and scalable fashion, effectively overcoming I/O bottlenecks
created by contention to the repository.
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