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Abstract— Analytics of network telemetry data helps address 
many important operational problems. Traditional Big Data 
approaches run into limitations even as they push scale 
boundaries for processing data further. One reason for this is the 
fact that in many cases, the bottleneck for analytics is not 
analytics processing itself but the generation and export of the 
data on which analytics depends. The amount of data that can be 
reasonably collected from the network runs into inherent 
limitations due to bandwidth and processing constraints in the 
network itself. In addition, management tasks related to 
determining and configuring which data to generate lead to 
significant deployment challenges.  

In order to address these issues, we propose a novel 
distributed solution to network analytics. Analytics processing is 
performed at the source of the data by specialized agents 
embedded within network devices, which also dynamically set up 
and reconfigure telemetry data sources as required by an 
analytics task. An SDN controller application orchestrates 
network analytics tasks across the network to allow users to 
interact with the network as a whole instead of individual devices 
one at a time. The solution has been implemented as a proof-of-
concept, called DNA (Distributed Network Analytics).1  

I. INTRODUCTION 

Networks offer rich sets of network telemetry data, such as 
flow records, interface statistics and MIB data, IPSLA 
performance measurements, or system event (syslog) records. 
Analyzing this data can yield important insights about a 
network, such as traffic patterns and how the the network is 
used, about network intrusions and attacks on the network or 
its users that may be in progress, about instabilities that may 
lead to degradations or fluctuations in service quality, about 
anomalies that may be indicative about impending failures, and 
much more. This means that analytics can help operators of 
networks and networking services solve many operational 
problems, and vice-versa, networks are an interesting 
application area for analytics.  

Traditional analytics involves hauling large amounts of data 
to a backend, where that data is subsequently processed and 
analyzed. In general, the larger the volume, the better, as more 
data may yield more insights than less data. Much of the 
research has therefore focused on making sure processing 
scales well and can keep up with this volume; important results 
with impressive scaling properties include Map Reduce 
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algorithms [1], Hadoop [2], Hive [3], and more. Applying 
analytics to the networking domain is especially challenging, 
as the amount of data to be analyzed grows with the number of 
nodes in the network, the number of connected endpoints, and 
the number of flows in and the amount of traffic in the 
network, all growing at much faster rates than Moore’s law.  

In addition to the ability to process the collected data, the 
effectiveness of analytics does depend on the availability of a 
large set of raw data in the first place. Generating network 
telemetry data is expensive and limited by resources in the 
network. For example, interface statistics provided by a 
Management Information Base (MIB) can perhaps be polled or 
read out from the device once a minute, but not every second, 
let alone millisecond, although such data would be interesting 
for analytics involving fast-changing statistics and health data. 
Similarly, network measurements using IPSLA [4] can only 
involve a limited number of probes and amount of test traffic at 
any one time. Syslog messages at very low severity levels (e.g. 
debug) are typically turned off in production networks. 
Netflow is rarely fully turned on but typically sampled. All 
these remedial measures are taken in order to conserve system 
resources at network devices as well as bandwidth resources 
needed to export that data, which can be a particularly critical 
consideration in deployment scenarios involving WAN links. 
While network devices are generally capable to deliver any 
conceivable piece of network telemetry data, they cannot 
deliver all at the same time. As a result, only a subset of all 
potential data is generated at any one point in time.  

This means that even when a network analytics application 
is able to ingest and process network telemetry data at very 
large scale using “Big Data” techniques, it is inherently limited 
by the fact that not all the data that might be useful for the 
analysis may be available. This is an important limitation that 
may not be evident at first. This issue is compounded by the 
inherent wastefulness of many Big Data applications, in which 
a lot of the generated data ends up being effectively thrown 
away, while in hindsight other data that might have been 
generated in its place would have been more valuable. In many 
cases, such as real-time network monitoring, users and 
applications are only interested in outliers and anomalies, to 
identify what is out of the ordinary and the hot spots in the 
network that warrant more detailed attention. In other cases, 
such as for real-time network reports, it are really only 
summarizations and aggregations of that data that are of 
interest (such as histograms and distributions over time), not 
individual data items themselves.  



 

Finally, there is an issue of very practical nature that is 
often considered a matter of mundane network administration 
and therefore ignored, although it turns out to be in practice a 
big hurdle to deployments of network analytics at scale. This 
concerns the fact that the network needs to be set up for export 
and collection of the data that is to be subjected to analytics. 
Not only do targets for exported data need to be configured, 
but also measurement probes set up and thresholds and 
sampling rates determined. Any solution ignoring those issues 
or leaving them as “exercise for the users” is fundamentally 
incomplete.  

The limitation of Big Data in the context of Network 
Analytics ultimately stems from the fact that it addresses only 
the processing of analytics data itself, not the entire analytics 
lifecycle as a whole. That lifecycle (depicted in Figure 1) also 
includes the generation, exporting, and collection of data, as 
well as potentially acting on it (such as dynamically 
reconfiguring which data to generate and collect). It can also 
include preprocessing data at the source, for example (in the 
case of SNMP) applying thresholds via RMON or defining 
custom events and performing simple computations through 
event and expression MIB. Of course, such capabilities need to 
be configured as well, not just on a device but across the entire 
network. It is this entire network analytics lifecycle that is 
addressed by Distributed Network Analytics (DNA).  

Figure 1: Typical analytics lifecycle 

Instead of relying on data to be first generated and collected 
from many locations to be made centrally available for 
processing, analytics are performed right at the source. 
Analytics of data that can be performed within the scope of an 
individual networking device is conducted by a DNA Agent, a 
software function embedded in the network device right where 
the data is generated. Also, data sources are set up and 
dynamically adjusted to generate exactly the data that is needed 
to support the analytics tasks that are to be performed. Instead 
of large volumes of raw data, devices export much smaller 
volumes of condensed information, or Smart Data. The 
capability to perform analytics tasks in distributed fashion 
across the network is complemented by the ability to 
administer and manage those tasks in centralized fashion, 
allowing users and applications to interact with the network in 
holistic fashion as opposed to one device at a time. This is 
accomplished using a DNA Controller, a Software Defined 
Networking (SDN) control application.  

By performing analytics in the network, not only is the 
amount of required off-box processing reduced. Given the 
effectiveness of Big Data technology, this constitutes only a 
side benefit and is not one of DNA's primary drivers. More 
importantly, the required on-box processing within the network 
can be reduced as well. This appears counter-intuitive at first, 
as clearly analytics processing at the source requires CPU and 
bandwidth. Processing power on network elements is 
particularly precious as it comes at a much higher premium 
than additional processing power in a data center. However, 
these additional cycles offset by the avoidance of cycles that 
would otherwise be required to generate, format, and transmit 
data that is now no longer required, and by the saved 
opportunity cost of potentially not getting the most useful data 
for the job.  

Some more advanced analytics, specifically cross-device 
analytics that correlates data across devices, as well as 
applications that mine historical logs, may still need to be 
performed off-box. Smart Data is not intended to replace Big 
Data, but to complement it smartly and allow it to operate on 
data that is richer, more impactful, and more efficiently 
obtained than data than would otherwise be at its disposal.  

The remainder of this paper is structured as follows: 
Section 2 presents some of the use cases to which DNA is 
applied. While DNA is a general-purpose framework and not 
limited to those specific scenarios, the use cases have been 
used to validate DNA's design and provide further insights into 
its design and associated problem statement. Section 3 provides 
an overview of the overall DNA architecture. It describes its 
main building blocks, the DNA Agent that resides inside the 
network elements and the DNA Controller which orchestrates 
the deployment and execution of analytics tasks across the 
network. The section includes a description of the Network 
Analytics Service that users and applications use to interact 
with DNA.  Section 4 discusses DNA's proof-of-concept 
implementation. (This is only a proof-of-concept and no 
inferences about Cisco product strategy or direction should be 
made.) Section 5 provides a performance analysis. Section 6 
discusses related work. Section 7, finally, concludes the paper 
and provides an outlook of future work.  

II. USE CASES 

The following are two examples of DNA applications that 
illustrate the types of problems that distributed network 
analytics can address. It should be noted that DNA is not 
restricted to those particular use cases.  

A. Where is my IP traffic 

Consider the scenario where a network administrator would 
like to know which network devices can see traffic with 
particular properties at this particular moment, for example, 
traffic from or to a specific IP address that is deemed 
suspicious. A naïve way of addressing this scenario would 
involve turning on Netflow across the network, collecting vast 
amount of flow records, then analyzing and filtering these at 
the backend to identify those devices that exported a flow 
record containing a field with the IP address in question. 
However, doing so results in an unacceptably high load on the 
network. One mitigation technique might involve reverting to 



 

sampled Netflow. However, in this case this is unacceptable, as 
small flows with that IP address might not be detected and 
hence some networking devices might be missed.  

Using DNA, an application can instead issue a single 
request to turn on Netflow across the network, or a specified 
portion of it, accompanied with a filter for the IP address in 
question. A targeted request, this can be limited to a very brief 
duration, with flow expiration timers set accordingly and 
subsequent automatic task cleanup without requiring further 
intervention on the side of the user. Only those devices at 
which corresponding flow records are observed report them to 
the user. Rather than having to sift through a vast number of 
records to find the needles in the haystack, the application can 
immediately focus on performing the next steps of the analysis. 

B. Network brownout 

Another scenario involves brownout scenarios that may 
build gradually over time without being noticeable by end 
users, only to result in sudden rapid deterioration of service 
levels. An indicator for such scenarios includes packet drop 
rates across interfaces. Other indicators include link utilization, 
distribution of traffic mixes (e.g. proportion of high priority 
application traffic), service levels such as jitter and round-trip 
delay to a given destination, or combinations thereof. Of 
interest here may not be so much the absolute rate, as in a 
practical setting it is often not possible to articulate a specific 
critical threshold. Instead, what is of interest is the trend of 
these rates over time, and whether the trend is sustained or may 
even be accelerating. Basically, an administrator will want to 
know what is changing, even if changes are subtle and build up 
slowly over time.  

Using DNA, an application can deploy a corresponding 
analytics query across the network. This query continuously 
computes the current packet drop rate (or other parameter of 
interest) from successive packet drop counter readings and 
feeds these readings into a trend analyzer that computes simple 
trend measures, such as the number n of periods that showed 
an increase over the previous period over a rolling time scale of 
the past m periods. The device reports query results, complete 
with the then-current interface statistics, once the trend exceeds 
a certain threshold, or once the trend exceeds (for example) the 
top percentile in historical durations for which such trends are 
sustained (which is also computed continuously), or if a trend-
of-trends is observed (feeding the output of the first trend 
measure into a second trend aggregator). 

III. DNA ARCHITECTURE 

A high-level overview of the DNA Architecture is depicted 
in Figure 2. The architecture consists of two components: 

 A DNA Controller, an SDN application that 
orchestrates network analytics tasks across the 
network, collates results reported from DNA Agents, 
and provides a single point of entry for users of the 
Network Analytics Service. 

 A DNA Agent, an embedded application running on 
each network element, configures underlying telemetry 
data sources as needed and performs analytics on the 
resulting telemetry data streams. 

A. DNA Controller  

The DNA Controller provides users and application with a 
Network Analytics Service. This service allows users to 
request the execution of Network Analytics Tasks. A Network 
Analytics Task includes the following aspects: 

 The analytics task to be performed across the 
network. This includes the definition of the source 
data that is required, and the aggregation and queries 
that are to be performed on that data.  

 The scope of the network where the analytics task is 
to be conducted. Some analytics tasks might involve 
the entire network, whereas others may be conducted 
only on parts of the network, for example a 
subdomain of the network or on devices playing a 
certain role in the network.  

 The schedule of the analytics task, specifically for 
ongoing tasks that are expected to push results 
whenever new analytics query matches are identified, 
not in one-time pulling of data.  

The DNA Controller encompasses several functions, as 
described in the following subsections. 

Figure 2: DNA high-level architecture 

1) Analytics Task Decomposition 

An Analytics Task Decomposer decomposes the task 
request that is received into a set of maplets that need to be 
deployed across DNA Agents in the network. A maplet 
specifies an analytics task to be performed by a DNA Agent on 
a device. It specifies required source data and, by extension, 
any needed configuration of data producers (determined and 
performed by logic on the DNA agent), as well as the analytics 
query and aggregation that is to be performed on the device.  

In many cases and in our initial implementation, the 
analytics task translates directly into a maplet, with the same 
maplet being deployed at each DNA agent. Going forward, it is 
conceivable that advanced tasks translate into a set of different 
maplets, differentiated by network device, taking additional 
context into account: for example, place in the network, 



 

capability of the network device, or topological relationships 
such as upstream or downstream on a given path.  

It should be noted that maplet differentiation is not intended 
to accommodate different device variations implementing 
certain data sources. DNA Agents are expected to implement a 
consistent interface and, when a data field is supported, adhere 
to a consistent format; it is up to the DNA Agent 
implementation to hide any device-specific variations and 
render the data as needed. 

2) Network Scope Resolution 

A Network Scope Resolver determines the DNA Agents at 
which to deploy the maplets. The Network Scope is specified 
by the initiator of the network analytics task; it can be 
considered a specific type of policy specifying the criteria that 
a network element must meet to participate in the analytics 
task. Simple examples of network scope include lists of 
devices by wild carded device names, by IP addresses, subnets, 
ranges, by device tag or property (e.g. device type), more 
complex scopes involve PINs (place in the network), device 
roles, and topological relationships (such as neighbors in a 
physical topology no more than two hops removed). The 
Network Scope Resolver operates on network inventory and 
topology data that is supplied by the underlying SDN controller 
infrastructure.  

3) Network Task Deployment and Monitoring 

Once the network scope is resolved, tasks are deployed 
across the network. In addition to the deployment itself, an 
important function of the DNA Controller is to monitor the 
status of the task and keeping a tab on the responses that are 
received. Deploying a maplet to a DNA Agent will result in an 
acknowledgment whether the task “took”. (This is separate 
from the actual reporting of analytics results.) In a large 
network, various error conditions are to be expected.  For 
example, not every DNA Agent may support the required 
capabilities and some DNA Agents may be overloaded or in a 
degraded state and therefore not able to perform the requested 
tasks. DNA does not pursue transactionality, meaning that 
there is no requirement for the same analytics task to either 
“take” at every DNA Agent or not at all. Instead, the DNA 
Controller keeps a tab on responses that are received and 
maintains an overall health status of the network analytics task 
as a whole. It is up to applications to decide when a network 
analytics task is so degraded that it should be terminated.  

4) Results Collection 

DNA Agents report results of analytics queries on a 
continuous basis. Whenever a match for a query is detected, or 
an aggregate of data becomes available, the DNA Agent will 
asynchronously push a result record that includes a reference to 
the task that the record belongs to.   

The DNA Controller collects and collates the results. At 
this point, results are simply passed on to the user. However, it 
is conceivable to perform cross-device analytics at the 
controller and aggregate results that are received from multiple 
DNA Agents further. For this purpose, DNA supports the 
concept of an optional reducelet, which can be included in the 
definition of advanced analytics tasks that consolidate multiple 
result streams.  

5) Other Considerations 

DNA Agents do not allow analytics tasks to run 
indefinitely. The DNA Controller may periodically “refresh” 
network analytics tasks if needed required, but unless they are 
extended, tasks will eventually automatically expire, resulting 
in cleanup of the task and emitting a corresponding notification 
to the controller. This facilitates “garbage collection” and 
avoids the situation in which orphaned analytics tasks consume 
processing resources in the network.  

It is conceivable that changes in the network, such as 
addition of new devices or changes in network topology, occur 
while network analytics tasks are running. In this case, it is 
conceivable to have the DNA controller assess whether to 
deploy a maplet to a new device (for example) whenever the 
controller detects a network change. In the case of our system, 
changes in the network are simply picked up when the next 
analytics task refresh occurs.  

Articulation of analytics queries involves a variation of 
SQL that can be used for continuous stream queries, performed 
over the stream of data produced by network telemetry data 
sources. In order to facilitate the composition of new queries, a 
concept of Analytics Task Templates is supported, containing 
pre-canned customizable analytics tasks, supplied for example 
by network administrators. An application or user can 
articulate an analytics task simply by referring to an existing 
template and populating its parameters. The DNA Controller 
then applies a predefined query mapping associated with the 
template for the analytics task at hand.  

B. DNA Agent 

The DNA Agent is an application that is embedded in a 
network device. It conducts the analytics tasks local to the 
device as specified by the maplets, analyzing streams of local 
telemetry data and pushing results back to the DNA Controller. 
It also configures the underlying telemetry data sources as 
needed, for example, setting up network measurements or 
configuring local statistics collection, to provide the raw data 
that is needed as a basis for that task. The DNA Agent 
encompasses several functions, as described in the following.  

1) Task Handling 

A Task Handler performs most of the DNA Agent's 
housekeeping and orchestration functions.  

When the DNA Agent receives a maplet from a DNA 
Controller, the Task Handler verifies that the DNA Agent has 
the needed capabilities and sufficient processing capacity so 
service the maplet. Subsequently, the data handlers are 
instructed to set up the data sources as needed and the query is 
passed to the processing engine.  

Maplets are not allowed to be in effect indefinitely but are 
associated with an expiration time. Upon expiration, cleanup 
operations are performed to remove queries and cease the 
generation of data that is no longer needed. While expiration of 
maplets can be periodically extended, this mechanism avoids 
situations in which "orphaned" analytics tasks run forever, i.e. 
tasks that end users have lost interest in but that continue to 
consume resources in the network.  



 

2) Data Handling 

Data handlers configure telemetry data sources inside the 
device in order to generate a stream of data that can be fed to 
the DNA Agent's query and aggregation engine. One example 
of such a data source is Netflow, which produces a stream of 
flow records. Another example: MIB objects, accessed in our 
case through DCM, a device feature that produces streams of 
MIB data, with MIB snapshots taken either periodically or 
under certain conditions [5]. A third example concerns 
measurements of service levels, as provided through IPSLA. In 
each case, data is not simply provided by default, but 
configuration is required so that data is generated. In some 
cases, this data generation can be resource intensive, which is 
why DNA’s ability to turn on that data generation only when it 
is needed is so important.  

Once the data source has been set up, telemetry data is 
pushed to the data handler, which massages it into a data 
stream that can be processed by the embedded analytics engine 
(next section). The data handler also provides harmonization of 
data if needed, performing an additional rendering step that 
transforms a local representation of data into a representation 
that a maplet refers to. As a convenience feature, named data 
items can be grouped into “capabilities”, collections of data 
items that are frequently used together for analytics purposes. 
DNA Agents advertise which capabilities they support, and 
controllers and templates can indicate which capabilities are 
required for specific analytics tasks. However, to avoid the 
need to define expansive sets of new data models for analytics 
purposes, analytics tasks can refer to data also in other ways, 
e.g. to MIB objects or Netflow Information Elements.  

As a general design principle, if data is natively represented 
in different ways by different devices, it is up to the DNA 
Agent to ensure the data is rendered in a way that can be 
consumed by the DNA Controller, instead of the DNA 
Controller needing to perform special treatment depending on 
the specific devices that host the DNA Agents. This is enabled 
by allowing analytics tasks to refer to source data as named 
data items, and have the data handler perform any rendering 
from a local to a common representation. This decision is 
designed to keep DNA nimble and avoid the situation in which 
the DNA Controller over time deteriorates into a "fat" 
management system that becomes costly and slow to maintain.  

3) Query and Aggregation Processing  

Analytics logic and query processing leverages a network-
embedded version of CQE [6], an advanced stream processing 
engine which is also used by off-box analytics applications. 
The data records from a data producer are framed as rows in a 
database table. Each data record produced constitutes a 
separate row in the table. Fields in the records are considered 
different table columns. Records from different data producers 
or different types of records by the same data producer are 
considered as separate conceptual tables.  

Processing includes the ability to aggregate raw data 
according to statistical baselining functions such as percentiles 
or top-n, histograms, to conduct basic trend analysis, to apply 
filters and comparators, and to, more generally, apply queries 
on telemetry data, both across windows in time ("continuous") 

and across individual data items. Aggregation tasks are 
expressed as CQE SQL queries that are applied against these 
tables. CQE does allow for continuous queries by associating 
records with a time window and continuously updating query 
results as new rows are added to the query (or old rows are 
"aged out"). As new query matches are found or updates to 
aggregates are computed, the corresponding results are pushed 
to the DNA Controller.  

C. Interfaces 

There are two sets of interfaces used by DNA: An interface 
provided by the DNA Controller to the user of the DNA 
service, and the interface provided by the DNA Agent that 
DNA Controller and DNA Agent use to communicate. 

We decided to use open data-model driven interface design 
both for the controller and for the agent. At its basis is a set of 
YANG modules [8] that have been defined to define the 
configuration of analytics tasks both at the network and at the 
device level. The configuration of a network analytics task 
includes: 

 A list of data items and a stream of corresponding data 
records, parametrizing items such as the frequency or 
policy with which records are being generated or the 
required accuracy of items if involving performance 
measurements. Data items themselves do not necessarily 
have to be YANG-defined; the model allows to also refer 
to MIB objects, flow records and their information 
elements, even named CLI show output fields.   

 An analytics query that operates on this data stream. A 
choice is given between specifying a continuous query 
that is directly processed by CQE, or referencing a 
template of a “precanned” query and providing a list of 
template parameter assignments. (The template is 
subsequently expanded by the controller into a 
corresponding CQE query.)  

 A network scope that defines a policy which network 
elements are subjected to the task.  

 A schedule, specifying start and end time or duration.  
 The preferred export format.  

The YANG module of the agent mirrors the model of the 
controller and uses many of the same groupings but does not 
include the network scope which is resolved by the controller. 
In each case, also monitoring support is provided that allows to 
retrieve the list of current tasks and their status.  

Results of the analytics task are exported from the DNA 
Agent to the DNA Controller using a choice of interfaces, 
including a JDBC-based interface that writes analytics results 
directly to the controller, IPFIX [13], in which case the 
configuration of the task includes a definition of the IPFIX 
template used to export analytics results, or syslog.   

IV. IMPLEMENTATION AND PROOF OF CONCEPT 

We have implemented a Proof of Concept of DNA, 
operating on a virtualized testbed of Cisco networking devices.  

The DNA Controller was implemented as an application on 
top of Open Daylight [7]. Our implementation took extensive 



 

advantage of the model-driven toolchains provided by Open 
Daylight. From the YANG data model, we generated a ReST-
like interface per the RESTconf spec [9]. This interface is used 
by external applications to interact with DNA. In addition, the 
DNA controller application relies on Open Daylight for 
inventory and topology information. At this point, automatic 
network discovery is not yet supported and needs to be 
administratively populated at the controller.  

Because it is readily supported by Open Daylight, Netconf 
[10] was chosen as communication mechanism between DNA 
Controller and DNA Agent to orchestrate the deployment of 
analytics tasks and monitor their status. The YANG model was 
subsequently used to generate the internal controller APIs used 
by the DNA Controller application to communicate with the 
DNA Agents. As mentioned, the analytics results themselves 
are exported using JDBC (default), or alternatively (in 
particular when an export destination other than the controller 
is chosen) IPFIX or syslog.  

 

Figure 3: Implementation GUI 

A GUI (depicted in Figure 3) has been implemented on top 
of the DNA Controller to allow network administrators to 
interact with the Network Analytics Service provided by DNA, 
and to visualize network analytics results. Analytics queries 
can be specified either by entering an analytics query directly, 
or by picking from a list of templates of “precanned” queries 
and customizing aspects such as which data items to apply the 
query to (e.g. link utilization? packet drop rates? round trip 
jitter to a server?), which aggregators to use (top-n? trending? 
percentiles?), and which thresholding, if any, to apply.  

The DNA Agent is implemented as a container-based 
application, running inside an LXC Linux container [11] 
hosted on the network element. Configuration of data 
producers within the network device is performed through 
onePK [12]. Our footprint currently stands at around 120MB. 
At this point, support for Netflow, SNMP MIBs, and IPSLA is 
provided. As mentioned earlier, exporting of results from the 
DNA Agent to the DNA Controller occurs through a JDBC-
based push protocol or IPFIX export.  

V. PERFORMANCE ANALYSIS 

In this section, a performance analysis is presented to 
illustrate the efficiency of the proposed Distributed Network 
Analytics framework in comparison to the traditional 
centralized analytics framework. It may be useful to illustrate 
those benefits for specific use cases such as Where is my IP 

and Network Brownouts. Two metrics are considered to 
compare the two approaches, the volume of data, and CPU 
overhead.  

A. Volume of data  

A well-known and most-often used solution for the Where 
is my IP usecase, is the traditional centralized analytics 
approach. Netflow needs to be configured on all routers in the 
network. From all routers in the network, Netflow records are 
then exported to a Netflow collector, where they are post-
processed and analyzed using  Big Data techniques.  

The cumulative effort can be estimated by the amount of 
data that needs to be generated, exported, and stored. To 
estimate the data volume, the parameters to consider are: the 
interface speed at the router, the number of active flows on the 
interface, and finally the Netflow packet sampling rate. Of 
course, the number of records exported depends on the number 
of flows, not the interface speed per se. It is conceivable that 
there can be a small number of elephant flows, or a large 
number of mice flows, or some mixture. In addition, it has 
been observed that the volume of flow records also depends on 
other factors such as flow expiration timers. However, in 
practice, a correlation between interface bandwidth and 
number of flows is often observed. A conservative rule of 
thumb [16] suggests that flow record volume amounts to 
roughly 2 % of the interface bandwidth. In general, the flow 
volume can be defined as a function of (# flow records, record 
size). The flow record size is a function of ( # of information 
elements in a record). Typically there are roughly 20 IEs with 4 
octets each = 80 octets/ record. The number of flow records in 
an hour can be estimated as (average interface utilization * 
interface speed over an hour) / (packetsize*packets per flow).  

Let us consider a 1 Gbps interface, link utilization of 40 %, 
typical for a traffic engineered network. Let us assume that the 
average flow size of 100 packets with each packet having 500 
bytes on average, i.e. 400 kb/flow. For a 1 Gbps interface with 
40 % utilization, the average traffic for the interface can be 400 
Mbps. At 400 kb/flow, this means roughly 1000 flow records 
per second on the interface. 1000 records/second * 3600 
seconds * 80 octets/ record = 288 MB of data to be exported 
from a single interface on a router in an hour. The total volume 
of data exported from all routers to the central collector is 
linear to the number of active flows and the number of nodes. 
The amount of processing to search for particular records 
meeting a specific match criteria is proportional to the amount 
of data stored, as each record needs to be inspected.  

In contrast, with DNA, Netflow data generation at the 
network device is configured only for the duration of the task 
and stopped upon completion of the analytic task. Netflow 
metering remains the same during the duration of the analytic 
task, however, flow data is merely passed to the DNA Agent 
contained in the same router, i.e. from one software process to 
another. A result record is exported whenever there is a match 
for the filter condition for the expired flows in the Netflow 
cache; only a small fraction of flow records will match that 
critera.  If a short flow expiration timer of 5 seconds is 
configured for Netflow, then in the worst-case scenario of one 
match each window, 12 results per minute are exported. 
Assuming an export record size of 80 octets, that amounts to  



 

960 bytes per minute or less than 60 KB per hour per interface, 
in contrast to 288 MB.  If the task is not run continuously or 
the worst-case scenario does not apply, the volume of results 
data is reduced even further.  

While the analysis presented is based on the average flow 
size distribution and deterministic values for some parameters 
such as flow-expiration timers, and such factors can vary 
greatly in practice, the takeaway is that the amount of data to 
be exported is reduced by several (3-5) orders of magnitude.  
Further reductions occur if tasks are not run continuously but 
are applied only “on demand” for short durations.  

Similar conclusions can be derived for the Network 
Brownout use case. As explained earlier, it is preferable to 
identify trends of link utilization, packet drop rates, and end-to-
end delay before actual network congestion occurs. A key data 
source for this class of use cases are MIB objects, e.g. from the 
IF-MIB. End-to-end measurements further involve IPSLA. 
With the centralized analytics approach, MIB objects are 
periodically and repeatedly polled. Continuous SNMP polling 
causes excessive CPU on the router, limiting the granularity at 
which measurements that can be achieved. An SNMP PDU to 
poll five MIB objects, including varbinds and headers, but not 
including IP and UDP overhead, can be estimated to require 
roughly 120 octets per request and response. Assuming just 20 
interfaces to poll once a minute results in 4800 octets of SNMP 
traffic per minute, or 288 Kbytes / hour.  

With a DNA approach, results are exported only when a 
match for the trend (as defined by the user) is detected.  This 
may occur perhaps only once per 1000 or 10000 polling cycles, 
correspondingly reducing the amount of data to be exported by 
several orders of magnitude. (Potentially exported data is 
reduced even further if only a summary of the trend is reported, 
not all objects that were used to derive at that conclusion.)   

B. CPU 

In terms of CPU, there are three contributing components: 
the CPU of the Netflow metering process, the CPU of the 
Netflow export process, and the CPU for the DNA analytics.  

We have performed some initial measurements whose 
results are depicted in Figure 4. We ran two series of 
experiments. In one case, we deployed a single query. In the 
other case, we deployed five separate queries, all operating on 
the same data set. We then varied the number of flows, 
resulting in a different number of flow records being generated. 
What we found was that an increase in the number of flows to 
be processed, not surprisingly, resulted in a linear increase in 
CPU consumption. However, we found that the increase in the 
number of queries resulted only in a slight increase of CPU.  

We conclude that the analytics processing performed on the 
device is dominated by the number of records being generated; 
the analytics tasks themselves result in only negligible 
additional load, further offset by the savings in CPU needed for 
the export process which was not considered here.  

Not considered in our analysis is the fact that the total time 
to obtain the result of the analytic task is also greatly reduced. 
The latency to copy the Netflow data to the container is much 
smaller than exporting a record to a collector and the result 

data to be exported to northbound application is much smaller, 
thus the latency for export is also reduced. As a net result of the 
above-mentioned factors, it is possible to obtain an almost near 
real-time view of the transient data from the network.  
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Figure 4: CPU vs. volume of data vs. number of tasks 

VI. RELATED WORK 

Historically, analytics technology was consumed in the 
form of OLAP (Online Analytics Processing) systems. These 
Decision Support Systems (DSS) included massively parallel 
(MPP) relational databases as well as multi-dimensional cube-
based databases – both primarily motivated by Business 
Intelligence use cases. The techniques for parallel query 
execution in shared-nothing MPP systems are well-understood 
and described in early papers about Gamma [20], Bubba [22], 
Volcano [21] etc. Subsequently, these features became 
standard in most commercial relational systems and were 
extremely successful in driving the database industry forward. 
For all practical purposes, however, these ideas were only 
available to users of these systems.  

Once the Internet took off, there was a pressing need for the 
underlying MPP data processing techniques to be exposed to 
non-relational and non-SQL developers. Furthermore, the sheer 
scale of data to be processed exceeded the limits of what could 
be achieved with traditional MPP systems. These requirements 
were felt urgently at Google leading to the implementation of 
highly-scalable data infrastructure such as GFS [28] and 
MapReduce [1] and their open source equivalents (Hadoop [2] 
and HDFS). Unlike the BI use cases that were the motivation 
of the previous generation analytics systems, these Internet-
scale systems were typically used to solve large and complex 
data problems dealing with massive graphs, clickstreams etc in 
a batch processing fashion. The initial programming model for 
these systems was the MapReduce (MR) framework. Over 
time, however, the value of more declarative approaches 
became evident, leading to various SQL and non-SQL 
alternatives, each generating MR jobs. These alternatives 
include Hive [18], [3], Pig [19] , Spark [24], Shark [27] etc.  

While newer analytics systems were much more scalable 
than older systems and generally better at interactive queries, 
they were still primarily used at batch-mode analysis. Such 
systems were great at crunching massive data sets but not ideal 
to satisfy the low-latency requirements of operational analytics 
systems that operated over high velocity streams of log data. 
Some examples of streaming database systems include early 



 

research projects like TelegraphCQ [29], STREAM [17] etc. as 
well as commercial systems like Truviso [25], StreamBase etc.  

While the batch processing and streaming systems evolved 
separately, the batch systems are offering more real-time 
functionality by (a) being more interactive for traditional 
queries, and (b) attacking the streaming space by pursuing a 
micro-batch approach. Examples of the former include systems 
like Impala and Presto that have built traditional SQL 
execution engines on top of data from HDFS as well as the 
more interesting Spark system which was built around the idea 
of a distributed memory abstraction called “Resilient 
Distributed Datasets” (RDD). RDDs essentially cache 
intermediate state produced by MPP-style computation in 
memory while still providing fault-tolerance and thereby 
enable highly interactive and iterative applications. This RDD 
abstraction also enabled the development of Spark Streaming 
[23, 24] that uses the notion of a “discretized stream” that can 
provide strong consistency and fault recovery while still 
enabling certain kinds of streaming queries.  

DNA explores a very different space of the analytics 
landscape by focusing on the following key aspects, none of 
which is covered by the classic systems and earlier research 
described above: 

1. Focusing on network telemetry data - While other 
systems certainly build data integration software to ingest 
incoming data, they tend to ignore the very real 
challenges of extracting data from network elements, 
which can shift bottlenecks from analytics processing 
itself to the generation of raw data. Networks can produce 
an enormous volume of data. However, indiscriminate 
turning on of all probes is not feasible. Approaches are 
needed that set up sources in a targeted fashion as 
required by the actual tasks.  

2. Dynamic configuration and adaptation of data sources 
as integral part of analytics setup - Traditional systems 
make an inherent assumption that data streams are a given 
and come “for free”, and that any associated system 
administration tasks can easily be delegated, focusing 
solely on query processing instead. Our approach is 
unique in that it integrates turning up, configuring, and 
adapting data sources as needed to support queries.  

3. Operating over a wide-area network - Data systems 
tend to ignore the costs associated with moving data 
across a WAN environment. Some earlier work on 
federated databases, such as the Mariposa [29] and Garlic 
[30] systems, did consider network costs in distributed 
query optimization but not in a streaming fashion that is 
critical for operational analytics.  

4. Pushing processing into network elements - Network 
elements like switches and routers now have the hardware 
capacity to sustain data processing at the edge as well as 
improved software architecture that can enable integrating 
application software (such as a continuous query 
processor) using container isolation. This new capability 
allows us to exploit the network element in pre-
processing data extracted by the probe and dramatically 
lowering the impact on expensive transit links for the 

Wide Area Network, which were developed and 
maintained at considerable expense in order to sustain 
user and not analytics traffic.  

5. Controlling and programming tasks at a network level 
using SDN (Software-Defined Networking) - Finally a big 
value of the DNA system consists of providing a higher 
order analytics service that is able to operate on the 
network as a whole instead of individual devices. The key 
advances in SDN has enabled software controllers that in 
turn enable network-wide programmability of an 
“analytics plane” that governs data probes and processing 
at network elements just like the “control plane” that 
governs data communication. 

In the network management space, there is a tradition of 
research dealing with delegating simple tasks into the network 
and distributing corresponding processing. An overview and 
collection of important work is given in [14]. In the analytics 
space, one important effort is SCRIPT, a system for 
decentralized IP flow collection and analysis [15]. It exploits 
understanding of flow semantics to provide analytics that 
correlate records about the same flows observed on different 
routers, without limiting itself to records observed on a single 
node. It does so using a peer-to-peer overlay that is established 
between different routers and managed by a central controller, 
whereas in DNA’s case nodes do not need to be aware of one 
another and only communicate with a controller. SCRIPT is 
focused specifically on flow analysis and as such processes 
only flow records.  It does not incorporate other telemetry data 
sources, such as active measurements or interface statistics.  

VII. CONCLUSION 

DNA demonstrates how SDN Controllers and 
programmable, intelligent features embedded inside the 
network can complement each other to collectively provide 
significant value to users that could not be provided by either 
alone. By delegating analytics processing to network devices, 
DNA not only allows back-end applications to scale better, but 
to provide analytics in better quality than would otherwise be 
possible. Perhaps more important than distributing analytics 
processing itself is the fact that DNA is also able to 
dynamically set up and adjust network telemetry data sources 
and queries as required by the analytics task, shielding users 
from secondary management aspects such as how to set up 
those sources and managing the deployment of corresponding 
tasks across the network. We have found that  the amount of 
networking resources consumed by analytics is dominated by 
the number of generated telemetry data records, while analytics 
processing itself is fairly negligible, which makes embedding 
analytics inside network devices even more feasible.  
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