

DNA: An SDN Framework for
Distributed Network Analytics

Alexander Clemm, Mouli Chandramouli, Sailesh Krishnamurthy1
Cisco Systems, Inc.

San Jose, California and Bangalore, India
{alex|moulchan}@cisco.com, sailesh@gmail.com

Abstract— Analytics of network telemetry data helps address
many important operational problems. Traditional Big Data
approaches run into limitations even as they push scale
boundaries for processing data further. One reason for this is the
fact that in many cases, the bottleneck for analytics is not
analytics processing itself but the generation and export of the
data on which analytics depends. The amount of data that can be
reasonably collected from the network runs into inherent
limitations due to bandwidth and processing constraints in the
network itself. In addition, management tasks related to
determining and configuring which data to generate lead to
significant deployment challenges.

In order to address these issues, we propose a novel
distributed solution to network analytics. Analytics processing is
performed at the source of the data by specialized agents
embedded within network devices, which also dynamically set up
and reconfigure telemetry data sources as required by an
analytics task. An SDN controller application orchestrates
network analytics tasks across the network to allow users to
interact with the network as a whole instead of individual devices
one at a time. The solution has been implemented as a proof-of-
concept, called DNA (Distributed Network Analytics).1

I. INTRODUCTION

Networks offer rich sets of network telemetry data, such as
flow records, interface statistics and MIB data, IPSLA
performance measurements, or system event (syslog) records.
Analyzing this data can yield important insights about a
network, such as traffic patterns and how the the network is
used, about network intrusions and attacks on the network or
its users that may be in progress, about instabilities that may
lead to degradations or fluctuations in service quality, about
anomalies that may be indicative about impending failures, and
much more. This means that analytics can help operators of
networks and networking services solve many operational
problems, and vice-versa, networks are an interesting
application area for analytics.

Traditional analytics involves hauling large amounts of data
to a backend, where that data is subsequently processed and
analyzed. In general, the larger the volume, the better, as more
data may yield more insights than less data. Much of the
research has therefore focused on making sure processing
scales well and can keep up with this volume; important results
with impressive scaling properties include Map Reduce

1 Sailesh Krishnamurthy has left Cisco and is now at Amazon

algorithms [1], Hadoop [2], Hive [3], and more. Applying
analytics to the networking domain is especially challenging,
as the amount of data to be analyzed grows with the number of
nodes in the network, the number of connected endpoints, and
the number of flows in and the amount of traffic in the
network, all growing at much faster rates than Moore’s law.

In addition to the ability to process the collected data, the
effectiveness of analytics does depend on the availability of a
large set of raw data in the first place. Generating network
telemetry data is expensive and limited by resources in the
network. For example, interface statistics provided by a
Management Information Base (MIB) can perhaps be polled or
read out from the device once a minute, but not every second,
let alone millisecond, although such data would be interesting
for analytics involving fast-changing statistics and health data.
Similarly, network measurements using IPSLA [4] can only
involve a limited number of probes and amount of test traffic at
any one time. Syslog messages at very low severity levels (e.g.
debug) are typically turned off in production networks.
Netflow is rarely fully turned on but typically sampled. All
these remedial measures are taken in order to conserve system
resources at network devices as well as bandwidth resources
needed to export that data, which can be a particularly critical
consideration in deployment scenarios involving WAN links.
While network devices are generally capable to deliver any
conceivable piece of network telemetry data, they cannot
deliver all at the same time. As a result, only a subset of all
potential data is generated at any one point in time.

This means that even when a network analytics application
is able to ingest and process network telemetry data at very
large scale using “Big Data” techniques, it is inherently limited
by the fact that not all the data that might be useful for the
analysis may be available. This is an important limitation that
may not be evident at first. This issue is compounded by the
inherent wastefulness of many Big Data applications, in which
a lot of the generated data ends up being effectively thrown
away, while in hindsight other data that might have been
generated in its place would have been more valuable. In many
cases, such as real-time network monitoring, users and
applications are only interested in outliers and anomalies, to
identify what is out of the ordinary and the hot spots in the
network that warrant more detailed attention. In other cases,
such as for real-time network reports, it are really only
summarizations and aggregations of that data that are of
interest (such as histograms and distributions over time), not
individual data items themselves.

Finally, there is an issue of very practical nature that is
often considered a matter of mundane network administration
and therefore ignored, although it turns out to be in practice a
big hurdle to deployments of network analytics at scale. This
concerns the fact that the network needs to be set up for export
and collection of the data that is to be subjected to analytics.
Not only do targets for exported data need to be configured,
but also measurement probes set up and thresholds and
sampling rates determined. Any solution ignoring those issues
or leaving them as “exercise for the users” is fundamentally
incomplete.

The limitation of Big Data in the context of Network
Analytics ultimately stems from the fact that it addresses only
the processing of analytics data itself, not the entire analytics
lifecycle as a whole. That lifecycle (depicted in Figure 1) also
includes the generation, exporting, and collection of data, as
well as potentially acting on it (such as dynamically
reconfiguring which data to generate and collect). It can also
include preprocessing data at the source, for example (in the
case of SNMP) applying thresholds via RMON or defining
custom events and performing simple computations through
event and expression MIB. Of course, such capabilities need to
be configured as well, not just on a device but across the entire
network. It is this entire network analytics lifecycle that is
addressed by Distributed Network Analytics (DNA).

Figure 1: Typical analytics lifecycle

Instead of relying on data to be first generated and collected
from many locations to be made centrally available for
processing, analytics are performed right at the source.
Analytics of data that can be performed within the scope of an
individual networking device is conducted by a DNA Agent, a
software function embedded in the network device right where
the data is generated. Also, data sources are set up and
dynamically adjusted to generate exactly the data that is needed
to support the analytics tasks that are to be performed. Instead
of large volumes of raw data, devices export much smaller
volumes of condensed information, or Smart Data. The
capability to perform analytics tasks in distributed fashion
across the network is complemented by the ability to
administer and manage those tasks in centralized fashion,
allowing users and applications to interact with the network in
holistic fashion as opposed to one device at a time. This is
accomplished using a DNA Controller, a Software Defined
Networking (SDN) control application.

By performing analytics in the network, not only is the
amount of required off-box processing reduced. Given the
effectiveness of Big Data technology, this constitutes only a
side benefit and is not one of DNA's primary drivers. More
importantly, the required on-box processing within the network
can be reduced as well. This appears counter-intuitive at first,
as clearly analytics processing at the source requires CPU and
bandwidth. Processing power on network elements is
particularly precious as it comes at a much higher premium
than additional processing power in a data center. However,
these additional cycles offset by the avoidance of cycles that
would otherwise be required to generate, format, and transmit
data that is now no longer required, and by the saved
opportunity cost of potentially not getting the most useful data
for the job.

Some more advanced analytics, specifically cross-device
analytics that correlates data across devices, as well as
applications that mine historical logs, may still need to be
performed off-box. Smart Data is not intended to replace Big
Data, but to complement it smartly and allow it to operate on
data that is richer, more impactful, and more efficiently
obtained than data than would otherwise be at its disposal.

The remainder of this paper is structured as follows:
Section 2 presents some of the use cases to which DNA is
applied. While DNA is a general-purpose framework and not
limited to those specific scenarios, the use cases have been
used to validate DNA's design and provide further insights into
its design and associated problem statement. Section 3 provides
an overview of the overall DNA architecture. It describes its
main building blocks, the DNA Agent that resides inside the
network elements and the DNA Controller which orchestrates
the deployment and execution of analytics tasks across the
network. The section includes a description of the Network
Analytics Service that users and applications use to interact
with DNA. Section 4 discusses DNA's proof-of-concept
implementation. (This is only a proof-of-concept and no
inferences about Cisco product strategy or direction should be
made.) Section 5 provides a performance analysis. Section 6
discusses related work. Section 7, finally, concludes the paper
and provides an outlook of future work.

II. USE CASES

The following are two examples of DNA applications that
illustrate the types of problems that distributed network
analytics can address. It should be noted that DNA is not
restricted to those particular use cases.

A. Where is my IP traffic

Consider the scenario where a network administrator would
like to know which network devices can see traffic with
particular properties at this particular moment, for example,
traffic from or to a specific IP address that is deemed
suspicious. A naïve way of addressing this scenario would
involve turning on Netflow across the network, collecting vast
amount of flow records, then analyzing and filtering these at
the backend to identify those devices that exported a flow
record containing a field with the IP address in question.
However, doing so results in an unacceptably high load on the
network. One mitigation technique might involve reverting to

sampled Netflow. However, in this case this is unacceptable, as
small flows with that IP address might not be detected and
hence some networking devices might be missed.

Using DNA, an application can instead issue a single
request to turn on Netflow across the network, or a specified
portion of it, accompanied with a filter for the IP address in
question. A targeted request, this can be limited to a very brief
duration, with flow expiration timers set accordingly and
subsequent automatic task cleanup without requiring further
intervention on the side of the user. Only those devices at
which corresponding flow records are observed report them to
the user. Rather than having to sift through a vast number of
records to find the needles in the haystack, the application can
immediately focus on performing the next steps of the analysis.

B. Network brownout

Another scenario involves brownout scenarios that may
build gradually over time without being noticeable by end
users, only to result in sudden rapid deterioration of service
levels. An indicator for such scenarios includes packet drop
rates across interfaces. Other indicators include link utilization,
distribution of traffic mixes (e.g. proportion of high priority
application traffic), service levels such as jitter and round-trip
delay to a given destination, or combinations thereof. Of
interest here may not be so much the absolute rate, as in a
practical setting it is often not possible to articulate a specific
critical threshold. Instead, what is of interest is the trend of
these rates over time, and whether the trend is sustained or may
even be accelerating. Basically, an administrator will want to
know what is changing, even if changes are subtle and build up
slowly over time.

Using DNA, an application can deploy a corresponding
analytics query across the network. This query continuously
computes the current packet drop rate (or other parameter of
interest) from successive packet drop counter readings and
feeds these readings into a trend analyzer that computes simple
trend measures, such as the number n of periods that showed
an increase over the previous period over a rolling time scale of
the past m periods. The device reports query results, complete
with the then-current interface statistics, once the trend exceeds
a certain threshold, or once the trend exceeds (for example) the
top percentile in historical durations for which such trends are
sustained (which is also computed continuously), or if a trend-
of-trends is observed (feeding the output of the first trend
measure into a second trend aggregator).

III. DNA ARCHITECTURE

A high-level overview of the DNA Architecture is depicted
in Figure 2. The architecture consists of two components:

 A DNA Controller, an SDN application that
orchestrates network analytics tasks across the
network, collates results reported from DNA Agents,
and provides a single point of entry for users of the
Network Analytics Service.

 A DNA Agent, an embedded application running on
each network element, configures underlying telemetry
data sources as needed and performs analytics on the
resulting telemetry data streams.

A. DNA Controller

The DNA Controller provides users and application with a
Network Analytics Service. This service allows users to
request the execution of Network Analytics Tasks. A Network
Analytics Task includes the following aspects:

 The analytics task to be performed across the
network. This includes the definition of the source
data that is required, and the aggregation and queries
that are to be performed on that data.

 The scope of the network where the analytics task is
to be conducted. Some analytics tasks might involve
the entire network, whereas others may be conducted
only on parts of the network, for example a
subdomain of the network or on devices playing a
certain role in the network.

 The schedule of the analytics task, specifically for
ongoing tasks that are expected to push results
whenever new analytics query matches are identified,
not in one-time pulling of data.

The DNA Controller encompasses several functions, as
described in the following subsections.

Figure 2: DNA high-level architecture

1) Analytics Task Decomposition

An Analytics Task Decomposer decomposes the task
request that is received into a set of maplets that need to be
deployed across DNA Agents in the network. A maplet
specifies an analytics task to be performed by a DNA Agent on
a device. It specifies required source data and, by extension,
any needed configuration of data producers (determined and
performed by logic on the DNA agent), as well as the analytics
query and aggregation that is to be performed on the device.

In many cases and in our initial implementation, the
analytics task translates directly into a maplet, with the same
maplet being deployed at each DNA agent. Going forward, it is
conceivable that advanced tasks translate into a set of different
maplets, differentiated by network device, taking additional
context into account: for example, place in the network,

capability of the network device, or topological relationships
such as upstream or downstream on a given path.

It should be noted that maplet differentiation is not intended
to accommodate different device variations implementing
certain data sources. DNA Agents are expected to implement a
consistent interface and, when a data field is supported, adhere
to a consistent format; it is up to the DNA Agent
implementation to hide any device-specific variations and
render the data as needed.

2) Network Scope Resolution

A Network Scope Resolver determines the DNA Agents at
which to deploy the maplets. The Network Scope is specified
by the initiator of the network analytics task; it can be
considered a specific type of policy specifying the criteria that
a network element must meet to participate in the analytics
task. Simple examples of network scope include lists of
devices by wild carded device names, by IP addresses, subnets,
ranges, by device tag or property (e.g. device type), more
complex scopes involve PINs (place in the network), device
roles, and topological relationships (such as neighbors in a
physical topology no more than two hops removed). The
Network Scope Resolver operates on network inventory and
topology data that is supplied by the underlying SDN controller
infrastructure.

3) Network Task Deployment and Monitoring

Once the network scope is resolved, tasks are deployed
across the network. In addition to the deployment itself, an
important function of the DNA Controller is to monitor the
status of the task and keeping a tab on the responses that are
received. Deploying a maplet to a DNA Agent will result in an
acknowledgment whether the task “took”. (This is separate
from the actual reporting of analytics results.) In a large
network, various error conditions are to be expected. For
example, not every DNA Agent may support the required
capabilities and some DNA Agents may be overloaded or in a
degraded state and therefore not able to perform the requested
tasks. DNA does not pursue transactionality, meaning that
there is no requirement for the same analytics task to either
“take” at every DNA Agent or not at all. Instead, the DNA
Controller keeps a tab on responses that are received and
maintains an overall health status of the network analytics task
as a whole. It is up to applications to decide when a network
analytics task is so degraded that it should be terminated.

4) Results Collection

DNA Agents report results of analytics queries on a
continuous basis. Whenever a match for a query is detected, or
an aggregate of data becomes available, the DNA Agent will
asynchronously push a result record that includes a reference to
the task that the record belongs to.

The DNA Controller collects and collates the results. At
this point, results are simply passed on to the user. However, it
is conceivable to perform cross-device analytics at the
controller and aggregate results that are received from multiple
DNA Agents further. For this purpose, DNA supports the
concept of an optional reducelet, which can be included in the
definition of advanced analytics tasks that consolidate multiple
result streams.

5) Other Considerations

DNA Agents do not allow analytics tasks to run
indefinitely. The DNA Controller may periodically “refresh”
network analytics tasks if needed required, but unless they are
extended, tasks will eventually automatically expire, resulting
in cleanup of the task and emitting a corresponding notification
to the controller. This facilitates “garbage collection” and
avoids the situation in which orphaned analytics tasks consume
processing resources in the network.

It is conceivable that changes in the network, such as
addition of new devices or changes in network topology, occur
while network analytics tasks are running. In this case, it is
conceivable to have the DNA controller assess whether to
deploy a maplet to a new device (for example) whenever the
controller detects a network change. In the case of our system,
changes in the network are simply picked up when the next
analytics task refresh occurs.

Articulation of analytics queries involves a variation of
SQL that can be used for continuous stream queries, performed
over the stream of data produced by network telemetry data
sources. In order to facilitate the composition of new queries, a
concept of Analytics Task Templates is supported, containing
pre-canned customizable analytics tasks, supplied for example
by network administrators. An application or user can
articulate an analytics task simply by referring to an existing
template and populating its parameters. The DNA Controller
then applies a predefined query mapping associated with the
template for the analytics task at hand.

B. DNA Agent

The DNA Agent is an application that is embedded in a
network device. It conducts the analytics tasks local to the
device as specified by the maplets, analyzing streams of local
telemetry data and pushing results back to the DNA Controller.
It also configures the underlying telemetry data sources as
needed, for example, setting up network measurements or
configuring local statistics collection, to provide the raw data
that is needed as a basis for that task. The DNA Agent
encompasses several functions, as described in the following.

1) Task Handling

A Task Handler performs most of the DNA Agent's
housekeeping and orchestration functions.

When the DNA Agent receives a maplet from a DNA
Controller, the Task Handler verifies that the DNA Agent has
the needed capabilities and sufficient processing capacity so
service the maplet. Subsequently, the data handlers are
instructed to set up the data sources as needed and the query is
passed to the processing engine.

Maplets are not allowed to be in effect indefinitely but are
associated with an expiration time. Upon expiration, cleanup
operations are performed to remove queries and cease the
generation of data that is no longer needed. While expiration of
maplets can be periodically extended, this mechanism avoids
situations in which "orphaned" analytics tasks run forever, i.e.
tasks that end users have lost interest in but that continue to
consume resources in the network.

2) Data Handling

Data handlers configure telemetry data sources inside the
device in order to generate a stream of data that can be fed to
the DNA Agent's query and aggregation engine. One example
of such a data source is Netflow, which produces a stream of
flow records. Another example: MIB objects, accessed in our
case through DCM, a device feature that produces streams of
MIB data, with MIB snapshots taken either periodically or
under certain conditions [5]. A third example concerns
measurements of service levels, as provided through IPSLA. In
each case, data is not simply provided by default, but
configuration is required so that data is generated. In some
cases, this data generation can be resource intensive, which is
why DNA’s ability to turn on that data generation only when it
is needed is so important.

Once the data source has been set up, telemetry data is
pushed to the data handler, which massages it into a data
stream that can be processed by the embedded analytics engine
(next section). The data handler also provides harmonization of
data if needed, performing an additional rendering step that
transforms a local representation of data into a representation
that a maplet refers to. As a convenience feature, named data
items can be grouped into “capabilities”, collections of data
items that are frequently used together for analytics purposes.
DNA Agents advertise which capabilities they support, and
controllers and templates can indicate which capabilities are
required for specific analytics tasks. However, to avoid the
need to define expansive sets of new data models for analytics
purposes, analytics tasks can refer to data also in other ways,
e.g. to MIB objects or Netflow Information Elements.

As a general design principle, if data is natively represented
in different ways by different devices, it is up to the DNA
Agent to ensure the data is rendered in a way that can be
consumed by the DNA Controller, instead of the DNA
Controller needing to perform special treatment depending on
the specific devices that host the DNA Agents. This is enabled
by allowing analytics tasks to refer to source data as named
data items, and have the data handler perform any rendering
from a local to a common representation. This decision is
designed to keep DNA nimble and avoid the situation in which
the DNA Controller over time deteriorates into a "fat"
management system that becomes costly and slow to maintain.

3) Query and Aggregation Processing

Analytics logic and query processing leverages a network-
embedded version of CQE [6], an advanced stream processing
engine which is also used by off-box analytics applications.
The data records from a data producer are framed as rows in a
database table. Each data record produced constitutes a
separate row in the table. Fields in the records are considered
different table columns. Records from different data producers
or different types of records by the same data producer are
considered as separate conceptual tables.

Processing includes the ability to aggregate raw data
according to statistical baselining functions such as percentiles
or top-n, histograms, to conduct basic trend analysis, to apply
filters and comparators, and to, more generally, apply queries
on telemetry data, both across windows in time ("continuous")

and across individual data items. Aggregation tasks are
expressed as CQE SQL queries that are applied against these
tables. CQE does allow for continuous queries by associating
records with a time window and continuously updating query
results as new rows are added to the query (or old rows are
"aged out"). As new query matches are found or updates to
aggregates are computed, the corresponding results are pushed
to the DNA Controller.

C. Interfaces

There are two sets of interfaces used by DNA: An interface
provided by the DNA Controller to the user of the DNA
service, and the interface provided by the DNA Agent that
DNA Controller and DNA Agent use to communicate.

We decided to use open data-model driven interface design
both for the controller and for the agent. At its basis is a set of
YANG modules [8] that have been defined to define the
configuration of analytics tasks both at the network and at the
device level. The configuration of a network analytics task
includes:

 A list of data items and a stream of corresponding data
records, parametrizing items such as the frequency or
policy with which records are being generated or the
required accuracy of items if involving performance
measurements. Data items themselves do not necessarily
have to be YANG-defined; the model allows to also refer
to MIB objects, flow records and their information
elements, even named CLI show output fields.

 An analytics query that operates on this data stream. A
choice is given between specifying a continuous query
that is directly processed by CQE, or referencing a
template of a “precanned” query and providing a list of
template parameter assignments. (The template is
subsequently expanded by the controller into a
corresponding CQE query.)

 A network scope that defines a policy which network
elements are subjected to the task.

 A schedule, specifying start and end time or duration.
 The preferred export format.

The YANG module of the agent mirrors the model of the
controller and uses many of the same groupings but does not
include the network scope which is resolved by the controller.
In each case, also monitoring support is provided that allows to
retrieve the list of current tasks and their status.

Results of the analytics task are exported from the DNA
Agent to the DNA Controller using a choice of interfaces,
including a JDBC-based interface that writes analytics results
directly to the controller, IPFIX [13], in which case the
configuration of the task includes a definition of the IPFIX
template used to export analytics results, or syslog.

IV. IMPLEMENTATION AND PROOF OF CONCEPT

We have implemented a Proof of Concept of DNA,
operating on a virtualized testbed of Cisco networking devices.

The DNA Controller was implemented as an application on
top of Open Daylight [7]. Our implementation took extensive

advantage of the model-driven toolchains provided by Open
Daylight. From the YANG data model, we generated a ReST-
like interface per the RESTconf spec [9]. This interface is used
by external applications to interact with DNA. In addition, the
DNA controller application relies on Open Daylight for
inventory and topology information. At this point, automatic
network discovery is not yet supported and needs to be
administratively populated at the controller.

Because it is readily supported by Open Daylight, Netconf
[10] was chosen as communication mechanism between DNA
Controller and DNA Agent to orchestrate the deployment of
analytics tasks and monitor their status. The YANG model was
subsequently used to generate the internal controller APIs used
by the DNA Controller application to communicate with the
DNA Agents. As mentioned, the analytics results themselves
are exported using JDBC (default), or alternatively (in
particular when an export destination other than the controller
is chosen) IPFIX or syslog.

Figure 3: Implementation GUI

A GUI (depicted in Figure 3) has been implemented on top
of the DNA Controller to allow network administrators to
interact with the Network Analytics Service provided by DNA,
and to visualize network analytics results. Analytics queries
can be specified either by entering an analytics query directly,
or by picking from a list of templates of “precanned” queries
and customizing aspects such as which data items to apply the
query to (e.g. link utilization? packet drop rates? round trip
jitter to a server?), which aggregators to use (top-n? trending?
percentiles?), and which thresholding, if any, to apply.

The DNA Agent is implemented as a container-based
application, running inside an LXC Linux container [11]
hosted on the network element. Configuration of data
producers within the network device is performed through
onePK [12]. Our footprint currently stands at around 120MB.
At this point, support for Netflow, SNMP MIBs, and IPSLA is
provided. As mentioned earlier, exporting of results from the
DNA Agent to the DNA Controller occurs through a JDBC-
based push protocol or IPFIX export.

V. PERFORMANCE ANALYSIS

In this section, a performance analysis is presented to
illustrate the efficiency of the proposed Distributed Network
Analytics framework in comparison to the traditional
centralized analytics framework. It may be useful to illustrate
those benefits for specific use cases such as Where is my IP

and Network Brownouts. Two metrics are considered to
compare the two approaches, the volume of data, and CPU
overhead.

A. Volume of data

A well-known and most-often used solution for the Where
is my IP usecase, is the traditional centralized analytics
approach. Netflow needs to be configured on all routers in the
network. From all routers in the network, Netflow records are
then exported to a Netflow collector, where they are post-
processed and analyzed using Big Data techniques.

The cumulative effort can be estimated by the amount of
data that needs to be generated, exported, and stored. To
estimate the data volume, the parameters to consider are: the
interface speed at the router, the number of active flows on the
interface, and finally the Netflow packet sampling rate. Of
course, the number of records exported depends on the number
of flows, not the interface speed per se. It is conceivable that
there can be a small number of elephant flows, or a large
number of mice flows, or some mixture. In addition, it has
been observed that the volume of flow records also depends on
other factors such as flow expiration timers. However, in
practice, a correlation between interface bandwidth and
number of flows is often observed. A conservative rule of
thumb [16] suggests that flow record volume amounts to
roughly 2 % of the interface bandwidth. In general, the flow
volume can be defined as a function of (# flow records, record
size). The flow record size is a function of (# of information
elements in a record). Typically there are roughly 20 IEs with 4
octets each = 80 octets/ record. The number of flow records in
an hour can be estimated as (average interface utilization *
interface speed over an hour) / (packetsize*packets per flow).

Let us consider a 1 Gbps interface, link utilization of 40 %,
typical for a traffic engineered network. Let us assume that the
average flow size of 100 packets with each packet having 500
bytes on average, i.e. 400 kb/flow. For a 1 Gbps interface with
40 % utilization, the average traffic for the interface can be 400
Mbps. At 400 kb/flow, this means roughly 1000 flow records
per second on the interface. 1000 records/second * 3600
seconds * 80 octets/ record = 288 MB of data to be exported
from a single interface on a router in an hour. The total volume
of data exported from all routers to the central collector is
linear to the number of active flows and the number of nodes.
The amount of processing to search for particular records
meeting a specific match criteria is proportional to the amount
of data stored, as each record needs to be inspected.

In contrast, with DNA, Netflow data generation at the
network device is configured only for the duration of the task
and stopped upon completion of the analytic task. Netflow
metering remains the same during the duration of the analytic
task, however, flow data is merely passed to the DNA Agent
contained in the same router, i.e. from one software process to
another. A result record is exported whenever there is a match
for the filter condition for the expired flows in the Netflow
cache; only a small fraction of flow records will match that
critera. If a short flow expiration timer of 5 seconds is
configured for Netflow, then in the worst-case scenario of one
match each window, 12 results per minute are exported.
Assuming an export record size of 80 octets, that amounts to

960 bytes per minute or less than 60 KB per hour per interface,
in contrast to 288 MB. If the task is not run continuously or
the worst-case scenario does not apply, the volume of results
data is reduced even further.

While the analysis presented is based on the average flow
size distribution and deterministic values for some parameters
such as flow-expiration timers, and such factors can vary
greatly in practice, the takeaway is that the amount of data to
be exported is reduced by several (3-5) orders of magnitude.
Further reductions occur if tasks are not run continuously but
are applied only “on demand” for short durations.

Similar conclusions can be derived for the Network
Brownout use case. As explained earlier, it is preferable to
identify trends of link utilization, packet drop rates, and end-to-
end delay before actual network congestion occurs. A key data
source for this class of use cases are MIB objects, e.g. from the
IF-MIB. End-to-end measurements further involve IPSLA.
With the centralized analytics approach, MIB objects are
periodically and repeatedly polled. Continuous SNMP polling
causes excessive CPU on the router, limiting the granularity at
which measurements that can be achieved. An SNMP PDU to
poll five MIB objects, including varbinds and headers, but not
including IP and UDP overhead, can be estimated to require
roughly 120 octets per request and response. Assuming just 20
interfaces to poll once a minute results in 4800 octets of SNMP
traffic per minute, or 288 Kbytes / hour.

With a DNA approach, results are exported only when a
match for the trend (as defined by the user) is detected. This
may occur perhaps only once per 1000 or 10000 polling cycles,
correspondingly reducing the amount of data to be exported by
several orders of magnitude. (Potentially exported data is
reduced even further if only a summary of the trend is reported,
not all objects that were used to derive at that conclusion.)

B. CPU

In terms of CPU, there are three contributing components:
the CPU of the Netflow metering process, the CPU of the
Netflow export process, and the CPU for the DNA analytics.

We have performed some initial measurements whose
results are depicted in Figure 4. We ran two series of
experiments. In one case, we deployed a single query. In the
other case, we deployed five separate queries, all operating on
the same data set. We then varied the number of flows,
resulting in a different number of flow records being generated.
What we found was that an increase in the number of flows to
be processed, not surprisingly, resulted in a linear increase in
CPU consumption. However, we found that the increase in the
number of queries resulted only in a slight increase of CPU.

We conclude that the analytics processing performed on the
device is dominated by the number of records being generated;
the analytics tasks themselves result in only negligible
additional load, further offset by the savings in CPU needed for
the export process which was not considered here.

Not considered in our analysis is the fact that the total time
to obtain the result of the analytic task is also greatly reduced.
The latency to copy the Netflow data to the container is much
smaller than exporting a record to a collector and the result

data to be exported to northbound application is much smaller,
thus the latency for export is also reduced. As a net result of the
above-mentioned factors, it is possible to obtain an almost near
real-time view of the transient data from the network.

0

2

4

6

8

10

12

1000 2000 3000

C
PU

 (
in
 %
)

data volume (records/second)

Agent CPU ‐ 1 task Agent CPU ‐ 5 tasks

Figure 4: CPU vs. volume of data vs. number of tasks

VI. RELATED WORK

Historically, analytics technology was consumed in the
form of OLAP (Online Analytics Processing) systems. These
Decision Support Systems (DSS) included massively parallel
(MPP) relational databases as well as multi-dimensional cube-
based databases – both primarily motivated by Business
Intelligence use cases. The techniques for parallel query
execution in shared-nothing MPP systems are well-understood
and described in early papers about Gamma [20], Bubba [22],
Volcano [21] etc. Subsequently, these features became
standard in most commercial relational systems and were
extremely successful in driving the database industry forward.
For all practical purposes, however, these ideas were only
available to users of these systems.

Once the Internet took off, there was a pressing need for the
underlying MPP data processing techniques to be exposed to
non-relational and non-SQL developers. Furthermore, the sheer
scale of data to be processed exceeded the limits of what could
be achieved with traditional MPP systems. These requirements
were felt urgently at Google leading to the implementation of
highly-scalable data infrastructure such as GFS [28] and
MapReduce [1] and their open source equivalents (Hadoop [2]
and HDFS). Unlike the BI use cases that were the motivation
of the previous generation analytics systems, these Internet-
scale systems were typically used to solve large and complex
data problems dealing with massive graphs, clickstreams etc in
a batch processing fashion. The initial programming model for
these systems was the MapReduce (MR) framework. Over
time, however, the value of more declarative approaches
became evident, leading to various SQL and non-SQL
alternatives, each generating MR jobs. These alternatives
include Hive [18], [3], Pig [19] , Spark [24], Shark [27] etc.

While newer analytics systems were much more scalable
than older systems and generally better at interactive queries,
they were still primarily used at batch-mode analysis. Such
systems were great at crunching massive data sets but not ideal
to satisfy the low-latency requirements of operational analytics
systems that operated over high velocity streams of log data.
Some examples of streaming database systems include early

research projects like TelegraphCQ [29], STREAM [17] etc. as
well as commercial systems like Truviso [25], StreamBase etc.

While the batch processing and streaming systems evolved
separately, the batch systems are offering more real-time
functionality by (a) being more interactive for traditional
queries, and (b) attacking the streaming space by pursuing a
micro-batch approach. Examples of the former include systems
like Impala and Presto that have built traditional SQL
execution engines on top of data from HDFS as well as the
more interesting Spark system which was built around the idea
of a distributed memory abstraction called “Resilient
Distributed Datasets” (RDD). RDDs essentially cache
intermediate state produced by MPP-style computation in
memory while still providing fault-tolerance and thereby
enable highly interactive and iterative applications. This RDD
abstraction also enabled the development of Spark Streaming
[23, 24] that uses the notion of a “discretized stream” that can
provide strong consistency and fault recovery while still
enabling certain kinds of streaming queries.

DNA explores a very different space of the analytics
landscape by focusing on the following key aspects, none of
which is covered by the classic systems and earlier research
described above:

1. Focusing on network telemetry data - While other
systems certainly build data integration software to ingest
incoming data, they tend to ignore the very real
challenges of extracting data from network elements,
which can shift bottlenecks from analytics processing
itself to the generation of raw data. Networks can produce
an enormous volume of data. However, indiscriminate
turning on of all probes is not feasible. Approaches are
needed that set up sources in a targeted fashion as
required by the actual tasks.

2. Dynamic configuration and adaptation of data sources
as integral part of analytics setup - Traditional systems
make an inherent assumption that data streams are a given
and come “for free”, and that any associated system
administration tasks can easily be delegated, focusing
solely on query processing instead. Our approach is
unique in that it integrates turning up, configuring, and
adapting data sources as needed to support queries.

3. Operating over a wide-area network - Data systems
tend to ignore the costs associated with moving data
across a WAN environment. Some earlier work on
federated databases, such as the Mariposa [29] and Garlic
[30] systems, did consider network costs in distributed
query optimization but not in a streaming fashion that is
critical for operational analytics.

4. Pushing processing into network elements - Network
elements like switches and routers now have the hardware
capacity to sustain data processing at the edge as well as
improved software architecture that can enable integrating
application software (such as a continuous query
processor) using container isolation. This new capability
allows us to exploit the network element in pre-
processing data extracted by the probe and dramatically
lowering the impact on expensive transit links for the

Wide Area Network, which were developed and
maintained at considerable expense in order to sustain
user and not analytics traffic.

5. Controlling and programming tasks at a network level
using SDN (Software-Defined Networking) - Finally a big
value of the DNA system consists of providing a higher
order analytics service that is able to operate on the
network as a whole instead of individual devices. The key
advances in SDN has enabled software controllers that in
turn enable network-wide programmability of an
“analytics plane” that governs data probes and processing
at network elements just like the “control plane” that
governs data communication.

In the network management space, there is a tradition of
research dealing with delegating simple tasks into the network
and distributing corresponding processing. An overview and
collection of important work is given in [14]. In the analytics
space, one important effort is SCRIPT, a system for
decentralized IP flow collection and analysis [15]. It exploits
understanding of flow semantics to provide analytics that
correlate records about the same flows observed on different
routers, without limiting itself to records observed on a single
node. It does so using a peer-to-peer overlay that is established
between different routers and managed by a central controller,
whereas in DNA’s case nodes do not need to be aware of one
another and only communicate with a controller. SCRIPT is
focused specifically on flow analysis and as such processes
only flow records. It does not incorporate other telemetry data
sources, such as active measurements or interface statistics.

VII. CONCLUSION

DNA demonstrates how SDN Controllers and
programmable, intelligent features embedded inside the
network can complement each other to collectively provide
significant value to users that could not be provided by either
alone. By delegating analytics processing to network devices,
DNA not only allows back-end applications to scale better, but
to provide analytics in better quality than would otherwise be
possible. Perhaps more important than distributing analytics
processing itself is the fact that DNA is also able to
dynamically set up and adjust network telemetry data sources
and queries as required by the analytics task, shielding users
from secondary management aspects such as how to set up
those sources and managing the deployment of corresponding
tasks across the network. We have found that the amount of
networking resources consumed by analytics is dominated by
the number of generated telemetry data records, while analytics
processing itself is fairly negligible, which makes embedding
analytics inside network devices even more feasible.

ACKNOWLEDGMENT

DNA is the result of the concerted effort of a larger team.
For their contributions and support, we would like to
acknowledge Bhaskar Bhar, Fabrizio Corno, Nitish Gupta,
Robert Lerche, Billy Liu, Kim Macpherson, Jagadeesh Maiya,
Chris Metz, Ahwin Pankaj, Manjunath Patil, Ganesan Rajam,
Lukas Sedlak, Shashidar Srinivasa, Anbalagan V, Kiran
Vishnubhatla, Jacob Zhang, Joe Zhang, and Yifan Zhang.

REFERENCES

[1] J. Dean, S. Ghemawat: MapReduce: Simplified Data Processing on

Large Clusters. 6th Symposium on Operating System Design and
Implementation (OSDI'04), San Francisco, CA, December 2004.

[2] Hadoop. http://hadoop.apache.org (accessed on 3/7/2014).

[3] Hive. http://hive.apache.org (accessed on 3/7/2014).

[4] M. Chiba, A. Clemm, S. Medley, J. Salowey, S. Thombare, E.
Yedavalli: Cisco Service-Level Assurance Protocol. RFC 6812, IETF,
January 2013.

[5] Cisco Data Collection Manager.
http://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/bsdcm/configuration/15-e/bsdcm-15-e-book.pdf (accessed on
3/7/2014).

[6] S. Krishnamurthy, M. Franklin, J. Davis, D. Farina, P. Golovko, A. Li,
N. Thombre: Continuous Analytics over Discontinuous Streams. ACM
SIGMOD 2010.

[7] Open Daylight. http://www.opendaylight.org (accessed on 9/28/2014).

[8] M. Bjorklund: YANG – A Data Modeling Language for the Network
Configuration Protocol (NETCONF). RFC 6020, IETF, October 2010.

[9] A. Bierman, M. Bjorklund, K. Watsen, R. Fernando: RESTCONF
Protocol. draft-ietf-netconf-restconf-04, IETF, January 2015 (work in
progress).

[10] R. Enns, M. Bjorklund, J. Schoenwaelder, A. Bierman: Network
Configuration Protocol (NETCONF). RFC 6241, IETF, June 2011.

[11] Linux Containers. http://www.linuxcontainers.org (accessed on
9/28/2014)

[12] Cisco’s One Platform Kit (onePK).
http://www.cisco.com/c/en/us/products/ios-nx-os-software/onepk.html
(accessed on 9/28/2014)

[13] B. Claise: Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information. RFC 5101,
IETF, January 2008.

[14] A. Clemm, R. Wolter (eds.): Network-Embedded Management and
Applications. Springer, New York 2013.

[15] B. Stiller, C. Morariu, P. Racz: Scalable and Robust Decentralized IP
Traffic Flow Collection and Analysis (SCRIPT). In [14].

[16] E. Boschi, L. Mark,cJ. Quittek, M. Stiemerling, P. Aitken: IPFIX
Implementation Guidelines, RFC 5153, 2008.

[17] A. Arasu, B. Babcock: STREAM: The Stanford Stream Data Manager.
IEEE Data Eng. Bull. , 26 (1), 19-26, 2003.

[18] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. S. Sarma, R.
Murthy, H. Liu: Data warehousing and analytics infrastructure at
facebook. SIGMOD Conference, (pp. 1013-1020), 2010.

[19] C. Olston , B. Reed , U. Srivastava , R. Kumar , A. Tomkins, Pig latin: a
not-so-foreign language for data processing. SIGMOD Conference,
2008.

[20] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.
Hsiao, R. Rasmussen: The Gamma Database Machine Project. IEEE
Trans. Knowl. Data Eng. , 2 (1), 44-62, 1990.

[21] Graefe, G.: Volcano - An Extensible and Parallel Query Evaluation
System. IEEE Trans. Knowl. Data Eng. , 6 (1), 120-135, 1994.

[22] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M.
Franklin, B. Hart, M. Smith, P. Valduriez: Prototyping Bubba, A Highly
Parallel Database System. IEEE Trans. Knowl. Data Eng. , 2 (1), 4-24,
1990.

[23] M. Zaharia, T. Das, H. Li, S. Shenker, I. Stoica: Discretized Streams: An
Efficient and Fault-Tolerant Model for Stream Processing on Large
Clusters,. HotCloud, 2012.

[24] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.
J. Franklin, S. Shenker, I. Stoica: Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI
2012.

[25] M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li, A. Russakovsky,
N. Thombre: Continuous Analytics: Rethinking Query Processing in a
Network-Effect World, CIDR, 2009.

[26] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C.
Staelin, A. Yu: Mariposa: A Wide-Area Distributed Database System.
VLDB Journal , 5 (1), 48-63, 1996.

[27] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, I. Stoica:
Shark: SQL and Rich Analytics at Scale. SIGMOD Conference 2013.

[28] S. Ghemawat, H. Gobioff, S. Leung :The Google file system. SOSP, (pp.
29-43), 2003.

[29] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F.
Reiss, and M. A. Shah : TelegraphCQ: Continuous Dataflow Processing
for an Uncertain World. CIDR Conference, 2003.

[30] V. Josifovski, P. Schwarz, L. Haas, E. Lin: Garlic: a new flavor of
federated query processing for DB2. SIGMOD Conference, 2002.

