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Abstract—Software-Defined Networking (SDN) is an emerg-
ing paradigm that arguably facilitates network innovation and
simplifies network management. However, in the context of
SDN, management activities, such as monitoring, visualization,
and configuration can be considerably different from traditional
networks. An SDN controller, for example, can be customized
by network administrators according to their needs. Such cus-
tomizations might pose an impact on resource consumption
and traffic forwarding performance, which is difficult to assess
without an SDN-devoted management system. In this paper, we
initially present an analysis of control traffic in SDN aiming to
better understand the impact of the communication between the
controller and forwarding devices. Afterwards, we propose an
interactive approach to SDN management through monitoring,
visualization, and configuration that includes the administrator
in the management loop. To show the feasibility of our approach
a prototype has been developed. The results obtained with this
prototype show that our approach can help the administrator
to better understand the impact of configuring SDN-related
parameters on the overall network performance.

I. INTRODUCTION

Software-Defined Networking (SDN) is an emerging par-
adigm that enables network innovation based on four funda-
mental principles: (i) network control and forwarding planes
are clearly decoupled, (ii) forwarding decisions are flow-based
instead of destination-based, (iii) the network forwarding logic
is abstracted from hardware to a programmable software layer,
and (iv) an element, called controller, is introduced to coordi-
nate network-wide forwarding decisions [1]. SDN is grabbing
the attention of both academia and industry, since it allows
the easy creation of new abstractions in networking, simpli-
fying management, and facilitating network innovation [2]. In
this sense, SDN reduces or even eliminates some traditional
network management problems, such as enabling network
configuration in a high-level language or providing support
for enhanced network diagnosis and troubleshooting [3].

Monitoring, visualization, and configuration are funda-
mental management activities to understand and control the
network behavior [4] [5] [6] [7] [8]. In the context of SDN,
these activities can be considerably different than in traditional
networks, thus deserving proper attention [9]. For example,
the behavior of an SDN controller can be customized by
network administrators according to their needs. However,
these controller customizations might impact in terms of
resource consumption and traffic forwarding performance. As
a consequence, such impact is difficult to assess because
traditional network management solutions were not designed

to cope with the context of SDN. Therefore, an SDN-tailored
management system must be able to help the administrator
to understand and control how the SDN controller behavior
affects the network.

The state-of-the-art in SDN has addressed monitoring for
different purposes [10] [11] [12] [13] [14]. Most of these
investigations are focused on proposing anomaly detection
systems or mechanisms to establish a balance between control
channel overhead and accuracy of collected information. These
investigations tend to employ monitoring information to auto-
matically adapt the network to specific conditions. However,
to the best of our knowledge, no solution is available to
integrate monitoring information with interactive visualization
and configuration tools for SDN. We argue that with such a
solution the administrator could better understand and interact
with the network, significantly improving everyday tasks of
SDN management.

In this paper, we initially perform an analysis of the control
traffic in SDN to understand the overall impact in terms
of resource consumption and network performance resulted
from the communication between the controller and network
devices. Based on this analysis, we propose an interactive
approach to SDN management through monitoring, visualiza-
tion, and configuration. Our goal is to include the adminis-
trator in the management loop, where SDN-specific metrics
are monitored, processed, and displayed in interactive visu-
alizations. Thus, the administrator is able to make decisions
and configure/reconfigure SDN-related parameters according
his/her needs. Our main contribution is to integrate these three
activities allowing the administrator to easily understand and
control the network.

To emphasize the feasibility of our approach, we developed
a prototype that uses the OpenFlow protocol [15], currently
the most relevant SDN implementation. Our prototype is able
to: (i) perform monitoring with configurable polling intervals
specifically focused in metrics related to resource usage and
control channel load, (ii) present aggregated statistics in in-
teractive visualizations that emphasize these metrics, and (iii)
support the configuration of network parameters that affect
the analyzed metrics. To evaluate our approach, we use the
Floodlight controller [16] and a campus network scenario em-
ulated over Mininet [17]. Our results show that, by interacting
with visualizations, the administrator is able to adjust the
network, improve the controller configuration, and thus reduce
the resource consumption and control channel usage.



The remainder of this paper is organized as follows.
In Section II, we provide a brief description of the main
background concepts associated with our approach and related
work. In Section III, we present an analysis of control traffic in
OpenFlow-based SDN. In Section IV, we present our approach
in detail and our developed prototype. In Section V, we present
the evaluation of our proposed approach. Finally, in Section VI,
we conclude the paper with final remarks and perspective for
future work.

II. BACKGROUND AND RELATED WORK

This section provides a brief overview of the main back-
ground concepts required by our proposed approach to inter-
active SDN monitoring, visualization, and configuration.

A. Related Work

Currently, many investigations consider using monitoring
information obtained with the OpenFlow protocol for different
purposes. Zhang [10] proposed the use of monitoring messages
to develop algorithms for anomaly detection systems based on
methods for statistics information collection. Jose et al. [13]
used the same monitoring messages to propose mechanisms for
online measurement of large traffic aggregates, which can be
used for both anomaly detection and traffic engineering. Yu et
al. [11] proposed FlowSense, which is aimed to keep the lowest
control channel overhead and the highest information accuracy
as possible in OpenFlow monitoring. FlowSense, however,
uses only Asynchronous messages of the OpenFlow protocol
to collect statistics information (further detail on the message
types are presented in Section II-B). Although FlowSense
introduces zero cost in the monitoring process, the statistics
information may be inaccurate in the case where OpenFlow
messages received by the controller are too sparse.

Chowdhury et al. addressed SDN monitoring from a dif-
ferent perspective. The authors proposed a framework, called
Payless [12], able to deal with monitoring considering the
polling frequency and data granularity. This framework is able
to adjust the polling frequency to balance the control channel
overhead, imposed by monitoring messages, and accuracy of
monitored information. Payless relies on OpenTM [14] to
select only important switches to be monitored, also aiming
to reduce the overhead imposed in the control channel. The
authors employed a modularized architecture with an algorithm
to set the polling frequency for monitoring a set of selected
switches. Therefore, it is possible to extract just the relevant
information while keeping the control channel overhead low.

The aforementioned proposals are focused on the use of
monitoring information to automate tasks, such as reducing
control traffic overhead and protecting the network. No pre-
vious investigation aims to employ monitoring information
to help the administrator understanding the network behavior
nor interact with it. To the best of our knowledge, there are
no solutions that leverage OpenFlow monitoring messages
to create network visualizations and address the interactive
configuration of SDN-related parameters. Before presenting
how we approached such a problem, we review in the next sub-
sections key aspects of OpenFlow, focusing on its messages
and on the OpenFlow controller behavior. Reviewing this
aspects is important because they are central to our solution.

B. OpenFlow Brief Background

To establish flow paths over a network, an OpenFlow
controller adds and removes forwarding rules in network
switches. An OpenFlow forwarding rule is composed of a
match of packet header fields, e.g., source and destination IP
addresses, and a set of actions to be performed, e.g., forward
or drop a packet. The OpenFlow specification also defines that
an OpenFlow switch is composed of (i) a flow table to store
forwarding rules, (ii) a secure communication channel with the
controller, and (iii) the OpenFlow protocol itself.

OpenFlow version 1.0, which is considered in this pa-
per, defines three message types: (i) Controller-to-switch, (ii)
Asynchronous, and (iii) Symmetric [18]. Controller-to-switch
messages are initiated by the controller and are used to manage
or inspect the state of OpenFlow switches. Asynchronous
messages are initiated by the switch and are used to send
notification of network events and changes to the controller.
Symmetric messages can be initiated by either the controller
or switches and are mainly used for network bootstrap, latency
measurement, and to keep alive the control channel. Each of
these message types is composed of multiple sub-types that
are used for specific network coordination actions.

Some of the main message sub-types defined by the
OpenFlow specification are: Modify-State and Flow-Removed
to install and remove rules on forwarding devices; Send-Packet
to send a packet to a specific switch port; and Packet-In, to
notify the controller when a switch receives a packet that does
not match with a forwarding rule entry in the switch flow
table. Another message sub-type that is used by monitoring
solutions to retrieve statistics from switches is Read-State. As
a result, the OpenFlow specification enables both the config-
uration of forwarding devices and monitoring traffic statistics.
Nevertheless, the OpenFlow specification does not state how
messages should be used to actually manage an OpenFlow-
based network. It is on the account of the administrator to
understand the OpenFlow specification and the controller’s
behavior, and then decide how OpenFlow can be employed
to accomplish everyday management tasks.

C. Controller Behavior

OpenFlow messages are used to coordinate forwarding
devices in different ways, depending on the controller behavior
implementation. Three well known controller behaviors that
affect the installation of forwarding rules and, consequently,
the network operation are: Hub, Switch, and Forwarding [19].
Throughout this paper, we adopted the Forwarding behavior
because it is the most sophisticated out of these three men-
tioned behaviors, presenting a lower control overhead.

An example of how the Forwarding behavior coordinates
rule installation between Source Host and the destination File
Server is depicted in Figure 1. First, when Source Host sends
a data packet to Switch A (1), this switch checks whether there
is a forwarding rule entry matching this packet’s header fields
in the flow table. If the header fields match with an entry, the
corresponding actions should be applied to this data packet,
e.g., forward or drop. However, if no match exists, by default,
Switch A generates a Packet-In message to the controller (2).
Upon receiving the Packet-In, the controller calculates the
flow path and sends a set of Modify-State messages to install



forwarding rules in all switches in the path between source and
destination, except to Switch A (3). Afterwards, the controller
sends Send-Packet and Modify-State messages to Switch A that
originated the Packet-In (4). Finally, once all forwarding rules
are installed on switches, the data packet is sent through the
flow path (5) to the destination.

File ServerSource Host
Switch A Switch B Switch C

OpenFlow Controller               Flow path
               Packet-In
               Send-Packet
               Modify-State

1

2 3 34

5 5 5

Fig. 1. OpenFlow controller Forwarding behavior example

A few extra points need to be clarified regarding the
Forwarding behavior. First, the example in Figure 1 assumes
that the location of the destination File Server is known by the
controller in advance. In practice, before every host originates
traffic, the controller will generally need to discover these
locations by flooding the network. Also, the controller does
not guarantee that rule installation messages, i.e., Modify-
State, arrive in switches properly ordered, since these messages
can be sent in parallel. Thus, if Modify-State messages do
not arrive in the switch before the data packet, extra Packet-
In messages will be generated and sent to the controller. In
addition, the controller behavior does not orchestrate how
Read-State messages are used by either the controller or
forwarding devices. As such, a monitoring solution is still
required alongside the OpenFlow controller to fill this gap and
help in managing OpenFlow-based networks.

III. CONTROL CHANNEL ANALYSIS

In this section, we provide an analysis of the control
channel traffic load of OpenFlow 1.0 messages, emphasizing
those messages that occur most frequently in our scenario of
study. In sub-section III-A, we present the motivation and the
methodology of analysis. In sub-section III-B, we detail the
scenario and the workload used in our case-study. Finally, in
sub-section III-C, we explain and discuss the analysis.

A. Motivation and Methodology of Analysis

OpenFlow-based SDN introduces a simple way to develop
and maintain communication networks because of its central-
ized logic of controlling forwarding devices. However, this
simplicity may allegedly impose high cost on the network
controller and create bottlenecks at the control channel [20].
Recent solutions, such as Devoflow [21] and DIFANE [22],
attempted to alleviate these bottlenecks by distributing the
control logic of OpenFlow. Nevertheless, to the best of our
knowledge, no other study has detailed in which situations
such bottlenecks appear and whether they can or cannot be
mitigated or even avoided by simple configuration, i.e., without
the need to develop a specific distributed controller. Therefore,
in our analysis, we initially quantify the load of OpenFlow 1.0
control messages that appear most frequently in our specific
scenario of study. Afterwards, we also point out configuration

parameters that can influence this load and may be set to reduce
the chance of bottlenecks in the control channel.

Our analysis is divided into two perspectives of resource
consumption: (i) control channel load related to installation
of rules on forwarding devices (Packet-In, Modify-State, and
Send-Packet) and request/reply messages for monitoring flow
statistics (Read-State); and (ii) resource usage in terms of
forwarding rules, active and idle, installed on network devices.
These four sub-types of messages have been selected because,
in our scenario of study, they represent the absolute majority
of control traffic (accounting for 97.78% of the number of
messages exchanged between the controller and forwarding
devices, and 99.70% of the overall control traffic). Further-
more, regarding resource usage, the amount of rules installed in
switches’ expensive and limited Ternary Content-Addressable
Memories (TCAM) needs to be carefully managed to avoid
network devices running out of resources [21].

The metrics we analyze for control traffic load are: (i) bit
rate and number of messages per second for monitoring, (ii)
bit rate and number of messages for rule installation processed
on the controller, and (iii) bit rate and number of messages for
rule installation processed by network devices. The analyzed
metrics for resource usage on forwarding devices are: (i) the
total number of installed forwarding rules and (ii) the amount
of those installed forwarding rules which are idle, i.e., counters
unchanged between two monitoring intervals.

B. Case-study: A Campus Network

To conduct our control channel analysis and also to eval-
uate our approach to SDN management (later discussed in
Section V), we have chosen to use campus network scenario
inspired in our own university premises. This type of network
infrastructure is well suitable to benefit from features of SDN
with OpenFlow, which has actually been originally conceived
for this type of scenario [15]. Our emulated campus network
consists in 11 OpenFlow switches connecting 230 hosts from
laboratories and administration offices forming the topology
shown in Figure 2. Each switch of the network is connected
through a dedicated channel to a remote controller. More
specifically, a centralized Floodlight v0.90 controller is set to
coordinate network-wide forwarding decisions.

Floodlight Controller
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Fig. 2. Campus network topology



The general prevalent traffic profile of users is character-
ized by everyday Internet surfing and access to the university’s
virtual learning environment. We model user behavior to
generate emulated Internet traffic based on several previous
studies [23] [24] [25] [26] [27]. Table I summarizes the
main parameters used to emulate user traffic profile during
experimentation. In this experiment we generate only video
and Web traffic, in a proportion of 75% to 25% respectively.
Given the size of requests, i.e., video streams generate more
traffic than Web requests, we selected one user to place video
requests for every 6 Web users. We include in the campus
topology one Web Server and one Video Server to respond to
users’ requests, so that we are able to control precisely the size
of responses (in a real campus network these requests would
normally go through a gateway or proxy). We also assume that
all 230 hosts are active during the whole experiment time and
place a request in average every 30 seconds.

TABLE I. CONFIGURATION PARAMETERS OF USER TRAFFIC PROFILE

Parameter Value
Web request size Lognormal Distribution (µ = 11.75, σ = 1.37)

Mean: 324 KBytes, Std. Dev.: 762 KBytes
User reading time Exponential Distribution (λ = 0.033)

Mean: 30 seconds
Video watch time 180 seconds
Video bit rate 300 kbps
Traffic Mix Video: 75%, Web: 25%
User Mix 1 video user for every 6 Web users
Monitoring Polling frequency: 5 seconds
Controller behavior Floodlight’s default Forwarding Behavior implementation
Experiment duration 30 min

The experimentation workload was emulated on Mininet
in one Dell PowerEdge R815 with 4 AMD Opteron Processor
6276 Eight-Core processors and 64GB of RAM server.

C. Experiments & Discussion

To understand the variations of control traffic, we choose to
vary only one factor present in any OpenFlow-based network,
which is the idle timeout of forwarding rules. This factor
indicates when an entry of the flow table of an OpenFlow
switch, i.e., a forwarding rule, can be removed due to a lack
of activity. The default idle timeout (in seconds) is configurable
in the Floodlight controller and is applied for every new
forwarding rule installed. Figures 3, 4, and 5 show how the
idle timeout configuration affects both the control channel load
and resource consumption. Moreover, to analyze Read-State
messages, we fixed the polling frequency in 5 seconds to
understand how the variation in size (not frequency) of these
messages impacts control traffic, specially related to the size of
Read-State (Reply) messages which contain per flow statistics.
All experiment samples were sized so to achieve a 95%
confidence and an error no higher than 2%. We suppressed
error bars from Figures 4 and 5 for the sake of visualization.

Figure 3 shows how the control traffic load (in Kbps)
varies as the idle timeout increases. The height of each bar
shows the total control traffic in both directions, i.e., from
the controller to the network (Send-Packet, Modify-State, and
Read-State (Request)) and form the network to the controller
(Packet-In and Read-State (Reply)). It is clear to notice that the
average traffic of Read-State requests remains constant, while
Read-State reply traffic increases significantly. This happens
because Read-State replies contain forwarding rule statistics,

thus as the idle timeout increases so does the chance of a given
forwarding rule being installed at a switch in each monitoring
poll. However, Packet-In, Send-Packet, and Modify-State traffic
decreases in average as the idle timeout increases. This happens
because all these messages will appear mostly if users remain
inactive for a period longer than the configured idle timeout,
which is fairly unlikely to happen for long idle timeout values.
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Fig. 3. Control channel load vs. idle timeout configuration

Figure 4 shows the number of packets processed per second
by both the controller and network devices. Similar to Figure 3,
this chart also shows in the total bar height an accumulated
value, i.e., the number of messages flowing in each direction.
Mainly, the results in Figure 4 show that when the rule
idle timeout configuration is set to low values, the average
of Packet-In generated to the controller direction and Send-
Packet/Modify-State messages sent to network devices both
increase. Most importantly, the administrator needs to watch
over this configuration to avoid bottlenecks at the controller.
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Figure 5 shows the total number of forwarding rules and
which of those are idle for a given idle timeout configuration.
A forwarding rule is idle when its counters do not change
between two monitoring polls. The results show that increasing
the idle timeout value causes a larger number of idle rules
installed in switches. This occurs because the user traffic
profile of most users generates sparse and short-lived requests
(e.g., Web requests). Considering our scenario, when the idle
timeout is set to 120 seconds, for example, the average rules
installed in the network is about 1042, being 77% of these rules
inactive. Given that the switches’ TCAM are an expensive
resource to be wasted and the number of rules that can be
stored in these memories is limited, it is important to control
this configuration closely to avoid running out of resources.
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In summary, this analysis shows how a single factor
configured at the controller can significantly affect the control
channel traffic and resource consumption of an OpenFlow-
based network. It is important to mention that we discovered
a hard limit to collect statistics with Read-State messages on
the controller implementation (in our experiment this limit was
682 rules). Thus, when a switch has more installed rules than
the controller supports, collected statistic can be inaccurate.

IV. AN APPROACH TO INTERACTIVE SDN MANAGEMENT

In this section, we present our interactive approach to
SDN management through monitoring, visualization, and con-
figuration. First, in Section IV-A we detail components and
how our approach lines up with the general SDN conceptual
architecture. Second, in Section IV-B we present our prototype
implementation and the extensions developed on the Floodlight
controller to support advanced control channel management.

A. Conceptual Architecture

Figure 6 shows the SDN architecture along with the
components added to enable management via monitoring, visu-
alization, and configuration. To introduce concepts didactically,
we organize the explanation in two steps. First, we detail the
SDN architecture. Second, we explain all components of our
approach and how the Administrator can interact with them.

Fo
rw

ar
d

in
g 

P
la

n
e

C
o

n
tr

o
l 

P
la

n
e

Northbound API

A
p

p
lic

at
io

n
 

P
la

n
e

Database

M
an

ag
em

en
t 

P
la

n
e

Forwarding devices

Southbound API

Network applications and services

SDN controllers

GUI

M
I

SDN Interactive Manager

Adminstrator

M
I

M
I

Visualization
Manager

.

.

.
Other SDN Management Solutions

Configuration
Manager

Monitoring
Manager

Chart 
Visualizations

Statistics 
Processing

Floodlight
Adapter

Infrastructure 
Synchronizer

Fig. 6. Conceptual Architecture

Overall, SDN introduces an architecture with four planes:
management, application, control, and forwarding [28]. All
planes communicate with each other through interfaces. For
example, the management plane uses a set of Management In-
terfaces (MI) to exchange information and to control elements
in other planes. In addition, an interface called northbound API
establishes bidirectional communication between application
and control planes, while the southbound API does the same
for control and forwarding planes. Ideally, all these interfaces
should be standardized to allow easy replacement of devices
and technologies. In practice, the OpenFlow protocol is the
current de facto standard southbound API. All other interfaces
are undergoing discussion and development.

Conceptually, each of the four planes has a set of specific
functions that need to be fulfilled, as following explained:

• Management Plane: is responsible for managing
elements in other SDN planes (e.g., monitoring de-
vice status, allocating resources, and enforcing access
control policies).

• Application Plane: contains one or more applications
that can serve several different purposes (e.g., firewall,
circuit establisher, and load balancer). Each of these
applications are granted with access to a set of re-
sources by one or more SDN controllers.

• Control Plane: contains one or more controllers that
coordinate network devices. At least an SDN con-
troller needs to execute the requests coming from the
application plane. Commonly, these controllers also
include internal logic to handle network events and
make traffic forwarding decisions (e.g., the aforemen-
tioned hub, switch, and forwarding behaviors).

• Forwarding Plane: comprises a set of simple for-
warding elements with transmission capacity and traf-
fic processing resources. The notion of keeping for-
warding elements simple and making decisions at
higher software layers is central in SDN.

In this paper, we propose a solution called SDN Interactive
Manager that includes three main components: Monitoring
Manager, Visualization Manager, and Configuration Manager.
The SDN Interactive Manager sits in the management plane of
SDN alongside other existing or yet to be developed solutions.
Since our approach to SDN management comprises interactive
network management, we also depict in the architecture the
Administrator who interacts primarily with the Visualization
Manager and the Configuration Manager components through
a Graphical User Interface (GUI). Therefore, our solution
creates a loop of activities by integrating these components
with the Administrator interactions. Each of these components
performs independent tasks described as follows.

Monitoring Manager – This component is responsible for
retrieving updated information about the network and storing
it in a local Database. This is performed mainly through
a module called Infrastructure Synchronizer, which collects
information, such as traffic statistics, network topology, and
device data, by accessing an MI to one or more controllers
situated in the control plane. Currently, there is no standard
MI, though we envision that such interface could present at



least the same functionality as the northbound API. Also, cus-
tomizations in this API could be added to support information
relevant to network management (e.g., control traffic counters
and resource usage data). Then, the Infrastructure Synchro-
nizer module stores both control and data traffic statistics,
maintaining a history of network changes and SDN-related
configurations performed by the Administrator.

Visualization Manager – This component comprises the
Statistics Processing and Chart Visualizations modules. With
information stored in the Database, the Statistics Processing
module is able to aggregate data per host, switch, controller, or
even the entire network to be used by the Chart Visualizations
module. Furthermore, the Statistics Processing module is also
able to identify which rules are active and which are idle on
forwarding devices. To build interactive visualizations that can
be analyzed by the Administrator, the Chart Visualizations
module uses a rich library of interface components (e.g.,
graphs, charts, and diagrams) that enables data updates in real
time. Then, based on these visualizations, the Administrator
can be aware of possible issues or bottlenecks and plan for
adjustments and improvements in the network configuration.

Configuration Manager – This component allows the
Administrator to check and configure SDN-related parameters
on network controllers through the MI. The Floodlight Adapter
module permits setting up the polling interval for monitoring
network devices through a friendly GUI. Moreover, through
the same GUI, the Administrator can trigger the Floodlight
Adapter module to set the idle timeout to be configured
globally, per device, or per flow. All SDN-related parameter
configurations on the controller are performed using an exten-
sion of the northbound API implementation that is embedded
in MI between management and control planes.

B. Prototype Implementation

We designed our prototype as a modular application with
independent and integrated functionalities for SDN monitoring,
visualization, and configuration. We followed the Model-View-
Template (MVT) design pattern and we chose Python 2.7 with
Django 1.6 [29] as development framework. The Database to
store network devices information as well as traffic statistics
has been implemented as Django Models. Each of monitoring,
visualization, and configuration functionalities were developed
as Views and the GUI as Templates. Moreover, we also
integrated our prototype with Floodlight, which is a Java-based
SDN controller, supported by a community of developers and
engineers of Big Switch Networks [16]. As a consequence
of our unusual requirements, we had to implement a module
for the Floodlight controller to support advanced management
features, such as reporting control traffic statistics and dynam-
ically configuring the idle timeout of forwarding rules.

Regarding the Monitoring Manager component, our im-
plementation focused on periodically updating network in-
formation to the Database. For this purpose, we used the
RESTful API provided by the Floodlight controller. From
this API one is able to access information about the physical
topology, including links, switches, and hosts. Moreover, the
Monitoring Manager also gathers data traffic counters of every
rule installed on each switch of the topology. However, by
default, the Floodlight controller does not address control

traffic counters. Therefore, we developed a module for Flood-
light controller, which we called Control Statistics Aggregator,
to gather these counters and extended the RESTful API to
report them. The Control Statistics Aggregator module watches
control channel connections to inspect and count OpenFlow
messages generated either by the controller or switches. This
module gathers all these control messages, keeps separated
counters (number of packets and packet lengths) by device,
message type, and sub-type.

The Visualization Manager component is implemented
as a Web based application relying mainly on the D3.js
library [30]. The major purpose of this component is to provide
an interactive way for the administrator to understand the
current network status and visualize the impact of his/her
configurations in real time. Thus, as the network is periodically
monitored by the Monitoring Manager component, visualiza-
tions are updated in the same pace. The integration between
these two components allows our prototype to display network
visualizations, such as: topology view with intuitive hints on
where resource bottlenecks might be occurring, charts of idle
and active rules installed on forwarding devices, amount of
OpenFlow messages flowing in control channels, and the traffic
rate these messages generate.

The implementation of the Configuration Manager aims
to provide an easy way for the Administrator to change the
network configurations through the same GUI where visualiza-
tions are displayed. For that purpose, we developed a module
as an extension of the Floodlight default RESTful API so
that configuration parameters can be sent from our prototype
to the controller. Our prototype currently supports only the
configuration of the forwarding rule idle timeout parameter, but
the implementation can be easily extended to support others.
Another parameter that can be set is the polling interval of
the Infrastructure Synchronizer module. This parameter affects
the frequency of reading information from counters of network
devices. The impact of these parameters on the control channel
load and resource consumption, as well as how visualizations
reflect their changes are presented in the next section.

V. EVALUATION

In this section, we describe the evaluation of our approach
using the developed prototype. Our goal is to measure control
channel load and resource usage considering the administrator
interactions over the experiment timespan. To understand the
impact of changing SDN-related parameters, we simulated
some administrator interactions to control the campus topol-
ogy, workload, and controller behavior presented in Section III.
In addition to varying the rule idle timeout configuration, we
also change the monitoring polling interval to understand the
impact of Read-State messages as well. Table II presents all
configurations changes simulated during the evaluation period.

TABLE II. SIMULATED ADMINISTRATOR INTERACTIONS

Parameter Value
Reconfiguration time (hour:minutes) 11:05 11:12 11:25 11:37 11:47 11:57
Rule idle timeout (seconds) 5 60 30 30 30 30
Monitoring interval (seconds) 5 5 5 40 30 15

Figure 7 depicts the user-friendly Web interface devel-
oped in order to provide the administrator with interactive
visualizations and to allow easy configuration of SDN-related



Fig. 7. Web interface of the prototype developed

parameters. The visualization of the physical topology allows
to alternate between three different perspectives (from the
top-right corner): data traffic, control traffic, and resource
usage. Depending on the active perspective, different sizes
and colors of switches and hosts, as well as link widths and
colors, are used to represent different levels of resource usage,
control traffic, and data traffic. On the top-left corner of the
Web interface two configuration parameters can be adjusted:
polling interval for monitoring and idle timeout of forwarding
rules. Below the physical topology visualization, we placed
interactive charts showing online resource usage in terms
of installed rules (active and idle), traffic rates, and packet
processing rates. In the example of Figure 7, these charts
display results for the aggregated control traffic of the whole
network. However, by selecting a device the administrator is
also able to filter this information per switch or host.

Figures 8 to 10 present the interactive charts available from
the Web interface of our prototype in more detail. These charts
present the total and idle rules (Figure 8), control traffic rates
in kbps from the controller to switches (Figure 9(a)) and vice
versa (Figure 9(b)), and control packets processed per second
also in both ways (Figures 10(a) and 10(b)). These charts show
information for the whole network during the timespan of the
experiment (1 hour). Vertical dashed lines mark the moments
when the administrator changes a configuration (see Table II).

At the beginning of the experiment, the amount of installed
rules is approximately 200, while nearly zero are idle, as
shown in Figure 8. As mentioned before, a rule is considered
idle when its counters do not change between two monitoring
polls. This small number of idle rules is a consequence of
the low rule idle timeout value set to 5 seconds (default
Floodlight configuration). On the other hand, the controller is
processing a large number of Packet-In messages, as displayed
in Figure 10(b). To reduce the load on the controller, at
11:12, the administrator changes the rule idle timeout to 60

seconds. After this change, it is possible to visualize a dramatic
decrease in control packets processed both by the controller
and network devices. However, this configuration also affects
immediately resource consumption, specially in terms of idle
rules (Figure 8) and control traffic rate towards the controller
(Figure 9(b)). With this rule idle timeout configuration nearly
77.7% of all forwarding rules remain idle and upload control
traffic increases almost threefold.

Close to 11:25, the administrator decreases the rule idle
timeout to 30 seconds as an attempt to bring down traffic
in the control channel and the amount of forwarding rules
installed. From Figures 8 and 9(b) it is possible to visualize
such configuration does indeed decrease these values over
time. Nevertheless, instead of observing a hard drop in traffic
rate and installed rules, this time we notice a gradual decrease.
This behavior can be explained because the new idle timeout
settings will only be applied to newly installed rules. Thus,
rules installed before the change will respect the previous
configuration. Also, packet processing rates tend to increase
again with this configuration, but nowhere near the values from
the beginning of the experiment.
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Fig. 8. Total and idle rules behavior during the experiment duration
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Fig. 9. Control channel traffic rates over the experiment duration
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Fig. 10. Control channel packet rates over the experiment duration

After the first two changes, the amount of traffic in the
control channel towards the controller remains very high
(Figure 9(b)). Most of this traffic is due to Read-State reply
messages, which are loaded with counters for as many rules as
are installed in all switches. To decrease the amount of Read-
State messages, the administrator increases the monitoring
polling interval to 40 seconds at roughly 11:37. Immediately
after this change, we can visualize that the control traffic rate
generated by these messages is significantly reduced. However,
looking at Figure 8, we are also able to notice an unexpected
decrease in the amount of idle rules installed. This behavior is
actually a distortion or loss of precision in monitoring given the
way of identifying for idle rules. To be considered idle a rule
needs to be monitored twice without changing its counters,
which will rarely happen with too sparse monitoring polls.
Finally, the administrator decreases the polling interval to 30
seconds (at 11:47), which is still insufficient to capture idle
rules, and to 15 seconds (at 11:57), when the monitoring
process returns to identify idle rules.

VI. CONCLUSION AND FUTURE WORK

Although network monitoring, visualization, and configura-
tion are common management activities, in the context of SDN,
these activities can be considerably different from traditional
networks and deserve proper attention. The SDN controller
behavior, for example, can be customized by network admin-
istrators, which might affect resource consumption and traffic
forwarding performance. In this paper, we initially presented
an analysis of the control channel traffic in OpenFlow networks
to verify the impact of specific SDN-related parameters and
their influence in the overall network resource consumption.
Then, we have proposed an interactive approach that integrates

SDN monitoring, visualization, and configuration activities,
allowing the administrator to interact with and better under-
stand the network. Moreover, we also developed a prototype
as a proof-of-concept and evaluated our approach to SDN
management simulating the administrator interactions.

By analyzing the control channel in OpenFlow-based SDN,
we showed how resource usage and control channel load are
affected by the configuration of SDN-related parameters (i.e.,
idle timeout of forwarding rules). Our developed prototype
included a monitoring component that retrieves statistics of
control channel traffic, a feature which most SDN manage-
ment approaches do not consider. Moreover, our approach
allowed the administrator to easily visualize the number of
packets processed by both controller and forwarding devices,
the control channel load also in both directions, and the
proportion of idle rules installed on forwarding devices. Based
on this information, administrators are able identify potential
issues and change configurations of SDN parameters using our
interactive Web interface to achieve their specific goals.

In future investigations, we plan to perform more ex-
periments with other SDN-related parameters and different
controller implementations. We also plan to perform experi-
ments with other versions of the OpenFlow protocol, which
have different control messages and data structures. Finally,
we intend to provide more configuration possibilities on the
prototype, such as thresholds to an algorithm that can perform
automated reconfigurations on behalf of the administrator.
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