
Algorithms for Advance Bandwidth Reservation
in Media Production Networks

Maryam Barshan1, Hendrik Moens1, Jeroen Famaey2, Filip De Turck1

1Department of Information Technology, Ghent University – iMinds
Gaston Crommenlaan 8/201, B-9050 Gent, Belgium

2Department of Mathematics and Computer Science, University of Antwerp – iMinds
Middelheimlaan 1, 2020 Antwerpen, Belgium

Email: maryam.barshan@intec.ugent.be

Abstract—Media production generally requires many geo-
graphically distributed actors (e.g., production houses, broad-
casters, advertisers) to exchange huge amounts of raw video and
audio data. Traditional distribution techniques, such as dedicated
point-to-point optical links, are highly inefficient in terms of
installation time and cost. To improve efficiency, shared media
production networks that connect all involved actors over a large
geographical area, are currently being deployed. The traffic in
such networks is often predictable, as the timing and bandwidth
requirements of data transfers are generally known hours or
even days in advance. As such, the use of advance bandwidth
reservation (AR) can greatly increase resource utilization and cost
efficiency. In this paper, we propose an Integer Linear Program-
ming formulation of the bandwidth scheduling problem, which
takes into account the specific characteristics of media production
networks, is presented. Two novel optimization algorithms based
on this model are thoroughly evaluated and compared by means
of in-depth simulation results.

Index Terms—Advance bandwidth reservation, media produc-
tion network, video streaming, deadline-aware scheduling.

I. INTRODUCTION

The production of media content is a complicated process
involving a wide range of actors, such as production houses,
facility providers, broadcasters and advertisers. Throughout
the production process, huge amounts of raw video and
audio content need to be transferred between geographically
distributed locations (e.g., from an external filming location,
to the production studio, to the broadcaster). Currently, the
distribution of media production content is generally per-
formed by either people transporting the content on a physical
storage medium or over dedicated point-to-point high-speed
optical links. Clearly, these are highly inefficient and costly
methods. Connecting the different actors involved in the media
production process to a shared network substrate would greatly
reduce capital expenditures and increase network resource
utilization. Currently, such shared media production networks,
connecting many actors across a large geographical area (e.g.,
a country), are being deployed.

A key characteristic of traffic in media production net-
works, is its predictability. The timing, locality and bandwidth
requirements of data transfers are often known hours and
sometimes even days in advance. As such, the use of advance
bandwidth reservation (AR) techniques [1] would result in

greatly increased bandwidth utilization and reduced costs. In
AR networks, users submit requests for future data transfers,
generally encompassing a start time (either immediately or at
some point in the future), a deadline, and total data transfer
size (or rate). Subsequently, a scheduling algorithm allocates
the necessary bandwidth resources to ensure that all admitted
requests finish before their specified deadline, while admitting
as many requests as possible. Clearly, AR has several advan-
tages for next generation media production networks. It allows
network operators to better plan resource usage, leading to
greatly increased resource utilization and guaranteed Quality
of Service (QoS).

In order to implement AR scheduling, the underlying net-
work has to support bandwidth reservations. Current research
on the topic mostly focuses on optical networks in combination
with wavelength division multiplexing [1]. However, Software
Defined Networking (SDN) techniques, such as OpenFlow,
provide high-level bandwidth reservation abstractions, hiding
the details of the underlying physical mechanisms. As a
first contribution, this paper presents an AR-based media
production platform that is generic in terms of the underlying
reservation techniques (e.g., wavelength- or time-based multi-
plexing), which can be used in conjunction with SDN.

As a second contribution, we propose a set of novel AR
scheduling algorithms, optimized for media production net-
works. Such networks impose requirements not supported by
existing AR scheduling techniques. First, the start time of
requests is generally flexible, the deadline is fixed, and the re-
served bandwidth may vary over the lifetime of the reservation.
This combination of flexible start times and elastic bandwidth
allocation has not received much attention in research to date
[1]. Second, in media production networks, multiple requests
may depend on each other (e.g., the start time of sending edited
material to the broadcaster depends on the end time of sending
recorded material to the production office). Until now to the
authors’ knowledge, this aspect remained unexplored. Third, it
should be possible to split requests over multiple paths, in or-
der to further optimize bandwidth utilization. We present an In-
teger Linear Programming (ILP) model to solve this variant of
the AR scheduling problem. Based on this model, two schedul-
ing algorithms are presented. The Static Advance Reservation

Algorithm (SARA) assumes all requests are known at the start
of the reservation period (e.g., at the start of the day). In con-
trast, the Dynamic Advance Reservation Algorithm (DARA)
supports rescheduling in order to incorporate new requests at
runtime. We provide a thorough analysis of both algorithms
based on in-depth simulation results. They are compared and
the impact of their parameters on the solution is evaluated.

The remainder of this paper is structured as follows. In
Section II, we discuss related work. Section III describes
the architecture and components of our proposed SDN-based
media production network. In Section IV, the concepts, as-
sumptions and AR scheduling problem for media production
networks are detailed. Subsequently, the designed AR schedul-
ing algorithms are described in Section V. Section VI provides
simulation results, comparing the proposed algorithms. Finally,
Section VII concludes the paper.

II. RELATED WORK

AR has been a popular topic of study in the area of optical
networks with WDM throughout the last decade. Recently,
Charbonneau et al. surveyed the state of the art in WDM-
based AR, and classified existing approaches based on a novel
taxonomy [1]. Three types of AR scheduling algorithms were
identified; STSD demands specify a start time and a duration
(or deadline), STUD demands specify a start time but no dura-
tion, and UTSD demands specify a duration but no start time.
STSD, on which most work to date focuses, can be further
classified into fixed and flexible start time. In the former case,
the bandwidth reservation of the request needs to start at the
specified start time or be blocked. In the latter case, the reser-
vation needs to start within a window of possible start times.
Another variation is referred to as elastic reservations, where
the bandwidth allocated to a request may vary over time. The
algorithms we propose for media production networks can be
classified as STSD with flexible start time and elastic reserva-
tions. According to Charbonneau et al. only two AR schedul-
ing algorithms have been proposed that support elastic reser-
vations [2], [3]. However, they both assume a fixed start time.

Current research on AR scheduling mostly focuses on
rescheduling [4], [5], [6], multi-domain reservations [7],
and real-life deployments [8], [9], [10], [11]. Rajah et
al. [4] propose an AR scheduling algorithm for transferring
large volumes of data in e-science networks. The algorithm
performs an admission control and scheduling step. During
admission control, active requests may be rerouted in order
to increase request admission. For the scheduling step, two
alternative objectives are evaluated: quick finish (i.e., schedule
all requests as soon as possible) and load balancing (i.e.,
minimize maximum link load). One of the objectives used
in our work is inspired by the quick finish approach. Xie
et al. [5] study the rescheduling problem in more detail.
They propose an ILP-based model, as well as a fast heuristic
for re-routing flows in AR networks in order to maximize
admittance of new requests. Their ILP model forms a starting
point for the model presented in this paper.

SDN	 switch	

Datacenter	

On-‐site	
filming	 Broadcaster	

Recording	
studio	

SDN	 Controller	 SDN	 Controller	

Media	 Network	 Management	 Layer	

OpenFlow	 OpenFlow	

Temporal	 rouBng	 policies	
and	 bandwidth	 reservaBons	

AR	 Scheduling	 Algorithms	
ReservaBon	
Interface	

Fig. 1: Media production network architecture and components

In conclusion, the work presented in this paper differs
from state of the art research in three ways. First, to our
knowledge, we are the first to study the STSD problem with
both flexible start times and elastic reservations [1]. Second, in
contrast to most existing work, we employ SDN as an enabler
for a generalized AR scheduling approach, rather than one
specifically aimed at optical WDM technologies. Third, state
of the art research does not consider dependencies among
requests, which are important in the case of media production
networks, and are explicitly incorporated in our model.

III. MEDIA PRODUCTION NETWORK ARCHITECTURE

The envisioned media production network is depicted in
Figure 1, which we assume to be SDN-based. The different
actors and locations involved in the media production pro-
cess, such as for example recording studios, on-site filming
crews, broadcasters, and storage datacenters, are connected
to a shared wide-area network, consisting of interconnected
switches. The network supports the exchange of raw and
encoded multimedia content between an arbitrary set of actors
(i.e., unicast, multicast or broadcast), both in the form of file
transfers and streaming. The management layer provides a
reservation interface, that allows the users of the network to
reserve bandwidth over certain time periods in the future. The
AR scheduling algorithms are responsible for reserving the
required amount of bandwidth resources for all requests. With
each request, they associate one or multiple paths from source
to sink with a specific amount of reserved bandwidth. Note that
in case of file transfers, the reserved resources for a request
may vary over time, as long as the delivery deadline is satis-
fied. In case the deadline of a request cannot be guaranteed, the
reservation interface rejects it. When multiple requests depend
on each other, either all or none of them are admitted.

The output of the scheduling algorithms takes the form of
a set of temporal routing policies (i.e., the paths associated
with all requests over time) and bandwidth reservations (i.e.,
the amount of bandwidth resources to associate with each
flow over time). This information can be transferred to the
network controllers, that use it to configure the switches in

the media production network. The controllers keep track of
the temporal aspects of the policies, adjusting configurations
when necessary. For performing the configuration, a protocol
such as OpenFlow can be used. The remainder of this paper
focuses on the AR scheduling algorithms.

IV. AR SCHEDULING MODEL

We first present a formal model for the advance reservation
scheduling of network bandwidth. The model can be used
to schedule collections of requests, that consist of multiple
interdependent and deadline-constrained network transfers.
The network is represented as a graph with network nodes
N and edges E. The requests of all scenarios are stored in
R. The model supports two types of network transfers: video
streaming and large file transfers. Consequently R consists of
both types. To make distinction between two types Rf which
refers to file-based flows and Rs which refers to the streaming
requests are defined.

Requests are grouped into scenarios, contained in the set
S, that represent a complex workflow. These workflows must
be executed in their entirety, so when a scenario is admitted,
all requests must be executed. The model only admits those
scenarios for which sufficient bandwidth can be guaranteed
during the reservation period. When a scenario is rejected,
none of its requests are executed. The various requests within
a scenario may depend on each other, meaning that one request
can only start when other requests have finished.

In this model the nth request is denoted by rn =
(sn, dn, tns , t

n
e , i

n, bn) comprising of the source of the request
sn, the destination node dn, the time when the data for file-
based request is ready to transfer tns (or fixed start time for
video streaming request), the deadline for the transmission
of the data of file-based request tne (or fixed end time for
video streaming request), the duration of each request in and
finally the bandwidth demand of the request bn. In particular,
rnf and rns refers to file-based and video streaming requests
respectively. Moreover the volume of the files are denoted by
vn and the time slot size by I . Table I lists the notations which
has been used to define the model.

A. Decision variables

The goal of the model is to determine when and how
requests are transferred over the network. Binary decision
variables As and An are used to represent whether or not
scenario s or request n are admitted. When the scenario is
admitted, a collection of decision variables βn,e,k determines
the amount of bandwidth for a request n that is sent over edge
e during time slot k.

An ∈ [0, 1] ∀rn ∈ R
As ∈ [0, 1] ∀s ∈ S
βn,e,k ∈ R+ ∀rn ∈ R,∀e ∈ E, k ∈ [tmins , tmaxe]

For some requests their start and end times are not specified
and dependent on the start or end time of other requests. In
this case, the tns , tne or both of a request n may become

TABLE I: Symbols and notations used in the formal models

Variable Description

N Physical nodes set.
E Physical links set.
S Set of all scenarios (s ∈ S).
Rf Set of file-based video requests.
rnf The nth request of set Rf .
Rs Set of video streaming requests.
rns The nth request of set Rs.
R Set of all requests (Rf ∪Rs).
Ro Set of all old requests.
rn The nth request of set R, denoted by rn = (sn, dn, tns , t

n
e , i

n, bn).
sn Source node of request rn.
dn Destination node of request rn.
tns Start time for the request rn. Decision variable when not specified.
tne Deadline for the request rn. Decision variable when not specified.
in Duration of request rn.
bn Required bandwidth of rn.
vn Volume of rnf for file-based requests (in bit).
βn,e,k Decision variable. Dedicated Bandwidth over link e, request rn and

time interval k.
SUn,k Binary decision variable. 1 iff in time slot k any reservation is done

for request n, 0 otherwise.
An Binary decision variable. 1 iff request rn is admitted, 0 otherwise.
As Binary decision variable. 1 iff scenario s is admitted, 0 otherwise.
I Duration of each time interval (in second).
tmin
s Minimum start time of all reservations.
tmax
e Maximum end time of all reservations.
Be Bandwidth capacity of link e.
Eout

v This collection contains all edges starting from node v (egress).
Ein

v This collection contains all edges ending in node v (ingress).

decision variables of which the value is determined during
the optimization process. To support these kinds of scenarios
additional decision variables and constraints need to indicate
whether a request is active during a given time slot. Therefore,
we define the binary time slot use decision variable SUn,k that
takes on value 0 when a request n is inactive during time slot
k. These variables are defined for all requests where tns , tne or
both are decision variables, but not for requests of which start
and end time are known.

SUn,k ∈ [0, 1] ∀rn ∈ R, k ∈ [tmins , tmaxe]

tns ∈ R+ ∀rn ∈ R if start time is variable
tne ∈ R+ ∀rn ∈ R if end time is variable

B. Objective function

We consider two different objective functions which we
refer to as maxA and ASAP. By the former, shown in Expres-
sion 1 we aim at maximizing the rate of request admittance
which is determined by summing the An variables.

max
∑
rn∈R

An (1)

The alternative ASAP objective function, shown in Ex-
pression 2 maximizes the number of admitted requests, but
also tries to schedule requests as soon as possible. This is
done by adding a second factor to the objective function that
achieves higher values when requests are scheduled in earlier
timeslots. This second term is normalized to ensure it will not

interfere with the primary objective of maximizing the number
of accepted requests.

max
∑
rn∈R

An +

∑
rn∈R

∑
e∈Eout

sn

∑
k∈[tns ,tne]

βn,e,k

k∑
rn∈R

∑
e∈Eout

sn

∑
k∈[tns ,tne]

Be

k

(2)

C. Flow constraints

Requests are scheduled over a network, which means they
are subject to capacity and network flow constraints. The
capacity constraint, shown in Expression 3, ensures that the
cumulative bandwidth reservation over each link does not
exceed its bandwidth capacity. This constraint is specified for
every edge, and for every time slot.∑

rn∈R
βn,e,k ≤ Be ∀e ∈ E,∀k ∈ [tmins , tmaxe] (3)

All network nodes that are not source or sink of a flow
are subject to a flow conservation constraint, shown in Ex-
pression 4, which ensures the incoming flow equals outgoing
flow. The network entering and leaving the source and sink of
the flow is dependent on the type of request. For a file transfer
request, an entire volume vn must be transferred between the
start and end times, which is shown in Expression 5. For these
requests, the amount of data transferred can vary between
timeslots. Video streaming requests are handled behave differ-
ently, as they require a constant amount of resources during all
time intervals between the start and end time of the request.
This is shown in Expression 6. To minimize the occurrence
of loops within the network, constraints preventing incoming
flow in the source node and outgoing flow in the sink node is
added. These constraints are shown in Expressions 7 and 8.∑
e∈Eout

v

βn,e,k =
∑
e∈Ein

v

βn,e,k (4)

∀rn ∈ R,∀k ∈ [tmins , tmaxe], {∀v ∈ N |v /∈ {sn, dn}}∑
k∈[tmin

s ,tmax
e]

∑
e∈Eout

sn

βn,e,k × I = vn ×An ∀rnf ∈ Rf (5)

∑
e∈Eout

sn

βn,e,k = bn ×An ∀rns ∈ Rs,∀k ∈ [tmins , tmaxe] (6)

∑
e∈Ein

sn

βn,e,k = 0 ∀rn ∈ R,∀k ∈ [tmins , tmaxe] (7)

∑
e∈Eout

dn

βn,e,k = 0 ∀rn ∈ R,∀k ∈ [tmins , tmaxe] (8)

D. Interdependent requests

Start and end times of requests may either be input variables
or decision variables. Dependencies between different requests
are handled by Expressions 9, 10, 11, 12, 13 and, 14 and 15.
First, Expression 9 ensures either all or none of the requests
of a scenario get admitted.

An = As ∀rn ∈ R (9)

Expression 10 is defined to connect βn,e,k and SUn,k

values, which is needed if either the start or end time of

a request is a decision variable. This constraint ensures that
SUn,k can only become zero if βn,e,k = 0.

βn,e,k ≤ SUn,k ×Be ∀e ∈ E,∀k ∈ [tmins , tmaxe],∀rn ∈ R
(10)

If the start time is known and predefined as an input
variable, then Expression 11 ensures that no bandwidth is
dedicated to request rn before tns .

βn,e,k = 0 ∀e ∈ E,∀rn ∈ R,∀k ∈ [tmins , tns) (11)

If the start time is not specified and depends on other
requests, then tns is a decision variable. In that case, the
constraint shown in Expression 12 is used to ensure SUn,k be-
comes 0 for values of k < tns , ensuring nothing is transferred.
Dependencies between time variables can than be added as
shown in Expression 13, which ensures that the request n is
started only when all the requests on which request n depends
are finished.

tns ≤ k + (1− SUn,k)× tmaxe ∀rn ∈ R,∀k ∈ [tmins , tmaxe]
(12)

tns ≥ tn
′

e + 1 {∀rn ∈ R|rn depends on rn
′

} (13)

When the end time is an input variable, then Expression 14
ensures that no bandwidth is dedicated to request n after tne .

βn,e,k = 0 ∀e ∈ E,∀rn ∈ R,∀k ∈ (tne , t
max
e] (14)

If the end time is not specified, tne is a decision variable.
In this case, a constraint is added to ensure SUn,k becomes 0
for values of k > tne , ensuring nothing is transferred after the
end time. This is constraint shown in Expression 15.

tne ≥ k − (1− SUn,k)× tmaxe ∀rn ∈ R,∀k ∈ [tmins , tmaxe]
(15)

E. On-line model

The model described in the previous section can be used to
statically compute a schedule for the execution of a collection
of scenarios, provided all scenarios are known beforehand. In
practical media production networks, the requests however ar-
rive at various times in on-line manner. Therefore, a dynamic,
on-line approach is needed that adapts the schedule at runtime.
We present this on-line model as an extension of the previously
discussed static model, meaning is implemented with the
previously defined decision variables and objective functions.

The on-line model assumes that a previous schedule ex-
ists, and that one or more requests are added that must be
scheduled. This results in a new schedule that contains both
the original requests, and the new requests. We assume that
a request may not be canceled once it has been accepted,
meaning that while old requests may be rescheduled, they may
not fail. Besides the constraints of the original model, one ad-
ditional constraint (shown in Expression 16) is therefore added
to ensure that previously admitted requests remain accepted.

As = 1 ∀rn ∈ Ro (16)

V. ILP BASED ADVANCE RESERVATION ALGORITHMS

In this section we define two algorithms based on the
model presented in the previous section. The Static Advance
Reservation Algorithm (SARA) can be used to generate a
schedule when all requests are known before execution, and
is based on the static model. When not all requests are
known from the start, and new ones are added throughout the
day, the Dynamic Advance Reservation Algorithm (DARA),
which makes use of the on-line version of the model, can
be used. The proposed algorithms are implemented with both
the maxA and ASAP objective functions, resulting in four
algorithm variants: SARAmaxA, SARAASAP , DARAmaxA
and DARAASAP . Both algorithms are implemented in Java
1.7 and make use of Integer Linear Programmings (ILPs)
that are solved using the IBM ILOG CPLEX Optimization
software package.

A. Static Advance Reservation Algorithm (SARA)

The SARA algorithm is based on the formal model that was
presented in the previous section, which was implemented as
an ILP using CPLEX. In this algorithm we assume that all
the scenario arrivals are known beforehand, which results in
an optimal schedule.

Having just the previously defined constraints, the multi-
path model is likely to result in feasible but undesirable solu-
tion, as cycles may potentially occur in intermediate network
nodes. As the model is implemented using an ILP, these cycles
will never impact the optimality of the result as specified by
the objective function. There are two possible approaches to
address these cycles. 1) Firstly, it would be possible to modify
the model by changing the objective, adding an additional
factor that minimizes the edge use. This would however
increase the complexity of the model and consequently lead
to an increase in execution duration. Futhermore, this would
make it more difficult to balance the different optimization
objectives. 2) Alternatively, the results of the algorithm can
be post-processed by removing the cycles after the ILP has
been solved. This approach has the advantage of limiting the
complexity of the ILP model, and as stated previously has no
impact on its optimality.

Because of these considerations, we use the latter solution.
Therefore, we use a post processing algorithm after the ILP
optimization. During this post-processing phase, we look for
cycles in each reserved path and to get rid of extra reservations
in each cycle the reserved bandwidths are modified.

B. Dynamic Advance Reservation Algorithm (DARA)

In practice, some requests may not be known from the start
of the scheduling, making it impractical to use the SARA.
Therefore, a dynamic version of the resource reservation
algorithm is needed. The DARA invokes the ILP formulation
of the model multiple times whenever new scenarios arrive.
When this happens, the DARA re-optimize the reservation by
re-routing existing reservations in order to accommodate new
scenarios’ requests. This re-optimization is performed for the
entire schedule starting from the next time slot. We assume that

loc1

Production Studio

Broadcaster loc4

loc3

loc2

Service Provider

loc5

Fig. 2: Media production network topology used in the eval-
uation

new incoming scenarios have lower priority as the previous
requests are already admitted and rejecting them violate the
agreed SLA.

In the DARA algorithm, an initial schedule is generated
using the static model, which then iteratively updated using
the on-line model as new requests arrive. The input of the on-
line model must however be modified at every trigger point
to take into account the work that has already been executed.
Therefore, requests are divided in three categories based on
their progress:
• Scheduled: When a request is scheduled, it will start

to execute during some time slot in the future. As the
request is not yet running during the trigger point, no
special considerations are needed.

• Finished: A request is considered finished when it has
finished executing at the time of the trigger point. The
request itself can therefore be removed from the on-line
model input. If the start or end times of other requests
depend on the end time of this request, the final end time
can be added as an input the the model.

• In progress: A request is in progress when it has started,
but has not finished yet at the time of the trigger point.
These requests must still be considered in the on-line
model input, but the amount of data that was already
transferred must be removed from the total request de-
mand.

VI. RESULTS & DISCUSSION

This section evaluates the proposed AR scheduling algo-
rithms. The DARA algorithm and its two proposed objective
functions are compared using the optimal SARA algorithm
as a benchmark. The influence of the available bandwidth,
the percentage of requests known in advance, and the time
granularity are assessed.

A. Evaluation Setup

The media production network topology used for the evalua-
tion, depicted in Figure 2, contains 12 nodes. The network con-
sists of media production actor sites, SDN-enabled switches
and bidirectional WAN links. 8 out of 12 nodes are devoted to

Recording
(P1)

Production
Studio

Service
Provider

1

5

3 4 2

Broadcaster

(a) Use case 1: Soccer discussion program

1,4,7

12,13,14

17

18

Broadcaster

Service
Provider

Production
Studio

Recording1
(P1)

Recording2
(P2)

Recording3
(P3)

(b) Use case 2: Infotainment show

1 2

5

3

6 4

7

8

Broadcaster Service
Provider

Pre production
(P1)

Recording
(P2)

Production
Studio
(archive)

Production
Studio (Delayed

 view)

Live
Recording.3

(P5)

Live
Recording.2

(P4)

Live
Recording.1

(P3)

(c) Use case 3: News broadcast

Fig. 3: Interactions between media production actors in the three considered use case scenarios

different media production actors e.g. the production studio,
broadcaster, service provider and recording locations. The 4
remaining nodes are the intermediate SDN switches, connected
in a full mesh topology. It should be noted that this topology
is chosen because of the limited scalability of ILP-based
algorithms. In future work, by proposing scalable near-optimal
heuristics, higher scalability will be achieved.

Based on interviews with several Belgian media production
actors, including a broadcaster, service provider, and recording
facility provider, a set of use case scenarios was defined
that serve as a basis for the evaluation. Figure 3 depicts the
interactions between actors in the three defined use cases. Use
case 1 represents a soccer after-game discussion program and
comprises 5 different file transfer requests. Use case 2 is a
30 minute infotainment show and consists of 18 file transfer
requests. Finally, use case 3 is a news broadcast, consisting of
4 file transfer and 4 video streaming requests. Several instances
of each use case are generated, based on randomized input
parameters. A detailed overview of the randomized variables
of each use case and its requests is shown in Table II. The
variable names used in the table header are mostly defined in
Table I. #tns dep. refers to the number of requests on which
the start time of the request (i.e., tns) depends. If a request
does not depend on others, tns /dep.On is defined as the start
time of the request, otherwise it points to those interdependent
requests. The variables #tesdep. and tes/dep.On are similarly
defined for the end time of the request. The variable s used
in the table represents the earliest time on which the file-
based request could be started. In addition, st, d, and et deals
with the streaming requests and refers to the start time of
the broadcast on television, the deadline of the request to get
started, and the end time of the request respectively

Each simulation run covers a 24 hour period. When using
the SARA algorithm, it is assumed that all scenarios are known
in advance. When using DARA some use case instances are
assumed to be known only throughout the day, at least one
hour before tns of its earliest request. Throughout this section,
DARAXX%[YY] denotes that XX% of the use case instances
are known at the start of the simulated day and the objective
YY is used (i.e., ASAP or MaxA). We found that both ASAP

and MaxA objective functions yield identical results for the
SARA algorithm, which is why this algorithm is denoted by
SARA without mention of the used objective function. All
results are averaged over 50 runs with different randomized
inputs, error bars denote the standard error.

B. Impact of available bandwidth

1) Scenario: The media network infrastructure has been
configured for different available bandwidths to investigate
the impact of network capacities on the performance of our
algorithms. Bandwidth capacity per link varies from 900Mbps
to 1.5Gbps. The number of use case instances equals 20, of
which 7, 7 and 6 are of use case 1, use case 2 and use case
3 respectively. This results in a total of 209 requests. A fixed
time interval granularity of 1 hour is used.

2) Results: Figure 4 compares the percentage of admitted
requests of SARA to the maxA and the ASAP objective
functions of DARA, where for the latter either 0% or 50%
of use case instances are known in advance. As expected,
SARA outperforms DARA, as knowing all requests gives
more freedom to schedule everything, making it easier to
determine the subset of requests to reject. From the figure, we
can conclude that the ASAP outperforms MaxA in a dynamic
scenario, as it schedules requests as soon as possible, freeing
up more resources for requests that may arrive in the future.

70

75

80

85

90

95

100

900 1000 1100 1200 1300 1400 1500

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical bandwith (Mbps)

SARA

DARA50%[maxA]

DARA0%[maxA]

DARA50%[ASAP]

DARA0%[ASAP]

Fig. 4: Impact of bandwidth capacity on request admission
rate, comparing objective functions maxA and ASAP

TABLE II: Details of the use case requests

Use case 1 Type sn dn #tns dep. tns /dep.On #tne dep. tne /dep.On in bn

Req1 rf P1 Production studio 0 rand(s+ 1hrs, s+ 5hrs) 1 Req3 90min 200Mbps
Req2 rf P1 Production studio 0 rand(s, s+ 6hrs) 1 Req3 90min 200Mbps
Req3 rf Broadcaster Production studio 0 Req1, 2 1 Req4 90min 200Mbps
Req4 rf Production studio Service provider 3 Req1, 2, 3 0 st 180min 15Mbps
Req5 rf Service provider Broadcaster 0 st+ 3hrs 0 24hrs 180min 15Mbps

P1 = rand(loc1, loc2, loc3, loc4, loc5); s = rand(1, 9) hrs; st = rand(17, 19) hrs

Use case 2 Type sn dn #tns dep. tns /dep.On #tne dep. tne /dep.On in bn

Req1,9 rf P1 Production Studio, Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req2,10 rf P2 Production Studio, Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req3,11 rf P3 Production Studio, Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req4,12 rf P1 Production Studio, Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req5,13 rf P2 Production Studio, Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req6,14 rf P3 Production Studio, Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req7,15 rf P1 Production Studio, Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req8,16 rf P2 Production Studio, Service Provider 0 rand(s, 17hrs) 1 Req17 (50− 60)min 200Mbps
Req17 rf Production studio Broadcaster 16 Req1..16 1 Req18 60min 200Mbps
Req18 rf Broadcaster Service provider 1 Req17 0 st 60min 15Mbps

P1, P2, P3 = rand(loc1, loc2, loc3, loc4, loc5); s = rand(1, 15) hrs; st = rand(18, 22) hrs

Use case 3 Type sn dn #tns dep. tns /dep.On #tne dep. tne /dep.On in bn

Req1 rf P1 P2 0 rand(s, 9hrs) 1 Req2 (30− 50)min 200Mbps
Req2 rf P2 Broadcaster 1 Req1 0 rand(10, 12)hrs (30− 50)min 200Mbps
Req3 rf Production studio Broadcaster 0 rand(s, 9hrs) 0 rand(10, 12)hrs (30− 50)min 200Mbps
Req4 rs P3 Broadcaster 0 rand(st, d) 0 et (8− 10)min 15Mbps
Req5 rs P4 Broadcaster 0 rand(st, d) 0 et (8− 10)min 15Mbps
Req6 rs P5 Broadcaster 0 rand(st, d) 0 et (8− 10)min 15Mbps
Req7 rs Broadcaster Service provider 0 st 0 st+0.5hrs 30min 15Mbps
Req8 rf Broadcaster Production studio 0 st+0.5hrs 0 24hrs 30min 15Mbps

P1, P2, P3, P4, P5 = rand(loc1, loc2, loc3, loc4, loc5); s = rand(1, 7) hrs; st = rand(12, 16) hrs; d = (st+ 0.5− in) hrs; if (in < I) then (et = Tn
s +1) else (et = Tn

s + in)

70

75

80

85

90

95

100

900 1000 1100 1200 1300 1400 1500

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Physical bandwith (Mbps)

SARA[ASAP]

DARA90%[ASAP]

DARA70%[ASAP]

DARA50%[ASAP]

DARA0%[ASAP]

Fig. 5: Impact of bandwidth capacity and percentage of known
requests on admission rate

This shows that a naive approach that merely maximizes
request admission works well in a static scenario, but not in
a dynamic one. ASAP outperforms MaxA up to 3.27% when
0% of requests are known in advance, and up to 1.97% when
50% are known.

As ASAP results in a higher number of accepted requests,
we continue the evaluation with this function only. Figure 5
depicts more detailed results for ASAP, showing the influence
of the percentage of requests known in advance on the solu-
tion. As expected, more known requests significantly increases
performance. When no requests are known in advance, SARA
outperforms DARA[ASAP] by up to 6.02%, while when 90%
are known this is reduced to 2.19% at most.

C. Impact of time slot granularity

1) Scenario: In this section we evaluate the effect of time
slot granularity on the performance of the algorithms, both
in terms of solution optimality and execution complexity. The
size of the time interval parameter was varied between 1200

50

52

54

56

58

60

62

64

66

68

1200 1800 2400 3000 3600

P
e

rc
e

n
ta

ge
 o

f
ad

m
it

te
d

 r
e

q
u

e
st

s

Time slot size (s)

SARA[ASAP]

DARA90%[ASAP]

DARA70%[ASAP]

DARA50%[ASAP]

DARA0%[ASAP]

Fig. 6: Impact of timeslot granularity on request admission
rate

and 3600 seconds. The number of use case instances is 15 (5
of each use case) and the number of total requests is 155. A
link capacity of 400Mbps is used.

2) Results: Figure 6 studies the impact of time slot granu-
larity on SARA and DARA for the ASAP objective function.
As shown in this figure, the fine-grained experiment with
shortest time slot results in the best performance. However,
although more granularity increases the performance of the
model, the complexity of the model significantly increases
as well. Fine-grained time slot size increases the number of
decision variables and constraints. The result of complexity
measurement is provided in Table III. The table shows the
average, minimum and maximum number of constraints and
decision variables of any solved problem. In case of DARA,
several ILP problems need to be solved throughout the day.
The average number of invocations of the algorithm through-
out the day is depicted as #k. The variable I represents
the time slot granularity. When comparing performance for

TABLE III: Complexity of the solved ILP problems, in terms of number of constraints and number of decision variables

SARA DARA90%[ASAP] DARA70%[ASAP] DARA50%[ASAP] DARA0%[ASAP]

I (sec) AVG MIN MAX #k AVG MIN MAX #k AVG MIN MAX #k AVG MIN MAX #k AVG MIN MAX #k

C
on

st
ra

in
ts 1200 317774 306360 329103 1 226255 87407 280811 2.88 183321 66951 246462 5.62 154957 66981 229945 8.1 98525 9775 189878 11.94

1800 211326 203642 218957 1 150267 57590 187301 2.88 121658 43893 164845 5.42 103631 44573 153981 7.52 67183 6579 126375 10.92
2400 158130 152281 163828 1 113172 43436 141007 2.82 91661 33475 124094 5.2 77909 33775 116050 7.1 50621 5956 95854 9.84
3000 127119 122540 131684 1 90667 35773 113279 2.74 73667 27790 100297 5 63249 27712 93268 6.72 41773 4100 76460 9.18
3600 104862 101024 108640 1 75286 28143 94265 2.72 61218 21862 82471 4.72 52455 21782 77953 6.3 34827 3352 63925 8.42

V
ar

ia
bl

es

1200 321265 321265 321265 1 240018 118473 290616 2.88 197887 99639 266422 5.62 168117 97107 253304 8.1 108556 10230 213600 11.94
1800 214225 214225 214225 1 159564 76853 194087 2.88 131508 64521 176793 5.42 112678 65652 169407 7.52 74269 6832 142796 10.92
2400 160705 160705 160705 1 120391 58300 146246 2.82 99322 49286 134374 5.2 84916 50002 128002 7.1 56164 5735 108176 9.84
3000 129485 129485 129485 1 96647 47380 117900 2.74 79926 40680 108725 5 69135 40599 102202 6.72 46307 4182 86235 9.18
3600 107185 107185 107185 1 80462 38236 97706 2.72 66671 32434 89002 4.72 57537 31523 85909 6.3 38901 3462 71836 8.42

SARA, an interval size of 1200 seconds yields 4.4% better
results than a size of 3600 seconds. However, the complexity
of the problem also increases, as both the average number
of constraints and decision variables are increased threefold.
Given the exponential time complexity of ILP solving al-
gorithms, this increase in problem complexity results in an
exponential increase in execution time. For DARA, a similar
trend is observed. Moreover, it should be noted that in case
fewer requests are known in advance, the complexity of a
single DARA algorithm invocation decreases significantly. For
example, when 0% of requests are known, both the number
of constraints and variables are about 3 times smaller than
when all requests are known in advance. In the former case,
the algorithm needs to be executed between 8 and 11 times
on average, while in the latter only once. However, due to the
exponential time complexity, it is generally faster to solve a
large number of small problems, rather than a small number
of big ones.

VII. CONCLUSION

In this paper, we proposed an architecture for an SDN-
based media production network, and a set of scheduling
algorithms for advance bandwidth reservation (AR) satisfying
the specific requirements of such networks. The algorithms
are based on an ILP formulation that incorporates multi-
path routing, time-variable bandwidth reservation, flexible start
times, and request dependencies. It supports both file-based
transfers and streaming sessions. The two proposed algorithm
variants operate in an offline (i.e., SARA) and online (i.e.,
DARA) manner respectively.

Based on simulation results, the viability of AR scheduling
in media production networks was assessed. Results show that
when a significant portion of requests is known at the start of
the day, AR significantly increases bandwidth efficiency and
request admittance. Concretely, in case all requests are known
at the start of the day, request admittance can be increased up
to 6.02% compared to when requests are only known one hour
before their desired start time. Additionally, the impact of time
interval granularity on performance was evaluated. Time gran-
ularity increases algorithm accuracy and optimality in terms of
request admittance. However, it also affects the ILP problem
size, resulting in an exponential execution time increase.
Concretely, a time slot size of 1200 seconds resulted in up
to 4.4% more request admittance than a size of 3600 seconds.

In summary, we have proven the viability of using AR
scheduling in media production networks to significantly im-

prove bandwidth efficiency and request admittance. As future
work, we plan to study very large scale scenarios in detail.

ACKNOWLEDGMENT

The computational resources (Stevin Supercomputer
Infrastructure) and services used in this work were provided
by the VSC (Flemish Supercomputer Center), funded by
Ghent University, the Hercules Foundation and the Flemish
Government – department EWI. The research leading to these
results was performed within the context of ICON MECaNO.
It is a project co-funded by iMinds, a digital research institute
founded by the Flemish Government. Project partners are
SDNsquare, Limecraft, VideoHouse, Alcatel-Lucent, and
VRT, with project support from IWT under grant agreement
no. 130646.

REFERENCES

[1] N. Charbonneau and V. M. Vokkarane, “A survey of advance reser-
vation routing and wavelength assignment in wavelength-routed wdm
networks,” Communications Surveys & Tutorials, IEEE, vol. 14, no. 4,
pp. 1037–1064, 2012.

[2] S. Naikstam and S. Figueira, “Elastic reservations for efficient band-
width utilization in lambdagrids,” Future Generation Computer Systems,
vol. 23, no. 1, pp. 1–22, 2007.

[3] L.-O. Burchard, H.-U. Heiss, and C. De Rose, “Performance issues of
bandwidth reservations for grid computing,” in Symposium on Computer
Architecture and High Performance Computing, pp. 82–90, 2003.

[4] K. Rajah, S. Ranka, and Y. Xia, “Advance reservations and scheduling
for bulk transfers in research networks,” IEEE Trans. Parallel Distrib.
Syst., vol. 20, pp. 1682–1697, Nov. 2009.

[5] C. Xie, H. Alazemi, and N. Ghani, “Rerouting in advance reservation
networks,” Computer Communications, vol. 35, no. 12, pp. 1411–1421,
2012.

[6] L. Zuo, M. M. Zhu, and C. Q. Wu, “Fast and efficient bandwidth
reservation algorithms for dynamic network provisioning,” Journal of
Network and Systems Management, 2013.

[7] H. Alazemi, F. Xu, C. Xie, and N. Ghani, “Advance reservation in
distributed multi-domain networks,” IEEE Systems Journal, 2013.

[8] C. Guok, E. N. Engineer, and D. Robertson, “Esnet on-demand secure
circuits and advance reservation system (oscars),” Internet2 Joint, 2006.

[9] B. Gibbard, D. Katramatos, and D. Yu, “Terapaths: end-to-end network
path qos configuration using cross-domain reservation negotiation,” in
Broadband Communications, Networks and Systems, 2006. BROAD-
NETS 2006. 3rd International Conference on, pp. 1–9, IEEE, 2006.

[10] J. Gu, D. Katramatos, X. Liu, V. Natarajan, A. Shoshani, A. Sim,
D. Yu, S. Bradley, and S. McKee, “Stornet: Integrated dynamic storage
and network resource provisioning and management for automated data
transfers,” in Journal of Physics: Conference Series, vol. 331, p. 012002,
IOP Publishing, 2011.

[11] S. Sharma, D. Katramatos, D. Yu, and L. Shi, “Design and implemen-
tation of an intelligent end-to-end network qos system,” in Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, (Los Alamitos, CA, USA),
pp. 68:1–68:11, IEEE Computer Society Press, 2012.

