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Abstract— Software-Defined Networking (SDN) permits cen-
tralizing part of the decision-logic in controller devices. Thus,
controllers can have an overall view of the network, assisting net-
work programmers to configure network-wide services. Despite
this, the behavior of network devices and their configurations
are often written for specific situations directly in the controller.
As an alternative, techniques such as Policy-Based Network
Management (PBNM) can be used by business-level operators
to write Service Level Agreements (SLAs) in a user-friendly
interface without the need to change the code implemented in
the controllers. In this paper, we introduce a framework for
Policy Authoring to (i) facilitate the specification of business-
level goals and (ii) automate the translation of these goals into
the configuration of system-level components in an SDN. We use
information from the network infrastructure obtained through
SDN features and logic reasoning for analyzing policy objectives.
As a result, experiments demonstrate that the framework per-
forms well even when increasing the number of expressions in
an SLA or increasing the size of the repository.
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I. INTRODUCTION

Software-Defined Networking (SDN) [1] has simplified
network administration by logically centralizing part of the
decision making process in a controller element, such as an
OpenFlow controller [2]. Controllers have an overall view
of the network, which assists network operators in managing
network-wide services [3]. However, we argue that SDN alone
does not satisfactory improve the network operator’s ability of
writing concise yet expressive rules for network management.
Despite the benefits of SDN, the intended network behavior
is usually defined by static rules written to cope with specific
situations [4][3]. This ends up hindering the development and
deployment of new network services. Moreover, to deal with
diverse situations, the amount of rules can become prohibitive.

An approach to tackle this problem is the use of Policy-
Based Network Management (PBNM) [5][6]. In PBNM, an op-
erator specifies infrastructure goals and constraints in the form
of high-level policies to guide the behavior of the network.
The use of PBNM aims to reduce the complexity of network
management tasks [7]. Techniques such as policy refinement
can be used to automatically translate high-level policies into
a set of low-level policies for configuration of various devices
of a system [8]. The use of PBNM in computer networks has
been investigated for over a decade [8][9]. However, PBNM
and policy refinement in the novel context of SDN has been
much less explored [4][10]. We argue that PBNM for SDN
management is still in its infancy, and the work in the area
often ignores the vast literature on PBNM produced before

the advent of SDN. Thus, several aspects of PBNM can be
exploited toward more flexible SDN management.

We introduce in this paper a Policy Authoring frame-
work for SDN management in which operators write high-
level policies (expressed in a Controlled Natural Language -
CNL [11]) that are refined into lower-level ones. In previous
work, we have customized features of an OpenFlow controller
aiming to collect information about the network infrastructure
that can assist in improving the refinement process [12]. The
policy authoring process introduced in this paper is a further
step toward a comprehensive policy refinement toolkit for
SDN which enables refining policies into a set of rules to
be deployed by our customized OpenFlow controller. Policy
refinement is accomplished by using logical reasoning [13]
for analyzing policy objectives. On the one hand, inductive
reasoning indicates the goals that should be extracted and
fulfilled at lower-levels of abstraction. On the other hand,
abductive reasoning confronts these goals with the network
characteristics obtained from an SDN controller to indicate
whether the network infrastructure can accommodate such
goals. We developed a prototype as a proof-of-concept.

The main contributions of this paper are: (i) refined poli-
cies with minimal human intervention; (ii) analysis of the
infrastructure’s ability to fulfill the requirements of high-level
policies; (iii) decreased amount of network rules coded into
the controller; and (iv) management and deployment of new
rules with minimal disruption to the network.

In this paper, we have limited the scope of our experiments
and evaluation to QoS management. However, the principles of
policy authoring presented here can be more generally appli-
cable to other areas. We define three different Service Level
Agreements (SLAs) by changing the number of expressions
(amount of requirements, values, services, and QoS classes)
and present experiments in five different scenarios. Results
demonstrate that the policy authoring framework performs
well, even when increasing the number of expressions in an
SLA or increasing the size of the repository of rules.

This paper is organized as follows: in Section II we provide
a briefly description of the main concepts used in our work.
In Section III we present details of our policy authoring
framework for SDN management. In Section IV we present
the experiments and a discussion about the achieved results.
In Section V, related work is discussed. Finally, in Section VI
we conclude the paper with final remarks and future work.



II. BACKGROUND: A TOOLKIT FOR POLICY REFINEMENT

In this section, we present an overview of the main con-
cepts, techniques and elements used in our policy refinement
toolkit. We also briefly describe our previous work [12], identi-
fying the benefits of replacing traditional network architectures
with SDN. In order to make the policy refinement toolkit
independent of the network controller implementation or policy
language, we defined a formal representation of high-level
SLA policies using Event Calculus (EC) [14] and applied
logical reasoning [13] to model both the system behavior
and the policy refinement process for SDN management. The
formalization aspects of our work are described elsewhere [15].

A. Policy Refinement Toolkit: An Overview

Our toolkit (see Figure 1) consists of three main elements:
(i) a policy authoring framework (described in Section III),
which is used by infrastructure-level programmers to specify
the technical characteristics of services and by business-level
operators to write SLAs in a controlled natural language
(CNL) [11]; (ii) an OpenFlow controller, which collects in-
formation from the network infrastructure (which is the key to
improve the refinement process); and (iii) a repository to store
information from both the controller and the framework.

Our policy refinement toolkit is based on the research
efforts of Bandara et al. [16] and Craven et al. [17]. These
studies were limited by the characteristics of traditional net-
works, such as the notion of best-effort for QoS and the lack
of a centralized control plane [3]. In traditional networks, the
control plane is executed in each network device. Also, each
device has its proprietary protocols thus becoming difficult to
be programmed.

Instead, our approach introduces the use of Software-
Defined Networking (SDN) [18][19] to enhance the refine-
ment process. In SDN, these limiting factors of traditional
networks can be overcome, since SDN is mainly characterized
by a clear separation between the forwarding and control
planes. Thus, differently from traditional networks, SDN has
a logically centralized control plane which allows moving part
of the decision-making logic of network devices to external
controllers. This provides controller devices with the ability
to have an overall view of the network and its resources,
thus becoming aware of all the network elements and their
characteristics [19][1]. Based on this centralization, network
devices become simple packet forwarding elements, which
can be programmed through an open interface, such as the
OpenFlow protocol [2] SDN architecture in which network
traffic information is centralized by a controller is valuable to
our policy refinement approach. It makes it easier to retrieve
information from the network infrastructure, and to validate
SLA requirements more accurately.

We apply the concept of logical reasoning [13] to support
the business-level operator in the refinement of an SLA.
Logical reasoning has three modes:

• In deductive reasoning, a conclusion is reached by
using a rule that analyzes a premise. For example,
if streaming packets are transmitted the network be-
comes slower; streaming packets are being transmitted
now; therefore, the network is slower.

• In inductive reasoning, the goal is to identify a rule,
starting from a historical set of conclusions generated

from a premise. For example, every time streaming
packets are transmitted the network becomes slower;
so, if streaming packets are transmitted tomorrow, the
network will be slower.

• In abductive reasoning, starting from a conclusion
and a known rule, we can explain a premise. For
example, when streaming packets are transmitted the
network becomes slower; the network is slower now;
so, possibly streaming packets are being transmitted.

Our policy refinement toolkit uses two modes of logical
reasoning: on the one hand, inductive reasoning indicates
the SLA requirements that should be extracted and fulfilled
at lower-levels of abstraction. On the other hand, abduc-
tive reasoning compares these requirements with the network
characteristics obtained from an SDN controller to determine
whether the network infrastructure can accommodate such
requirements.

B. Low-level Controller Configuration

In order to support our policy refinement approach it was
necessary to customize some functionality in the OpenFlow
controller. This was required for collecting information about
the network infrastructure, which is later used, for example,
to calculate optimal routes. This customization was based on
SDN native features only, and thus can be applied to any
controller implementation. Therefore, our solution is not tied
to any specific controller design or language. For example,
topology discovery, which is available in POX [20] is a native
feature of SDN offered by all controllers in different imple-
mentations. We emphasize that even though the commands
supported by the forwarding elements are standardized, the
controllers require different programming languages and/or
support different features. This difference between controllers
can reflect in the effort for customization that must be em-
ployed by an infrastructure-level programmer.

Thus, the behavior of the customized OpenFlow controller
is divided into three phases: (i) Startup Phase: discovers
services and possible paths between network elements and
writes rules (which we call standard rules) in the flow table
of the switches that are in the shortest path between each of
the network elements; (ii) Events Phase: stays in a loop during
the operation of the infrastructure to identify service events and
determine the shortest path based on the characteristics of the
network and service requirements; and (iii) Analysis Phase:
implements the rules and monitors the network in order to
identify possible enhancements for the active flows.

Ultimately, the policy authoring framework (described in
detail in Section III) can be used to derive QoS class require-
ments from business-level SLAs. Policy authoring performs a
process of computing low-level objectives/rules (SLOs Service
Level Objectives) that must meet the high-level goals/policies.
Then, the customized controller is capable of assigning the
specific type of network traffic described by the SLA to its
optimal route, given the set of requirements derived from the
SLA. This QoS management strategy is based on routing (us-
ing the best path between network devices). The calculations
for the best path are carried out using as weights/requirements
the bandwidth, delay, jitter, and number of hops in each
path of the physical topology. Each weight/requirement is
presented in order of importance. If only one occurrence of a
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Fig. 1: Overall Policy Refinement Toolkit.

weight/requirement is found, it will be chosen. Otherwise, the
path that satisfies the largest number of weights/requirements
– compared with the QoS class requirements identified in the
policy authoring process – is chosen as the best path. The best
path is part of the rule that will be configured by the controller
into the flow table of each switch later. Besides informing
which one is the best path, each rule receives the established
priority in each QoS class. This is what establishes fairness and
the distinction between traffic deserving high and low priority
in the network. In summary, our strategy uses a requirements-
based path and a priority for deciding routes.

Each rule is deployed in the flow table of the network
device at runtime, aiming to minimize disruption of the net-
work. Periodically, the controller checks if the configured paths
remain the best choices, aiming to reduce processing overhead
in network devices. In our experiments, each rule is configured
with a timeout. We also set the checking intervals to, for
example, 30s. If at any time the controller identifies that there
is a better alternative path, new rules are sent to the switches. If
the current path remains the best, the controller only increases
the value of the timeout for the rules on each network device.
For further details we refer the reader to Machado et al. [12].

C. Policy Repository

The Policy Repository stores information about the behav-
ior of the infrastructure, which is obtained during the network
configuration process. For example, the repository stores all
the possible links between elements, number of elements,
bandwidth, delay and jitter.

Additionally, the repository maintains a list of all services
and their parameters (e.g., the packet identifier of the HTTP
protocol), all QoS classes and services associated with them.
We use standard TCP/IP information from packet headers to
register a given service in the repository.

III. POLICY AUTHORING FOR SDN

This paper extends our previous work on a refinement
toolkit for high-level policies in SDN. Details on the low-
level controller operation have been described in Machado et
al. [12], and in this paper we focus on the policy authoring
aspects only. In this section we describe in detail our Policy
Authoring framework for SDN management. The main goal
is to enable operators to express business goals, e.g., Service
Level Agreements (SLAs), without having to specify in detail
what elements of the network infrastructure should receive the
configurations and how they should be configured.

To provide a more targeted case-study, we concentrated
our efforts in the support of policy configurations for QoS
classes. The result obtained from the refinement of high-level
policies are QoS-class requirements. Thus, the interpretation
of an SLA is used for extracting the Service Level Objectives
(SLOs). These SLOs are considered QoS-class requirements
(e.g., priority, bandwidth) by the Policy Authoring framework.

A. Controlled Natural Language

In this paper, we identify the business-level goals and high-
level policies as SLAs. We introduce a controlled natural
language (CNL) [11] to establish restrictions and requirements
for writing business-level goals. The grammar of this language
is defined below:

Listing 1: Grammar of the controlled natural language.
1 Language :→(<QoS>|<S e r v i c e >)<P r e p o s i t i o n ><E x p r e s s i o n>
2 QoS :→ qos−r e g e x e s
3 S e r v i c e :→ s e r v i c e−r e g e x e s
4 P r e p o s i t i o n :→ s h o u l d r e c e i v e | s h o u l d n o t r e c e i v e
5 E x p r e s s i o n :→<Term>|<Term><Connec t ive><E x p r e s s i o n>
6 Term :→<Parame te r><Opera to r><Value>
7 P a r a m e t e r :→ r e q u i r e m e n t s−r e g e x e s
8 C o n n e c t i v e :→And |Or
9 O p e r a t o r :→ a d j e c t i v e−r e g e x e s



10 Value :→v

Our Policy Authoring framework uses regexes as a concise
and flexible way of identifying strings of interest such as par-
ticular characters (e.g., >, <, =, 6=, ≤, ≥) or words (e.g., high,
low, http, ftp, gold, silver). We defined the following types of
regexes: qos-regexes: regular expression to identify QoS
classes; service-regexes: regular expression to identify
services; requirements-regexes: regular expression to
identify service requirements; adjective-regexes: regu-
lar expression to identify adjectives in service requirements.
Table I shows examples of regular expressions that can be
contained in an SLA.

TABLE I: Examples of regular expression.

Type Expression Operator
qos-regexes Bronze, Silver, Gold, Platinum... N/A
service-regexes VoIP, Streaming, HTTP, FTP, SMTP,

POP, P2P...
N/A

requirements-
regexes

Priority, Bandwidth, Delay, and Jitter N/A

adjective-regexes
more, high, higher, up, over... >

equal, like, even, same, similar... =

less, low, lower, down, below... <

B. Bottom-up and Top-down Phases

We specifically introduce in this paper a policy author-
ing framework where infrastructure-level programmers specify
technical characteristics of services, and business-level opera-
tors write SLAs in a controlled natural language. This frame-
work and a customized controller [12] compose a refinement
toolkit of high-level policies for SDN management. All aspects
of the refinement process both in the framework as in the
controller are automatically performed. The results generated
by the refinement process are a set of rules to be deployed
by the controller for the network infrastructure configurations.
This toolkit is integrated with a formal representation based
on Event Calculus (EC) and applies logical reasoning to
model both the system behavior and the policy refinement
process in SDN. This formalism assists infrastructure-level
programmers to develop refinement tools and configuration
approaches to achieve more robust SDN deployments. The EC-
based formalism is described in [15].

The refinement process is split into two phases (Figure 2):
The first phase, called bottom-up, consists of the network
information (e.g., bandwidth, delay) gathering process. A key
element of this phase is the OpenFlow controller, which
performs the data collection process. Using this information,
the Policy Authoring framework uses abductive reasoning to
indicate to the business-level operator what are the possible
configurations. These indications are provided through settings
performed previously – other SLAs or policies created man-
ually by the operator – along with the characteristics that the
network can support. More details about Policy Authoring are
described in Section III-C.

The second phase, called top-down, refines high-level goals
extracted from SLAs and translate them into achievable goals
(SLOs). An operator writes the SLAs and creates – if necessary
– the QoS classes needed to fulfill them. As mentioned
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previously, the bottom-up phase will try to indicate using
abductive reasoning which are the best configurations for the
SLA that is being written. Thus, multiple configuration options
will be offered to the operator, who can select or customize
an existing configuration, or even create a new configuration.

C. Policy Authoring Framework

Regarding the Policy Authoring framework, the operator
inserts an SLA that defines explicitly or implicitly business-
level goals. When inserting each policy, the Policy Analyzer
component (Figure 1) uses regexes (regular expressions) –
previously stored in the Policy Repository – to match the
expressions written in natural language, and suggests the more
appropriate QoS class/classes to the SLA. The operator can
create a set of QoS classes beforehand. Each class may have a
number of QoS requirements. For example, Gold QoS class
may contain priority = 20, bandwidth = 512kbps, delay =
2ms, and jitter = 1ms, while Bronze QoS class may contain
bandwidth = 2kbps.

This Policy Authoring framework relies on abductive rea-
soning to suggest QoS classes. As mentioned previously, in
abductive reasoning, starting from a conclusion and a known
rule, it is possible to explain a particular premise. We use the
following SLA to illustrate how logical reasoning works and,
subsequently, we use the same SLA to explain how the Policy
Authoring operates:

“HTTP services should receive bandwidth higher than
100kbps and delay lower than 300ms”.

The conclusion of this SLA is “HTTP services should
receive” certain characteristics. The rules for reaching this
conclusion are “bandwidth > 100kbps” and “delay < 300ms”.
Thus, we present the premise (QoS class in the repository) that
has this rule and which can possibly arrive at this conclusion.

We define a query that assigns weights to results based
on the importance of the regexes contained in the SLA.



These expressions are compared to the information stored
in the repository to sort the results and display them. The
ordering thus follows: (i) expressions related to QoS classes;
(ii) expressions related to services, and (iii) expressions related
to service requirements. The steps to query and display the
information to the business-level operator are the following:

Step1 – Check if there is any qos-regexes expression
in the SLA indicating a class, e.g., QoS Gold, Silver. If there
are occurrences of these expressions, the Policy Authoring
framework returns the QoS class values, based on the identified
qos-regexes. For the SLA presented in the example, we
have no expressions of this type.

Step2 – Check if there is any service-regexes ex-
pression in the SLA relating to services, e.g., FTP, VoIP. If
there are occurrences of these expressions, the Policy Au-
thoring framework returns the QoS class values to which the
services are associated. For the SLA in the example, there is a
service-regexes (HTTP), which may be associated with
a QoS class in the repository.

Step3 – Analyze the expressions indicating service re-
quirements, e.g., priority, bandwidth. If there are occurrences
of these expressions, the Policy Authoring framework per-
forms the following operations: (i) identify and count the
requirements-regexes found, and (ii) identify and
count the adjective-regexes that come before and after
any requirements-regexes.

We also developed a technique for identifying and counting
the requirements-regexes, which allows the operator
to optimally match the adjective-regexes found with
their respective requirements. In the SLA above, we can
observe the adjective-regexes higher and lower, which
are related to the requirements-regexes bandwidth
and delay, respectively. The Policy Analyzer identifies any
adjective-regexes and examines the SLA, identifying
the proximity of the adjective-regexes referring to
requirements-regexes. This is performed by check-
ing if adjective-regexes are located before or after
requirements-regexes. At the end, the result is pre-
sented to the business-level operator.

The Policy Authoring framework uses abductive reasoning
to show what are the best configurations for the SLA. Thus, the
Policy Analyzer can identify, for example, that there is already
a QoS class configured with low delay, or that the throughput
for the specified network path already exceeds the network
configuration, indicating that the policy should be reformu-
lated. Also, the operator can be warned of potential conflicts or
even non-compliance with policies. If the operator chooses one
of the suggested QoS classes, the Policy Authoring framework
will store the information extracted from the SLA, e.g., the
service, with the selected class.

Suggestions provided through abductive reasoning are not
mandatory. If after analyzing them the operator decides they
do not meet the high-level goals, the suggestions can be
ignored. At this point, the operator can analyze the information
presented by the Policy Authoring framework and rely on
inductive reasoning to perform the following actions:

• Modify existing policy/class – This action allows the
operator to change a predetermined parameter, e.g.,
priority = 100 to priority = 101, or add a parameter

that does not yet exist, e.g., delay ≤ 120ms. This mod-
ification may impact other policies, and the Analyzer
uses inductive reasoning to identify the classes in the
repository that may be impacted. Thus, the operator
has the opportunity to analyze policy-by-policy and
decide if the change is viable or not.

• Create policy/class based on existing class – This
action is an alternative to modifying an existing class.
Through this action, a new class created by the opera-
tor inherits the parameters of an existing class, which
can be customized as needed. The Policy Analyzer
uses inductive reasoning to automatically check if the
parameter values of this new class are not identical to
the ones in an existing class in the repository. If so,
the existing class is returned instead.

• Create a new policy/class – The creation of new
classes can be conducted (i) if a class that meets the
objectives of the SLA does not exist, or (ii) if the
parameters of other classes retrieved via abductive or
inductive reasoning are not related to the objectives of
the new SLA. Thus, the operator can set the new class
parameter-by-parameter to meet the SLA objectives.

After any of the actions above is executed, the Parser
component (Figure 1) will be executed and the policies/classes
will be stored in the Policy Repository. It is based on this
information that the Policy Authoring framework estimates
the amount of allocated traffic per class and warns if the
infrastructure can support or not new policies. Further, the
policy repository contains a list of services associated with
their TCP/UDP port (e.g., HTTP = [80,8080], SSH = [22],
SMTP = [25,587]). This list was created using RFC 1700 [21].
Subsequently, the OpenFlow controller reads from the reposi-
tory these new policies starting the Analysis Phase for setting
up the appropriate rules in forwarding devices, as explained in
Section II-B.

IV. PROTOTYPE AND EVALUATION

In this section we describe a prototype implementation and
evaluation of our Policy Authoring framework. For details
about the low-level controller implementation we refer the
reader to our previous work [12].

A. Prototype Implementation

We developed the prototype using the Django web frame-
work1. We chose Django due to its support to the Python
language and the support it provides to create web applications.
For the interface design we used the Bootstrap front-end
framework2. The prototype is split into two modules, Policy
Authoring GUI and Configuration GUI, described as follows.

1) Policy Authoring GUI: We developed a user-friendly in-
terface for Policy Authoring in order to allow the configuration
of the network through business goals. Thus, a business-level
operator can use the Policy Authoring GUI to express high-
level goals and receive feedback from his/her requests.

Figure 3 illustrates the home screen of the Policy Authoring
GUI. It presents statistics about the number of policies, classes,

1http://www.djangoproject.com/
2http://getbootstrap.com/



Fig. 3: Policy Authoring GUI Dashboard.

services, and users registered. In addition, it shows two charts
about the top 5 services that most appear in policies and the top
5 QoS classes that most have linked policies. The dashboard
is composed of the following items:

• Policies – Used by business-level operators to create,
search, edit, remove, enable or disable policies. Op-
erators can also associate a high-level SLA with the
QoS class that best meets the SLA requirements.

• Classes – Used to specify QoS classes. Infrastructure-
level programmers and business-level operators can
perform the necessary parameter settings for each
class.

• Services – Used by infrastructure-level programmers
to record, edit, and delete services. Also, through this
interface a service can be associated with a QoS class.

• Reports – Used by business-level operators and
infrastructure-level programmers to view reports of
policies, services, and classes. For example, classes
that contain most policies or services that appear less
frequently in policies. Additionally, some reports can
be filtered by specific parameters, e.g., priority, delay.

• Users – Used to create, search, edit, remove, enable
or disable system users.

• Settings – Used to configure system settings, such as
database connection information.

2) Configurator GUI: Our aim is to facilitate not only
the description of business objectives but also the configura-
tion of the infrastructure. The Configurator GUI is designed
to manage the registration of services and parameters. An
infrastructure-level programmer inserts service information,
such as ServiceName and Port (as used in TCP/IP). Subse-
quently, the infrastructure-level programmer may create QoS
classes with parameters and their respective values. The fields
that may be informed are ClassName, Priority, Bandwidth,
Delay, and Jitter.

We decided to group services by class, thus after QoS
classes have been defined, each service is associated with
a QoS class. This step is important because if services are
previously associated with some class, the toolkit will have a
better performance since there will be an entry in the repository

for a group of services as opposed to one entry for each service.
Thus, services with similar requirements can be grouped into
a single class while maintaining fairness among competing in
the same link.

B. Evaluation

We present in this section experiments and initial results
obtained with the implemented toolkit. Our goal is to measure
the response time of the end-to-end process, i.e., from policy
authoring to deployment of low-level rules in the controller
device. In order to perform the experiments, we created three
SLAs (Table II) by changing the number of expressions, where
SLA 2 has more expressions than SLA 1 and SLA 3 has more
expressions than SLA 2. Our goal is to show the robustness
and efficiency of the refinement process when we increase
the number of expressions that should be compared. We also
created three scenarios (Table III) by varying the number of
network devices and adding redundant links between some
network devices. The scenarios used in the experiments were
based on mesh topologies. Our goal was to demonstrate the
ability of the framework to operate in increasingly large
topologies. These scenarios were created using the Mininet
emulator and experiments were performed on an AMD 2.0
GHz Octa Core with 32 GB RAM memory.

TABLE II: Description of SLAs used in the experiments.

SLA Description of SLAs
SLA1 HTTP traffic should receive lower Quality of Service and low

priority compared with other services.
SLA2 Streaming traffic should receive higher priority, low delay and

bandwidth higher than 512kbps.
SLA3 VoIP traffic should receive higher priority, delay less than

200ms, low jitter, and bandwidth higher than 128kbps.

TABLE III: Number of switches and links in each scenario.

Scen. SwL0 SwL1 SwL2 SwL3 SwL4 Hosts Links
X 16 8 8 4 0 32 88
Y 32 16 16 8 4 64 176
Z 64 32 32 16 8 128 210

We applied the three SLAs to five different repositories A-
E and populated each repository according to the number of
classes, where A = 10, B = 100, C = 1, 000, D = 10, 000,
and E = 100, 000 classes. In addition, each experiment
was executed thirty times. We performed experiments on
all variations of SLAs, repositories, and scenarios. Due to
space limitations, we present the most relevant results only.
In particular, the experiments described in this sections intend
to evaluate our prototype in terms of average execution time
and percentage of the total time occupied by each stage of the
policy authoring process.

Figure 4 shows the average response time for SLA 3 in
each scenario. We break the total execution time down in three
categories, namely requirements analysis (i.e., parse the SLAs
and their regexes), repository queries (i.e., search for the best
matching QoS class), and deploy rules (i.e., install the flow
rules in the controller). By increasing the number of classes, it
is possible to observe that the average time spent performing
repository queries also grows. This increase is visible in all
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(a) SLA 3 (scenario X)
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(b) SLA 3 (scenario Y)
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(c) SLA 3 (scenario Z)

Fig. 4: Average response time for SLA 3 performed in scenarios X, Y, and Z.
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(a) SLA 1 (scenario Z)
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(b) SLA 2 (scenario Z)
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(c) SLA 3 (scenario Z)

Fig. 5: Percentage of total time for each experiment performed in scenario Z.

 0

 100

 200

 300

 400

 500

 600

Scenario-X Scenario-Y Scenario-Z

N
u
m

b
e
r 

o
f 

R
u
le

s

SLA-1
SLA-2
SLA-3

(a) Total number of rules deployed by each SLA
performed separately in each scenario.
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(b) Total number of rules deployed by each SLA
performed simultaneously in each scenario.
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(c) Total amount of rules deployed by all SLAs in
each scenario.

Fig. 6: Number of rules deployed in each scenario.

experiments performed with SLAs 1, 2, and 3. This behavior
is expected, since the number of classes has influence on the
number of queries to obtain the ideal matches between SLAs
and QoS classes.

In Figure 5 the y-axis shows the percentage of the total
time occupied by each process in the experiments performed
with SLAs 1, 2, and 3 in scenario Z. From these results it is
possible to note that, according to the level of complexity of
each SLA, the percentage of time for analyzing requirements
also increases. This happens due to the increase in the number
of occurrences of regular expressions found in each SLA.

Figure 6(a) shows the total number of rules generated by
refining each SLA separately in each scenario. As can be
observed, each SLA generates practically the same number
of rules in each scenario. SLA 1 shows a small difference in
the number of rules deployed compared to SLAs 2 and 3. This
occurs because SLA 1 has lower QoS requirements (i.e., low
priority) compared to other services, which causes the choice
of routes with more hops and consequently causes rules to be
deployed in more devices. It is worth mentioning that the total
number of rules generated by the policy authoring framework

is smaller than the total number of rules that would have to
be manually created on all network devices. This is because,
as our approach is based on routing, it creates a spanning
tree to find all routes between sources and destinations. Thus,
some routes may be common between different sources and
destinations. As a result, a number of switches do not need to
be configured, thus reducing the total number of rules required
in each scenario.

The growth in the total number of rules in SLA 1 appears
more clearly when we performed simultaneously the refine-
ment of the three SLAs in each scenario (Figure 6(b)). Our
framework attempts to fulfill the requirements of each SLA.
In order to achieve this, it identifies the possibility of routing
(balancing) each SLA by alternative routes without failing to
fulfill their requirements. Thus, SLA 1 receives routes with
more hops in order not to compete with SLAs 2 and 3 which
have higher priority requirement.

Finally, Figure 6(c) shows the total amount of rules gen-
erated by all SLAs in each scenario. This illustrates the
benefits of our policy authoring and refinement approach, in
which the infrastructure-level programmer does not need to



be concerned with the number of low-level configuration rules
to be deployed in the network. Our results suggest that the
prototype is able to support the refinement of SLAs and the
installation of flow rules in large-scale deployments. Even if
we consider the scenario with the largest number of switches
and links (Figure 4(c)), and the largest number of QoS classes,
the total measured time remains within acceptable bounds.
Moreover, as mentioned previously, the framework optimizes
the deployment of rules according to the requirements of each
SLA and according to each scenario.

V. RELATED WORK

Policy Authoring approaches to facilitate the writing, anal-
ysis, and implementation of high-level policies have been
proposed in the past. Brodie et al. [22] present a platform-
independent framework to specify, analyze, and deploy secu-
rity and networking policies. A portal prototype for policy
authoring, based on natural language and structured lists,
allows the management of policies from their specification to
enforcement. The policy authoring portal enables web users to
write policies, using a high-level language, which are translated
and mapped to specific low-level configurations. Johnson et
al. [23] present a template-based framework for policy au-
thoring. The work describes the relationship between general
templates and specific policies, and the skills required from
users to produce high-quality policies. Although these research
efforts investigate important issues regarding policy authoring,
none of them presents a formal language for authoring, the
use of logical reasoning to assist the refinement process, or
experimental results.

Zhao et al. [24] describe the design and implementation
of an end-to-end framework for the management of cloud-
hosted databases from a consumer’s perspective. The approach
is based on the interpretation of SLAs to assist the dynamic
provisioning of databases. The framework checks if SLAs
have changed and automatically performs corrective actions
to enforce the new specifications. Villegas et al. [25] present
a framework for the analysis of provisioning and allocation
policies for Infrastructure-as-a-Service clouds, i.e., policies to
dynamically allocate resources which remain largely under-
utilized over time. Oriol Fito et al. [26] introduce a Business-
Driven ICT Management (BDIM) model to satisfy the business
strategies of cloud providers. The objective is to evaluate the
impact of events related to ICT using business-level metrics. A
Policy-Based Management system analyzes these events and is
able to determine automatically the ICT management actions
that are most appropriate. Craven et al. [17] introduced a re-
finement process for obligation and authorization policies that
addresses policy translation, operationalization, re-refinement,
and deployment. The work describes in details how a UML
information-based formalism of system elements, a high-level
policy, and translation rules that relate actions can produce
concrete low-level policies. Bandara et al. [16] presented
a tool support for the refinement process, and used case-
studies based on DiffServ QoS management. The refinement
process introduced the use of goal design and applied abductive
reasoning as a strategy to generate low-level policies that aim
to achieve a specific high-level goal.

Despite the above research efforts have achieved satis-
factory results, they were also limited by the characteristics
imposed by traditional IP networks, such as best-effort packet
delivery and distributed control state. We distinguish our

policy authoring framework from other existing approaches
by exploring the characteristics of SDN architectures, such
as centralized control plane and overall view of the network
infrastructure to enhance the policy refinement process. To
the best of our knowledge, this is the first time that policy
authoring and refinement techniques have been applied to SDN
management.

VI. CONCLUDING REMARKS

In this paper we presented a policy authoring framework
to facilitate the configuration of SDN architectures based on
the interpretation of high-level policies. The proposed policy
authoring framework assists business-level operators to more
easily specify overall service requirements, which can then
be automatically translated into the configuration of an SDN
infrastructure. An important aspect to be emphasized is that our
approach is flexible, and allows the business-level operator to
decide whether to accept or not the suggestions given. Thus,
the operator can fully or partially accept the suggestion, or
create his/her own configuration. Also, our experiments have
showed that the toolkit performs well even with the increase
in the number of QoS classes and in the complexity of the
SLAs.

Different from past research efforts ([22], [23], [16], [17]),
our policy authoring process is based on a policy refinement
technique that analyzes the infrastructure ability to fulfill
the requirements of high-level policies using the information
obtained from an SDN controller. As a result, policies are
refined with minimal human intervention, as the framework
analyzes regexes in each SLA and applies logical reasoning
based on network conditions that can fulfill the requirements of
these SLAs. Thus, manual workload related to SDN manage-
ment can be reduced because the flow rules are automatically
generated and installed, instead of requiring the operator to
directly write and deploy rules. Further, SLAs are specified
and rules are deployed through a user-friendly policy authoring
framework with minimal disruption to the network.

While we relied on the use of SDN architectures to improve
the refinement process, by using the PBNM paradigm we also
indirectly addressed problems typically found in SDN, e.g., the
issue of having static rules and configurations that are often
written for specific situations directly in the controller. From
the viewpoint of the network operation, the use of PBNM aims
to reduce the complexity of the network management tasks
allowing the system to gain a certain level of autonomy [7].
Thus, by using PBNM we reduced the amount of static rules
and configurations. This was achieved by writing reusable code
that deploys specific rules obtained from a repository.

As a part of our future work, we intend to extend the pol-
icy authoring framework to support more terms, expressions,
prescriptions, and rules. In addition, our approach is limited
to rules triggered by the occurrence of an event, i.e., a flow
receives a specific action. We intend to extend our grammar
to support temporal logic. This will allow the specification
of policies defined by an interval of time. Moreover, we also
intend to investigate techniques for detection and resolution
of policy conflicts in different levels of abstraction. Further,
we intend to identify ongoing standardization efforts related
to policy-based management in order to improve the proto-
type. Finally, we intend to analyze the toolkit behavior when
managing other resources and types of services.
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