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Abstract—Cloud monitoring is one important aspect for effec-
tive cloud management. Currently, cloud monitoring solutions
can be classified into three groups: the ones not considering
multiple layers or real time data analysis, the ones considering
multiple layers but not real time data analysis, and the ones
only considering real time data analysis. However, all these
solutions fail to provide frameworks able to combine together
monitoring in multiple layers and data stream analysis for
detecting situations where multiple management actions are ap-
plicable in different layers of the cloud environment. This paper
addresses this gap and proposes the Ceiloesper framework. Such
a framework extends the OpenStack Ceilometer technology with
Esper CEP and enables collection and analysis of information
according to the principles defined in the 3-D cloud monitoring
model, proposed in a previous work. The main contributions
of this paper are: (i) the definition of the concept of Situation
of Interest (SoI) leading to multiple management actions; (ii)
the Ceiloesper architecture for a monitoring solution combining
traditional monitoring elements with CEP; (iii) extensions to
the Ceilometer OpenStack technology. We tested the Ceiloesper
framework on a scenario based on the Wordpress application
and the experimental results show its effectiveness.

I. INTRODUCTION

Cloud management goes beyond the management of phys-
ical versus virtual resources. Inside the virtual layer there
are also management decisions and actions being activated
leading to multiple and most of the time isolated management
decisions. We have already identified the existence of four
different layers inside the cloud environment [1]: physical
(PL), virtualization (VL), application architecture (AAL) and
application business logic (ABL) layers. Each of them have
entities that request and that suffer the effects of management
actions inside the cloud environment. In a previous work, we
demonstrated the need for a 3 Dimensional model (3-D Cloud
Monitoring model) [2] for representing and analyzing monitor-
ing information from multiple layers in the cloud environment
to enable a better coordination among the possible different
management actions in these layers. There are many solutions
proposed for cloud monitoring and they can be classified into
three groups: the ones not considering multiple layers or real
time data analysis [3][4]; the ones considering multiple layers
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but not real time data analysis [5][6]; and the ones considering
solely real time data analysis [7][8][9][10].

In the first group, we can find a large amount of work
related to general purpose frameworks typically supporting
monitoring from PL and VL layers. New solutions started to
consider also the AAL layer [11]. There are also monitoring
frameworks specifically targeting the cloud applications [12].
Recently, proposals belonging to the second group started
to appear. The works from Trihinas et al. [5] and Montes
et al. [6] take into account information from layers equiva-
lents to the ones we consider in our 3-D Cloud Monitoring
model. Nevertheless, these frameworks work basically with
the concept of collecting information, storing it in a database,
enabling the creation of rules to trigger events related to the
stored information, and the configuration of simple events to
be triggered by the monitored entities.

These approaches have several limitations when requiring
a monitoring solution to detect real time situations leading
to multiple management actions. The major problem is the
offline and “post-morten” analysis of the stored data. The
real time detection of events and measurement of metrics
in each layer is not possible due to the introduction of the
overhead for collecting the data, storing it, querying it, and
perform the alignment of the information from all the layers
from the database. There are many intermediary processing
overheads, and different intervals of cycles of processing in
this chain. This might lead to a very delayed identification of
situations. Indeed, Ari et al. [10] alerted for the importance
of velocity of the monitored data and its relationship to
monitoring overheads.

The third group represents an emerging trend also associated
with the increase of research in cloud analytics [7][8][9][10].
Proposals such as the one from Saleh et al. [9] explicitly define
monitoring frameworks able to handle data stream processing.
They basically use Complex Event Processing (CEP) engines
to support the real time analysis of the collected data. These
works provide a very solid basis and argumentation about the
importance of using data stream processing. However, there
is still a gap on combining the advantages of correlating the
information monitored from all the cloud layers with the power
of data stream analysis for managing the cloud environment.
Creating a monitoring framework based on streams of real



time monitoring data is crucial. Based on this it is possible
to enhance the quality and the timeliness of the information
upon which the multiple management decisions are taken. In
this paper, we propose a framework to support the 3-D Cloud
Monitoring model, based on multiple cloud layers monitoring
and data stream analysis.

We propose a solution that extends the functionalities of
current cloud monitoring frameworks by combining them with
the capabilities of CEP. The ultimate goal is to enable an
online, distributed, and dynamic monitoring process for the
identification of situations leading to multiple management
actions. These situations are related to the concept of Context
of Interest (CoI) and the 3-D Cloud Monitoring model, pre-
viously introduced [2]. The framework proposed in this work
is based on OpenStack technology. We created the Ceiloesper
framework that provides extensions to the Ceilometer tech-
nology through an integration with the Esper CEP framework.
We tested the Ceiloesper framework on a scenario based on
the Wordpress application. The experiments show that our
framework can identify situations, trigger management actions,
and does not introduce a large load in the running cloud
environment. The main contributions of this paper are: (i) the
definition of the concept of Situation of Interest (SoI) that
can lead to the identification of multiple management actions;
(ii) the architecture for a monitoring solution combining
traditional monitoring elements with CEP; (iii) extensions to
the OpenStack Ceilometer technology.

The remainder of this paper is organized as follows. Sec-
tion II analyzes the current state of the art. In Section III, we
show the architecture and implementation of the Ceiloesper
framework revising our 3-D Cloud Monitoring model and
providing a formal definition of SoI. In Section IV we show
experimental results and the effectiveness of the proposed
architecture. Finally, Section V concludes the work providing
insights in possible future work.

II. RELATED WORK

In this section, we focus solely in the related work associ-
ated with monitoring solutions for multiple layers of the cloud,
and the ones using data stream processing and CEP for cloud
monitoring and analysis.

Thrihinas et al. [5] propose a monitoring system that han-
dles information from PL, VL, and AAL layers. The main
purpose of the solution is to better support the provisioning
of elastic applications. They provide: a solution able to keep
monitoring the application metrics even when the topology
of the application changes (due to scaling or migration in
the cloud); the control of data aggregation in the monitoring
agents; a language to combine low level metrics and generate
higher level metrics. Likewise, Montes et al. [6] introduced
the idea of levels of monitoring in a cloud environment. They
defined the monitoring in the virtual system level (composed
by the sub-levels application, platform, and infrastructure) and
the physical system level. The authors defined a platform
for monitoring such levels called GMonE (Global Monitoring
systEm). The focus of this work is the collection of the

monitoring information and not how the information is pro-
cessed and associated with different layers of monitoring to be
correlated. The fundamental difference of our approach to the
ones described above is the use of complex event processing in
combining the information coming from all the different cloud
layers. Although powerful in controlling and configuring the
monitoring infrastructure itself, these approaches still lack the
capability of handling complex stream data analysis.

Ari et al. [10] acknowledge the fact that handling data
velocity is very important and the overhead of storing data for
later processing imposes loses of opportunities. The proposed
work focus on the details of combining correlation techniques
with rule mining based on Esper CEP engines. Although
clouds are mentioned in the paper, their proposal is not explicit
target to the management of the cloud environments. Tudoran
et al. [7] propose a system called JetStream whose focus is
the optimization of event streaming transmission over multiple
cloud datacenters. Mdhaffar et al. [8] analyze the performance
impact in cloud monitoring process when different archi-
tectures are configured for CEP Esper engines executing in
the cloud environment. In both the above mentioned works,
there is no real focus on creating a framework for cloud
monitoring using data streams for detecting situations leading
to multiple management actions in the cloud environment.
Saleh et al. [9] uses CEP for detecting complex situations
and activating management actions. However, their approach
is limited to management actions related to the PL and VL
layers, e.g., increasing and decreasing of virtual resources
or migration. The complex situations in their case relay on
temporal windows and monitored information (i.e., events)
related up to the VL. Leitner et al. [12] introduce a framework
based on CEP where application developers can define which
application metrics should be monitored. The authors collect
the desired application information from single hosts (i.e.,
single virtual machines), pools of hosts (i.e., pools of virtual
machines) and correlate the events carrying this information.
However, the correlation is understood by the authors as
filtering and aggregation of data to reduce the flooding of
information. No sophisticated analysis specifically target to
activating management actions is proposed in this work.

Monitoring in multiple layers is orthogonal to analysis based
on data stream and CEP. The former collects information
from different layers while the latter analyzes in real time this
data. In fact, collecting data in real time does not guarantee
that this data will be treated also in real time, i.e., also at
the moment it is collected. Therefore there is still a gap on
defining monitoring frameworks that are able to collect and
analyze information from all the cloud layers, using for this
a data stream style of analysis. This type of analysis is vital
to guarantee the timeless and accuracy of decisions in the
multiple management entities spread along the cloud stack.

III. CEILOESPER FRAMEWORK

In this section, we introduce the architecture and imple-
mentation of the Ceiloesper Framework. Before describing the
details of this framework, we shortly revise the concepts of



3-D Cloud Monitoring model and CoI defined in a previous
work [2]. In addition, we introduce the concept of SoI which
is related to the concepts defined previously. The proposed
architecture is designed to support these concepts. The goal
of this architecture is twofold. First, it enables the timely
detection of situations in the cloud environment where multiple
management actions can be enforced in different layers of the
cloud. Second, it triggers events associated with these multiple
management actions so that a dedicated engine can receive
these triggers and decide which action should be taken. This
specific engine, selecting the best management action, is out of
the scope of this paper. The Ceiloesper Framework is based
on the following concepts and assumptions. The OpenStack
Ceilometer is the basic mechanism for collecting monitoring
information in the cloud environment. We believe that keeping
the alignment with the well established OpenStack community
is important. This means that the new components we intro-
duce need to be compliant with the Ceilometer architecture.
We consider that the framework main purpose is to support
the coordination of management actions among different layers
of the cloud environment. It is out of the scope of this paper
to discuss economical model and the issues related to who
owns which information in the cloud environment. Finally,
we assume that solutions based on CEP mechanisms and
principles are effective in handling data stream generation and
analysis in real time. In this work, we use Esper CEP Engine
due to its powerful language to express complex situations in
terms of events and its processing capacity [8].

A. Background

Figure 1 graphically depicts the 3-D Cloud Monitoring
model and one example of CoI as both defined in our previous
work [2]. The 3-D Cloud Monitoring model is used to analyze
the monitoring information in a cloud environment according
to three dimensions: the physical machine (PM) from where
metrics are collected, the application to which the metrics are
associated with, and the type of metrics and their associated
cloud layer. Using this model, we defined the CoI. In summary,
a CoI is a collection of metrics from the 3-D space of collected
data that has to be observed and analyzed simultaneously. The
analysis of a CoI will necessarily lead to the identification of
multiple (and eventually conflicting) management actions in
different layers of the cloud. This is the major goal when
monitoring and analyzing with the CoI.

The example illustrated in Figure 1, shows metrics associ-
ated with the appi deployed over pm j that, when monitored
and analyzed together, lead to different management actions.
In this example, a Web application is used and the multiple
management actions could be: change the number of con-
nections in the database associated with the application, or
increase the amount of CPU, or migrate a virtual machine
(VM) hosting one or more components of such an applica-
tion. Nevertheless, the CoI definition establishes which set of
monitoring metrics should be analyzed together. It does not
indicate how these metrics should be collected and analyzed.
Therefore, in this paper we introduce the concept of SoI and a
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Fig. 1. 3-D Cloud Monitoring and CoI [2]

framework to support the automatic use of both CoI and SoI.

B. Situation of Interest

A Situation of Interest (SoI) expresses which kind of combi-
nation of monitored metric values from a CoI are relevant for
the detection of a circumstance leading to (potentially) multi-
ple management actions. Below, we provide the mathematical
definitions necessary to describe the SoI concept.

Definition 1 (Application): An application is a set of
components (e.g., systems, sub-systems) and it has necessarily
a unique identifier in the cloud environment (appid).

Definition 2 (Application Context of Interest): An
application CoI Cappid for an application appid deployed in
the cloud environment is a set of distinct monitoring metrics
m j belonging to the 3-D Cloud Monitoring model, as defined
in [2]. Formally, Cappid = {m j} where 1≤ j ≤ J and J is the
total number of metrics belonging to the CoI Cappid .

Definition 3 (Application Context of Interest Set):
An application CoI set S appid

CoI is the set of distinct CoIs
associated with an application appid deployed in the cloud
environment. Formally, S appid

CoI = {Cappid
i } where 1 ≤ i ≤ I

and I is the total number of CoIs associated with the
application appid .

Definition 4 (Situation of Interest): A SoI Sappid

associated with a CoI Cappid for an application appid
deployed in the cloud environment is a couple (CS,Ev),
where CS is a complex statement containing the information
to be analyzed in order to detect a desired circumstance
and Ev is an event that should be generated when the CS
evaluates to true.

Definition 5 (Complex Statement): A Complex
Statement for an application appid is a set of tuples
CS = {((m j,exp),T, [Men])} where m j ∈ Cappid

i and



Cappid
i ∈ S appid

CoI ; exp is a mathematical expression with
an operator op and a value v to be compared to the value of
the monitoring metric m j; T is the time window of observation
of m j; Men is an optional element of the tuple that serves as
a memory storing information about the occurrence of one
or more specific events before or within the observation time
window T . The Men term can support the tracking of previous
events, allowing for the analysis of chain of events. Our
main goal is to enable the analysis of the monitoring metrics
in combination with previous activation and deactivation of
management actions. A Complex Statement CS evaluates to
true if all its tuple evaluate to true, i.e., if for each tuple the
mathematical expression exp on metric m j evaluates to true
in the time window T together with the optional memory
element [Men].

Definition 6 (Application Situation of Interest Set):
An application SoI set S appid

SoI is a set of distinct SoI
associated with an application appid deployed in the cloud
environment. Formally, S appid

SoI = {Sappid
k } where 1 ≤ k ≤ K

and K is the total number of SoI associated with all the
CoIs belonging to the application CoI set of application appid .

C. Architecture and Implementation

The architecture of the Ceiloesper Framework is presented
in Figure 2, and it is based on OpenStack technology. There
are three main types of components in this architecture: the
OpenStack Compute Node, the OpenStack Controller Node,
and the Analysis Engine. All light and dark red modules in
Figure 2 represent the native modules of OpenStack compo-
nents. The modules added by the Ceiloesper Framework are
represented with the light and dark blue colors. The yellow
colored diagrams in this figure indicate native elements either
of the PMs or of the VMs. In this figure, we also depicted to
which modules the CoI and SoI are relevant.

A OpenStack Compute Node is a PM in which a hypervisor
(usually Libvirt) is installed and on top of which the Open-
Stack Nova service (implementation of a Compute Node) is
used to control the instantiation and the life-cycle of VMs.
Thus, the set of Compute nodes belonging to an OpenStack
infrastructure form what we defined as PL. An OpenStack
Controller Node, in its turn, is a PM on top of which the
Nova Scheduler service (along with eventually other services)
is installed allowing to schedule the instantiation of VMs on
a set of Nova Compute nodes and to manage them remotely.
The OpenStack Controller machine also hosts the Ceilometer
Controller that is a centralized component for data storage
within a distributed database, e.g. Mongo DB. The Controller
Node also manages the OpenStack Dashboard Horizon, where
Ceilometer displays the collected information.

We introduced a set of new modules in both the OpenStack
Compute Nodes and Controller Node in order to support
the architecture of the Ceiloesper framework. In addition, we
also introduced an Analysis Engine that is responsible for the
real time analysis of the streams of monitored data coming
from the cloud environment. The new modules and engines
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Fig. 2. Detailed architecture of Ceiloesper Framework

were designed to behave according to the specification of CoI
and SoI. The CoI collection and visualization is implemented
through a set of additional modules for OpenStack Ceilometer,
OpenStack Horizon, and OpenStack Nova services. These new
modules are spread over PMs hosting the OpenStack Compute
Node and the OpenStack Controller Node, as indicated in
Figure 2. The inference of a SoI is performed by a set of
new modules implemented in the Analysis Engine. This engine
is based on ESPER. The new modules of the Ceiloesper
Framework are described as follows.

1) Inside the VMs: The Ceiloesper Probe inside the VM is
a component injected in each VM that allows to load one or
more plugins (via the Plugin Loader) to collect measurements
and event at the ABL and AAL layers and from the systems
running inside the VMs at the VL. In this case, owners
of VMs might want to retrieve information from the VM
different than the ones already provided via Libvirt. The Probe
uses a shared library (.so) to send measurements and event
to the OpenStack Ceilometer. The current implementation
is based in Python using the Stevedore library for enabling



and loading a monitoring plugin. Examples of such plugins
are: LAMP-based applications (e.g., Wordpress), OS statistics
(CPU, RAM, etc) and legacy application (MySQL) deployed
in the VM. The collected information from the Ceiloesper
Probe of each VM deployed in a Compute Node is transmitted
to the Ceiloesper Probe Polster (inside the Compute Node,
as it will be further discussed). The communication between
Ceiloesper Probe and Ceiloesper Probe Pollster is based
on the Apache Qpid messaging system, that provides the
implementation of the AMQP (Advanced Message Queuing
Protocol) commonly used in OpenStack components. The
AMQP is an open standard application layer protocol for
message-oriented middleware able to provide bus featuring
message orientation, queuing, routing (including point-to-point
and publish-subscribe), reliability, and security. The circle-
edged arrows represent the interaction model, where infor-
mation is transmitted using bus-enabled queues, publishers as
well as subscribers.

2) Compute Node Side: In each Compute Node, a typical
Ceilometer Agent is able to collect metrics from the PM
itself (PL metrics) and from the instantiated VMs through
the interaction with Libvirt (VL metrics). The PL metric
collection became available in recent OpenStack releases.
The Compute Node has been integrated with a set of Mon-
itors that produce Ceilometer notifications about PL metrics.
At the moment the default OpenStack Ceilometer Pollsters
collect information only through the Libvirt. This solution
enables the collection of information only up to the VL,
and excluded the collection of data from inside the VMs.
In this work, we want to keep the compatibility with the
OpenStack Ceilometer architecture. The official recommen-
dation for properly extending Ceilometer with extra metrics
is to implement Pollsters, which are compliant and able to
be integrated to the Ceilometer architecture. Therefore, we
inserted inside the Ceilometer Agent, the Ceiloesper Probe
Pollster. This pollster is responsible for collecting information
from the ABL, AAL, and extra VL information as previous
described. A connection is established, using Qpid method,
between the Ceiloesper Probe Pollster and the AMQP queue
of each VM instance running in the Compute Node hosting
such a pollster. We configured this new pollster to be available
in the Ceilometer Agent at boot time. The Ceiloesper Probe
Pollster extracts from these queues the messages bearing the
samples sent by Ceiloesper Probe plugins inside the VMs. The
resuting information is used to build a Ceilometer compliant
sample. Each sample is processed by the Ceilometer Agent
and sent to the Ceilometer Collector hosted on the Controller
Node. This communication is done using the ad-hoc queue
ceilometer.collector.metering.

3) Controller Node Side: The Ceilometer architecture is
composed of agents hosted in the Compute Nodes (as de-
scribed in the previous sections) and the Ceilometer Col-
lector module hosted at the Controller Node. This module
is responsible for receiving and storing the collected mon-
itored information through the Database Dispatcher. This
solution as it is does not allow for analysis of streams

of monitored data because the information not available in
real time. Instead it is stored in a database and needs to
be queried. Therefore we added to the Ceilometer Collec-
tor a new dispatcher called: Ceiloesper Dispatcher. This
new element does not modify the core configuration of nei-
ther Ceilometer nor OpenStack overall services. This new
dispatcher listens to the data published in the Ceilometer
queue (ceilometer.collector.metering) but ana-
lyzes only measurements coming from samples marked to
the processed by the Ceiloesper Framework modules. When
samples are created by the Ceilometer Agents, these samples
are published in the Ceilometer queue with a specific field con-
figuration that allows the Ceiloesper Dispatcher to recognize
the sample and send the information to the Analysis Engine.
In addition, we also define two other Ceiloesper Framework
modules that are hosted by the Controller Node: the Ceiloesper
Monitoring Panel and the Ceiloesper Contextualization Man-
ager. The former allows for the extension of the OpenStack
Dashboard Horizon. The extension enable the infrastructure
managers and the developers to monitor all the measurements
and events collected from the infrastructure and cloud plat-
form, up to the data collected from the applications inside
the VMs. The latter, Ceiloesper Contextualization Manager
enables the automatic installation of the Ceiloesper Probe
and its monitoring plugins inside the VM. Such a component
is a wrapper for the tools used by OpenStack Havana for
VM contextualization purposes, i.e., the user data mechanism
and the cloud-init package. The Ceiloesper Contextualization
Manager takes as input the monitoring plugins provided by the
infrastructure manager and the developers and automatically
injects them in the VM together with the Ceiloesper Probe,
activating it, and enabling monitoring of metrics at the AAL
and ABL layers.

4) Analysis Engine: The Analysis Engine is a component
of the Ceiloesper Framework that in Figure 2 is illustrated
outside the Controller Node. However, there is no constraint
prohibiting this module to be also hosted by the Controller
Node. The main module of this engine is called Ceiloesper
Engine. It is based upon Esper, a Java-based CEP (Complex
Event Processor) engine for the detection and management
of complex events. As depicted in Figure 2, the Ceiloesper
Engine is configured according to the SoI set S appid

SoI for each
application running in the cloud environment. The S appid

SoI
is translated into the EPL language provide by Esper. The
support for defining a Complex Statement CS of a SoI Sappid

is currently based on thresholds, or pattern matching for events
of higher complexity. The CS are implemented by Listeners
associated with the Esper Engine. At the moment two types of
listeners (thus, CS) have been implemented: detecting levels in
excess of a certain threshold, and detecting levels getting again
below threshold, by pattern matching. When the Listerners
evaluate CS to true, the event Ev associated with the SoI
Sappid will be triggered and published at the AMQP queue,
as illustrated in Figure 2. In addition, the measurement values
of each monitoring metric m j associated with a Sappid are
delivered to the Analysis Engines as events. An Esper Engine



itself is not able to collect monitoring information. It must
receive the monitoring information in the form of an event
that can be later interpreted by the Listerners. This process
of converting monitored information into an events happens
between the Ceiloesper Dispatcher and the Rest Module
attached to the Esper Engine.

5) Configurations of CoIs, SoIs, and Plugins: In this paper
we do not discuss in detail the languages and the specific
mechanisms to support the automatic configuration of the CoI,
SoI, and monitoring plugins of the Ceiloesper Framework. As
we indicate in Figure 2, the dotted lines show the configuration
actions necessary in each module. The SoI needs to be config-
ured in the Ceiloesper Engine. The CoI is associated with three
types of modules: The Ceiloesper Probe Pollsters of each VM
in each PM, so that only the relevant metrics to the analysis
of the CoI are retrieved. The Ceiloesper Dispatcher, in order
to guarantee that the metrics in a CoI will be forwarded to the
analysis in the Analysis Engine. The Ceiloesper Monitoring
Panel to indicate which metrics should be visualized under
the same CoI. Finally, it is also necessary to configure the
Contextualization Manager in order for the monitoring plugins
to be activated in each layer of the cloud environment in
order to provide the information for the SoIs to be analyzed.
Some of the solutions proposed in the related work can be
used as baseline technology for automatizing all the required
configurations in the Ceiloesper Framework.

IV. EXPERIMENTS

The goal of our experiments is to demonstrate the effective-
ness of the Ceiloesper Framework architecture in analyzing
the metrics coming from the infrastructure, detecting specific
situations, and triggering management actions by using the
3D Cloud Monitoring model, the CoI, and the SoI concepts.
To achieve this goal, we use a Wordpress application case
study. In Section IV-A, we describe a real OpenStack-based
testbed and how it has been used to emulate the deployment
of the WordPress application in a cloud environment. We also
provide details on the tools used to generate synthetic load to
stress the WordPress application. In Section IV-B, we discuss
the numerical results observed during the experiments.

A. Testbed arrangement

We consider as a base for our experimentation the case study
discussed in [2]. However, here we implement an advanced
configuration in which a virtual load balancer (provided by
OpenStack Neutron Load-Balancing-as-a-Service) is used to
redirect requests to two VMs hosting an installation of the
WordPress application over the Apache2 Web server. More-
over, on additional VM is exploited to host the MySQL
DBMS and the Memchached tool. Fig. 3 shows this testbed
arrangement. We exploit three IBM LS21 blade servers as
PMs. The corresponding hardware configurations are shown in
Fig. 3. On all the PMs, we have installed the Scientific Linux
6.5 distribution. On PM1, we have installed an OpenStack
Controller node with Keystone, Glance, Nova (but without
Nova-Compute), Neutron, and Horizon services. Among the

others, such a PM provide the Neutron LoadBalancer func-
tionalities. Moreover, on PM1 we have installed the Ceiloesper
Dispatcher, the Ceiloesper Monitoring Panel, and the Ceiloes-
per Contestualization Manager. On PM2 and PM3, the Nova-
Compute service has been installed in order to be able to
instantiate VMs on top of it. The Ceiloesper Probe Pollster
has been also installed on them.

On top of PM2, we have instantiated a couple of VMs
(VM1 and VM2) where the Apache2 Web server and the
Wordpress application are hosted while, on top of PM3, we
have instantiated a VM (VM3) where the MySQL database
and the Memchaced tool are installed. In all the VMs, we
have installed the Ubuntu 14.04 distribution. In commercial
cloud environments, a database service is usually purchased
with a limited number of supported concurrent connections.
For example, Amazon Relational Database Service (Amazon
RDS) provides predefined database instances with different
maximum number of concurrent connections, e.g., t1.micro
(with 34 connections at most), or m1.small (with 150 connec-
tions at most). For such a reason, we have initially configured
the MySQL DBMS to support a maximum of 50 concurrent
connections. On a machine external to the testbed, we installed
the Apache Jmeter tool that emulates clients of the WordPress
application. The hardware configuration of all the VMs is also
described in Fig. 3.

On each PM/VM we have also installed a set of monitoring
tools. In particular, we have exploited the standard Havana
OpenStack Ceilometer to collect information from the PL
(CPU and memory of PM2 and PM3) and VL (vitual CPU and
memory consumption of VM1, VM2, and VM3). The AWStats
and MyCheckPoint tools have been used to extract data from
the AAL, collecting the number of pages per second provided
by the Apache Web server and the number of concurrent
connections at the MySQL DBMS, respectively. Finally, at the
ABLL layer, Apache Jmeter analysis plug-in has been used to
collect the percentage of errors experienced by the users while
accessing the WordPress Web site and the response time to
perform each user action. The Ceiloesper Contextualization
Manager automatically injected in all the VMs the Ceiloesper
Probe while specific Ceiloesper plugins have been developed
and injected to interact with the installed monitoring tools,
collect metrics, and provide them to the Ceiloesper Engine
through the Ceiloesper Probe. Software configurations and
versions are also depicted in Fig. 3.

During the experimentation, the load on the WordPress Web
site is synthetically generated using the Apache Jmeter tool.
We generated the synthetic traffic according to Table I. We
consider five categories of users who perform a different set of
operations in a specific order. The users continuously perform
their set of actions waiting for a random time between one set
and the next one. We defined two different phases (low and
high) in order to stress the system. For each phase, we change
the number of users in each category that are concurrently
performing a set of operations in the WordPress Web site.

Finally, we defined two SoIs for the experiments. The first
one is used to detect problems in the configuration of the
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Fig. 3. Testbed arrangement with PMs, VMs, hardware/software configuration, and monitoring tools.

TABLE I
CATEGORIES OF USERS AND POPULATION CHARACTERIZATION FOR THE

CONSIDERED LOAD PHASES.

User Type and Description Low Load High Load
Admin creating new post 1 1
Guest reading latest post 10 30
Guest reading random post 10 30
Guest reading latest post 10 30
and leaving a comment
Guest reading random post 10 30
and leaving a comment

MySQL server in the case of high load expressed as follows:

({((CPU%≥ 99%),4 min,−), (1)
((Mem (used)%≥ 60%),4 min,−),

((#MySQL connections≥ 50),4 min,−),
((Apache pages/sec≤ 1),4 min,−),

((WP errors%≥ 10%),4 min,−),
((Response time≥ 50sec),4 min,−)},

MySQL alarm)

where MySQL alarm is an event about the detection of the
situation. The second SoI is used to detect that the problematic
situation is no more present as described below:

({((CPU%≤ 50%),4 min, MySQL alarm), (2)
((Mem (used)%≤ 40%),4 min, MySQL alarm),

((#MySQL connections≤ 40),4 min, MySQL alarm),

((Apache pages/sec≥ 1),4 min, MySQL alarm),

((WP errors%≤ 1%),4 min, MySQL alarm),

((Response time≤ 1sec),4 min, MySQL alarm)},
MySQL normal)

where MySQL normal is the event signaling a normal situa-
tion has been detected.

B. Discussion of Results

We conducted experiments for the same case study but with
two different scenarios. One is the standard OpenStack instal-
lation with basic monitoring solution provided by Ceilometer.
This means that no information from multiple layers of the
cloud are per default analyzed together, and that there is no
real time data analysis and eventual activation of management
actions. The graphics in Fig. 4(a) represent the observed
metrics (equivalents of a CoI configuration) for this scenario
without Ceiloesper. The other is the OpenStack installation
with the Ceiloesper Framework. Fig. 4(b) shows the metrics
of the CoI and the results of the changes in the environment
for the SoI associated with this CoI. In this case, Ceiloesper
architecture is exploited to monitor a CoI, detect a SoI in
real time, and automatically activate a specific management
action. The goal is to demonstrate the need for combining
traditional monitoring elements with the power of CEP and to
show the effectiveness of the proposed architecture in allowing
improvements in the execution of cloud applications.

Figs. 4(a) and 4(b) show the monitored information ob-
served for the WordPress application CoI. At the PL and
VL layers, we collected the CPU load and the memory
consumption. At the AAL layer, we collected the number of
concurrent connections at the MySQL DBMS and the number
of pages provided by the Apache Web server per second.
Finally, at the ABL layer, we measured the percentage of errors
experienced by the users while accessing the WordPress Web
site and the response time to perform each user action. In
the two figures, the first 10 minutes of experimentation from
00:00 to 00:10 represent the low load scenario; the interval
from 00:10 to 00:30 depicts the high load scenario; finally the
traffic load is reverted back to the low load in the interval from
00:30 to 00:40.

Fig. 4(a) corresponds to the standard OpenStack installation
in which no CoI, SoI, and management actions are configured.
In such a figure, we observe that during the low load phase
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(b) With Ceiloesper CoI, SoI, and management action.

Fig. 4. Monitored metrics in the case of (a) standard OpenStack installation, (b) Ceiloesper installation with CoI, SoI, and management actions configured.

the users experience a response time below 50s and no page
errors are detected in the web servers (hosted by VM1 and
VM2).The CPU and memory consumption of all VMs from
the application are all operating without being overloaded.
On the other side, during the high load phase, we identify
a situation in which the system is overloaded and both the
number of errors and the response time increase considerably,
as well as the metrics related to the virtual resources of the
application. In the previous work, we proved that without using
a multi-layer model as proposed in [2], the administrator of

the WordPress Web site would have to look in different moni-
toring graphics (not necessarily clustered together in the same
image) and would have to manually relate the information and
determine the best management action. However, even if a
multi-layer monitoring tool were to be present, if no real time
analysis were available the delay in querying the data from the
database, analyzing them, and activating a management action
to compensate the overload situation could be longer than the
time to react to the problem in the best way. Moreover, if
traditional auto-scaling mechanisms were configured for this



application, this would mean that typically the metrics from PL
and VL layers would be observed in order to activate a tradi-
tional resource scaling action (probably increasing the number
of virtual CPU associated to VM1 and VM2). However, when
we apply our approach, as illustrated in Fig. 4(b), management
actions are taken considering information also at the AAL
and ABLL layers and a CEP engine is exploited to perform
analysis in real time. Considering also information from AAL
and ABLL layers, it is possible to inference that the actual
problem is related to the maximum number of concurrent
connections at the MySQL DBMS (as detailed in [2]). Indeed,
in the high load this number is reached and the MySQL DBMS
starts to reject connections causing the Web Page errors. This
also limits the number of pages per second that the Apache
server can provide to the users.

Given such an information, the infrastructure manager can
define a SoI in which if the number of connections to the
MySQL database is above a certain threshold for a given
time window a management action is triggered changing the
database configuration in order to force it to accept a bigger
number of connection. In our experimentation, we put the
first SoI (Eq. (1)) threshold to 50, we set the time window
to 4 minutes, and we associate the activation of such a
SoI a management action changing the maximum number of
connections to the MySQL database to 120. According to
this, we note that at time 00:15 the SoI is detected and the
management action is activated. This affects the number of WP
errors that quickly decreases to zero. Although the response
time does not decrease, we can notice that with the activation
of the management action in SoI for this case, the application
started to serve more connections due to the automatic change
triggered by the Ceiloesper Framework. Moreover, even the
consumption of CPU and Memory is still high even after
the activation of the management action, this consumption is
not compromising the capacity of the application to serve the
requests. Therefore, this also confirms that no auto-scaling is
necessary at that point in time. The second SoI (Eq. (2)), as
described previously aims at bringing the application back to
its initial configuration once there is no more high load of
requests. When such a SoI is detected, an event is triggered
and the management action to restore the maximum number
of connections to the database to the original value of 50 is
performed. This is the example of a Complex Statement that
stores the memory of previous activated events in the analysis
of the situation.

V. CONCLUSION

In the context of cloud monitoring, state of the art solutions
fail to provide frameworks in which monitoring in multiple
layers and data stream analysis are both in place with the
aim of detecting situations and triggering (possibly) multiple
management actions. In this paper, we provided an OpenStack-
based architecture, the Ceiloesper, combining multi-layer mon-
itoring facilities and real time CEP analysis. We introduced the
new concept of the SoI, formally describing a combination of
monitored metric values that are relevant for the detection of a

specific circumstance. Experimental results have been shown
demonstrating the need for combining traditional monitoring
elements with the power of CEP taking into consideration
information coming from all the layers of the cloud envi-
ronment. Future work will be devoted at automatizing the
selection of the best management action in the presence of
multiple possible actions ranking them accordingly to QoS
and cost parameters. Moreover, more complex scenarios will
be considered providing in-depth quantitative analysis of the
advantages of our framework in terms of network overhead
and responsiveness.
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